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Abstract

Morphological inflection is a crucial task in the
field of morphology and is typically considered
a sequence transduction task. In recent years,
it has received substantial attention from re-
searchers and made significant progress. Mod-
els have achieved impressive performance lev-
els for both high- and low-resource languages.
However, when the distribution of instances in
the training dataset changes, or novel lemma
or feature labels are predicted, the model’s ac-
curacy declines. In agglutinative languages,
morphological inflection involves phonological
phenomena while generating new words, which
can alter the syllable patterns at the boundary
between the lemma and the suffixes. This paper
proposes four strategies for low-resource agglu-
tinative languages to enhance the model’s gen-
eralization ability. Firstly, a convolution mod-
ule extracts syllable-like units from lemmas,
allowing the model to learn syllable features.
Secondly, the lemma and feature labels are rep-
resented separately in the input, and the posi-
tion encoding of the feature labels is marked
so that the model learns the order between suf-
fixes and labels. Thirdly, the model recognizes
the common substrings in lemmas through two
special characters and copies them into words.
Finally, combined with syllable features, we im-
prove the data augmentation method. A series
of experiments show that the proposed model in
this paper is superior to other baseline models.

1 Introduction

Morphological inflection generates a word form
given a lemma and target morpho-syntactic descrip-
tions (MSDs) (Wiemerslage et al., 2023). For ex-
ample, give the word ’dog’ and the MSD labels
’N;PL’, and to generate the word ’dogs’. Simi-
lar to morphological analysis (Toleu et al., 2022)
and morphological segmentation (Batsuren et al.,
2022a), morphological inflection is a fundamental
task in natural language processing (NLP). It plays
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a crucial role in various downstream applications
such as dependency parsing (Muñoz-Ortiz et al.,
2022), machine translation (Tamchyna et al., 2017;
Liu and Hulden, 2021; Xu and Carpuat, 2021), and
others. Researchers have shown increasing inter-
est in morphological inflection in recent years, and
the research methods have evolved from traditional
linguistic knowledge-based finite-state transduc-
ers (FSTs) to sequence-to-sequence frameworks
(Xu and Carpuat, 2021). The construction of rel-
evant datasets (Batsuren et al., 2022b) and the ad-
vancement of research approaches (Wu et al., 2021)
have significantly reduced the difficulty of morpho-
logical inflection, but new challenges have also
emerged.

The model achieves high accuracy when both the
lemma and feature set are attested in the training
set. However, when lemma or feature sets are unat-
tested in training, or in cases similar to the "wug
test" (Liu and Hulden, 2022), the model’s accuracy
begins to decline (Kodner et al., 2022), even in
high-resource languages. Because the dataset of
low-resource languages is too small, training neu-
ral network models can result in label bias, where
the model tends to output characters commonly
seen in the training set (Anastasopoulos and Neu-
big, 2019). It is very effective to augment training
data in low-resource with a data hallucination ap-
proach (Liu and Hulden, 2022). Anastasopoulos
and Neubig (2019) proposed a data augmentation
based on characters, while Liu and Hulden (2022)
argue that data hallucination based on strings or syl-
lables approach (such as 2-gram, 3-gram, 4-gram,
etc.) is more effective than character-based. This
is because character-based hallucination breaks the
original syllabic structure of words. Additionally,
in sequence-to-sequence models (seq2seq), the in-
put usually includes both the lemma and MSDs.
When the lemma and MSDs are lengthy, it can-
not be guaranteed that each label will impact every
character. In the agglutinative language morpholog-
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ical task, MSD affects the beginning and ending of
the word, with very few influences on the internal
structure of the word, as shown in the following
example in Kyrgyz:

Figure 1: An example in Kyrgyz

In the example, the lemma is on the left, and
the word is on the right. We divide the word into
two parts: red is the stem, and blue is the suffix,
and the stem is a part of the lemma. During model
predictions, errors can occur not only in the suffix
but also in the stem. Furthermore, when the lemma
is connected to the suffixes, there may be char-
acter substitution, insertion, and deletion. There
are too many uncertainties regarding which charac-
ters undergo each type of transformation (Kodner
et al., 2022). These uncertainties can also change
syllable categories at the connection points. All
these problems make low-resource agglutinative
language morphological inflection more challeng-
ing.

Therefore, based on the above problems and
considering the characteristics of agglutinative lan-
guage syllables, this paper proposed four strategies
to address them. The first strategy aims to reduce
the impact of agglutinative language phonetic vari-
ations by incorporating a convolution module in the
model’s encoder. This module extracts syllabic fea-
tures (like n-grams). The second strategy, inspired
by the work of Yang et al. (2022), adds reversed
token embeddings and positional encodings in the
encoder’s input. Additionally, label positions are
marked, enabling the model to learn the correspon-
dence between suffixes and labels and the impact of
labels on each character. The third strategy aims to
alleviate errors in the stem. In the encoder, special
characters are added to the beginning and ending of
the lemma’s stem. In the decoder, each character of
the lemma is marked to indicate whether it should
be copied. The fourth strategy is to avoid breaking
the syllable categories of lemmas and words dur-
ing data augmentation. Letter type (sound: vowel
or consonant) is determined when randomly sam-
pling. If the letter being replaced is a vowel, it is
substituted with another vowel in the language; a
consonant is replaced with another consonant. We
evaluate our model on five low-resource aggluti-
native languages, Kazakh, Kirgiz, Tatar, Uyghur,

and Uzbek, in Unimorph. The experiments show
that the performance of the model proposed in this
paper is superior to that of other comparable mod-
els. The baseline model (baseline-neural model)
with data hallucination and three strategies have im-
proved the overall accuracy of the model by 9.54%
and 4.17%, respectively. In summary, our main
contributions are as follows:

• Improved the existing data hallucination ap-
proach to generate fake data that adheres more
closely to the language rules.

• Proposed three strategies to improve the
model’s accuracy by addressing issues in mor-
phological inflection and considering the char-
acteristics of agglutinative languages. Firstly,
incorporating reversed token embeddings and
positional encoding at the input, representing
lemma and MSDs separately. Secondly, a
convolution module for learning syllable fea-
tures in agglutinative languages is added to
the encoder. Finally, two types of labels are
employed to enable the model to identify com-
mon substrings and learn to copy them.

• The proposed strategies were validated
through experiments on Kazakh, Kyrgyz,
Tatar, Uyghur, and Uzbek languages in the
UniMorph dataset, and the results demon-
strated the effectiveness of the proposed strate-
gies.

2 Related Work

In recent years, the development of morphologi-
cal inflection has significantly been promoted by
the Sigmorphon shared tasks (Kodner et al., 2022;
Vylomova et al., 2020; Pimentel et al., 2021). Re-
search on morphological inflection mainly focuses
on rule-based (such as FST) (Xu and Carpuat, 2021;
Merzhevich et al., 2022), statistical (Liu and Mao,
2016), and neural network-based models (Wu et al.,
2021; Liu and Hulden, 2020; Singer and Kann,
2020). Additionally, data augmentation (Anas-
tasopoulos and Neubig, 2019; Silfverberg et al.,
2017) can also improve the performance of models
in low-resource languages. Seq2seq models, such
as RNN+attention (Wiemerslage et al., 2018) or
Transformer (Yang et al., 2022; Merzhevich et al.,
2022; Elsner and Court, 2022), have become pop-
ular framework for morphological inflection in re-
cent years. The lemma and tags are usually input
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together in this framework, and the model generates
the inflected word. For example, given the input
’dog+N+PL’, the output should be ’dogs’ (Wu et al.,
2021). Based on the Transformer, Wu et al. (2021)
modified position encoding of MSDs in the input
sequence to 0 and added embedding type to distin-
guish between characters and features. This modifi-
cation makes the model more suitable for morpho-
logical inflection. Transformer can achieve high ac-
curacy in high-resource or simple conditions where
both the lemma and MSD have attested in the train-
ing dataset. However, training high-accuracy mod-
els in low-resource or complex situations where the
lemma or tags are unattested in the training dataset
is challenging. Through experimental analysis (Liu
and Hulden, 2022), it has been found that for some
languages, there is a portion of the generated word
where the lemma and feature tags correspond to the
common strings. Therefore, improving the model’s
ability to copy characters can enhance its perfor-
mance. Singer and Kann (2020) proposed a pointer
generator Transformer, which uses a copying mech-
anism to generate a character probability distribu-
tion. This model achieved a 4.46% improvement
over the vanilla Transformer in low-resource lan-
guages. Wehrli et al. (2022) proposed a character-
level neural transducer that operates over tradi-
tional edit actions based on their previous work
(Makarov and Clematide, 2020). They optimized
the training procedure using mini-batches and only
relied on the teacher-forcing approach, i.e., using
gold labels rather than what was predicted during
the training phase. Morphosyntactic features were
treated individually, and their embeddings were
summed. Anastasopoulos and Neubig (2019) pro-
posed a two-step attention decoding structure and
augmented the dataset through data hallucination.
Firstly, they identified the "stem" (the common part
when comparing lemma and word, where there is
one or several stems) based on the lemma-word
pairs in the dataset. Then, they randomly replaced
the string in the stem, except for the first and last
strings. Yang et al. (2022) suggested that in mor-
phological inflection, only forward distances are
usually encoded while ignoring backward distances.
Therefore, they added reverse positional encoding
based on the char-Transformer model. Firstly, they
trained the model using standard backpropagation
and teacher forcing based on the data augmen-
tation proposed by Anastasopoulos and Neubig
(2019), saving the best model on the validation

set. Then, they further trained the model using
student forcing. Finally, this model achieved an ac-
curacy improvement of 9.6% and 8.6% compared
to the baseline model in low-resource and high-
resource scenarios. Merzhevich et al. (2022) pro-
posed two models in the Sigmorphon 2022 shared
task: a neural network-based model and an FST-
based model. The FST model outperformed the
neural network-based model in specific languages.
This indicates that for endangered languages or low-
resource scenarios, data-driven methods are still
immature and rely on linguistic rules. Although
FST models achieve higher accuracy in specific lan-
guages, collecting or annotating linguistic rules is
costly and time-consuming. Thus, building a high-
performance model using existing data resources
is crucial. Therefore, this paper focuses on five
low-resource agglutinative languages. Based on
the baseline model - Transformer, four strategies
are proposed to improve the model’s accuracy and
robustness by incorporating morphological features
of agglutinative languages.

3 Approaches

In this section, we describe our strategies for the
inflection task.

3.1 Feature extraction

In agglutinative languages, when generating a new
word, the connection between lemma and suffixes
can result in character additions, deletions, and
substitutions due to the influence of the pronun-
ciation of surrounding characters, which is called
phonological phenomena. This phenomena change
the syllable structure of lemma. In this paper, we
hypothesize that syllable features are important in
agglutinative morphological inflection, in addition
to character features and contextual features. The
multi-head attention mechanism in Transformer
extracts character and contextual features, but it
is not sure whether syllable-like features are also
extracted, such as n-gram. Therefore, this paper
extract character contextual features through a con-
volution module to reduce manual labeling, simu-
lating the process of extracting n-gram or syllable
features. Specifically, we introduce convolutional
blocks into the encoder (Vaswani et al., 2017) of the
Transformer to extract syllable features, as shown
in Figure 2.

Given a sequence W = {c1 , c2 , . . . , cn}, ci
embedding is represented as xi ∈ Rdmodel , where
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Figure 2: The Transformer encoder

dmodel represents the dimension of the vectors. The
word embeddings are separately fed into the multi-
head self-attention module and the convolution
module in the encoder. When inputted into the
multi-head self-attention module, the input vectors
are linearly transformed to obtain Q,K, V vectors
of the same dimension as X . Then, the attention
scores for the ith head are computed as shown in
formulas 1-2:

Attention (Q,K, V )i = softmax(
QiK

T
i√

dk
)Vi

i = 1, ..., n

(1)

MultiHead(Q,K, V ) =

Concat(Attention1, ...,Attentionn)W
O

(2)

where WO ∈ Rhd×dmodel , d = dmodel = 256,
the number of heads h=4. When inputted into the
convolution module, this paper utilizes depthwise
separable convolution to reduce the number of pa-
rameters in the model. It combines depthwise con-
volution and pointwise convolution, as shown in
formulas 3-5:

P = σ(WaX
T ) (3)

where Wa is pointwise convolution,Wa ∈
Rdmodel×dmodel . σ (·) indicates the GLU activation
function.

D = (Wc(Concat(W 1
b P, . . . ,W

i
bP ))

T + b)

i = 1, ..., 5

(4)

where W i
b is depthwise convolution, W i

b ∈
Rdmodel×dmodel , Wc represents a linear layer used
to reduce data dimension, Wc ∈ Rmdmodel×dmodel ,
m represents how many convolutions are used, and
b is the model parameter.

ConvFeat =Wdσ(D
T ) (5)

where Wd is pointwise convolution, Wd ∈
Rdmodel×dmodel . σ (·) indicates Swish activation
function. Therefore, the final feature output is
shown in formula 6:

FinalFeat = MultiHead+ConvFeatT

(6)

3.2 Model input
In morphological inflection, the MSDs are added
to the lemma and input into the model together.
Therefore, the model treats MSDs as special char-
acters. However, we want the MSDs to constrain
the lemma rather than become part of the lemma.
Thus, Wu et al. (2021) set the positional encoding
of MSDs to 0 and only start counting the positions
for characters. They add a special token to indi-
cate whether a symbol is a word character or an
MSD. Additionally, Yang et al. (2022) argue that
in morphological inflection, it is important to en-
code the distance from the beginning of the input
string and encode the distance to the end of the
string. So, they proposed reverse positional encod-
ing, where the final positional encoding is obtained
by concatenating forward and reverse positional
encodings.

Both of the above approaches do not learn the
positional encoding for MSD. However, we be-
lieve that MSDs correspond to suffixes. As suffixes
have a specific order, MSDs also have an order.
Therefore, this paper handles lemma and MSD em-
beddings separately, without including any type of
embeddings. The model input is shown in Figure
3. Given a sequence of length n (excluding MSD),
where xi represents the word embedding of the i-
th character, fi represents the forward sinusoidal
positional encoding of the i-th character. Thus, the
token embedding and positional encoding of the
i-th character are formulated as shown in Equa-
tion 7-8, and the final embedding representation is
shown in Equation 9.

Ci = concat(xi, xn−i+1) (7)

Pi = concat(fi, fn−i+1) (8)
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Ei = Ci + Pi (9)

Figure 3: The model’s input

3.3 Finding Common Substrings
We divide words into two parts: stem and suffixes.
In neural network-based morphological inflection,
errors can occur in the suffixes and the stem. There-
fore, improving the model’s ability to copy the
stem accurately can enhance the overall accuracy.
In this paper, the stem in the word is identified by
comparing it with the lemma, and the "$" symbol
is added to the beginning and ending of the stem
to indicate that it is the same part. Additionally,
an extra character token is introduced in the input
of the transformer decoder to indicate whether the
character is a part of stem, as shown in Figure 4.
The model is trained using teacher-forcing, and
during testing, a greedy search with a width of 5 is
applied.

Transformer Encoder

$。w。a。l。k。$。v。pastInputs

TransformerDecoder

walked
Outputs

+。+。+。+。+。+。+。..+

$。w。a....l….k。$。v。.past

C...C...C...C。C...C。N。.N

Figure 4: The Encoder-Decoder input

3.4 Data hallucination
In agglutinative language morphological inflection,
we found that the main focus is on suffixes. In
other words, suffixes are added, deleted, and sub-
stituted. In the data augmentation approach pro-
posed by Anastasopoulos and Neubig (2019), the
stem containing at least three or more characters
is selected, and random replacement is performed
on the middle characters of the stem (excluding

the first and last characters) while maintaining the
overall length of the stem. The data augmentation

Algorithm 1 Data hallucination (DH)
Input: labeled data
Output: fake data

1: D = labeled data
2: for each i ∈ [0, len(D)] do
3: line= D[i]
4: lemma, word, label = getparts(line)
5: comstr= getcommon(lemma, word)
6: achar=getrandom(0: len(comstr)-1)
7: if achar is Vowel then
8: new_char=getrandom(VowelsList)
9: else

10: new_char=getrandom(ConsonantsList)
11: end if
12: new_comstr=replace(comstr,achar,newchar,1)

13: Add_Hallucinate_Dictionary(comstr,new
comstr)

14: Add_Word_Dictionary(word)
15: end for
16: for each i ∈ [0, len(D)] do
17: line= D[i]
18: lemma, word, label = getparts(line)
19: comstr= getcommon(lemma,word)
20: new_comstr= getFromHallu_Dict(comstr)
21: new_lemma=replace(lemma,comstr,

new_comstr,1)
22: new_word= replace(word,comstr,_comstr,1)

23: while new_word in Word_Dictionary do
24: new_comstr =Regenerate_new_comstr()
25: new_word =replace (word, comstr,

new_comstr, 1)
26: end while
27: Add_Word_Dictionary (new_word)
28: new_line= makeNewDataLine(new_lemma,

new_word, label)
29: Add_FakeData(new_line)
30: end for
31: return FakeData

approach proposed in this paper, language features
are incorporated to improve the rules of random
replacement. During each sampling, only one letter
is replaced, and the category of the original letter
(consonant or vowel) is determined before replace-
ment. A randomly sampled character of the same
type is then used for replacement. It is worth not-
ing that there are cases in the dataset where two
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characters together represent a single sound, such
as "ch", "sh" and so on. When encountering the re-
placement of such characters, this paper combines
and replaces them with another character of the
same type, which may alter the length of the word.
In this paper, 10,000 fake examples were generated
for each language through data augmentation. The
pseudocode for the data augmentation is shown in
Algorithm 1.

4 Experiments

4.1 Data and evaluation

This paper defines training data with fewer than
7000 instances as low-resource. The experimen-
tal data for Kyrgyz (kir), Tatar (tat), Uyghur (uig),
and Uzbek (uzb) languages are sourced from Uni-
Morph (Batsuren et al., 2022b), while the Kazakh
(kaz) dataset is obtained from the Sigmorphon2022
shared task. The dataset consists of three columns:
lemma, word form, and label. The statistics of the
dataset are shown in Table 1:

Lang. Train Test Development
Kaz 7000 1994 998
Kir 3879 1109 556
Tat 5481 1567 784
Uig 5675 1668 835
Uzb 7000 1988 998

Table 1: Dataset statistics.

To test the model’s morphological inflection abil-
ity for lemmas and MSDs that have been unattested
in the training set, we ensured that a portion of the
lemmas and morphological features were unseen
in the training and test sets during data partitioning.
Following (Kodner et al., 2022), the overlap types
for each example in the validation and test sets can
be categorized into the following four types. The
statistical information on different overlap types in
the validation and test sets are shown in Table 2:

Both overlap: Both the lemma and feature set
of a training pair are attested in the training set (but
not together in the same triple)

Lemma overlap: A test pair’s lemma is attested
in training, but its feature set is novel

Feature overlap: A test pair’s feature set is at-
tested in training, but its lemma is novel

Neither overlap: A test pair is entirely unat-
tested in training. Both its lemma and features are
novel.

This paper evaluates the model performance us-
ing accuracy (ACC) and calculates the accuracy for
different overlap types using the evaluation script 1

from SIGMORPHON2022 shared task 0.

4.2 Baseline models and hyperparameters

This paper selects the rule-based (baseline-
nonneural), neural (baseline-neural) CLUZH mod-
els from SIGMORPHON2022 shared task 0 and a
data hallucination approach. The rule-based model
is used for shared tasks from 2020, while the neural
model is based on the vanilla transformer proposed
by Vaswani et al. (2017). The CLUZH is a sys-
tem submitted by the CLUZH team to SIGMOR-
PHON2022 shared task 0, a character-level neural
transducer (Wehrli et al., 2022). The proposed im-
provements in this paper are modifications made
to the vanilla transformer. In addition to these two
baseline models, we incorporate the data augmen-
tation method proposed by Anastasopoulos and
Neubig (2019) in the neural-based experiments.

We train our models with four layers in the en-
coder and decoder, each containing four attention
heads. The embedding size is 256, and the hidden
layer size is 1024. We use the Adam optimizer
with an initial learning rate of 0.001. In the base-
line comparison experiments, the batch size is 256;
in the data Hallucination comparison experiments,
the batch size is 64.

4.3 Experimental results

In the paper, we conducted two sets of compara-
tive experiments to demonstrate the effectiveness
of the proposed strategies. In the first set of ex-
periments, we incorporated the improvements pro-
posed in Sections 3.1, 3.2, and 3.3 into the vanilla
Transformer and compared the results to the base-
line model. The experimental results are shown in
Table 3. In the second set of experiments, we com-
pared the data augmentation method proposed by
Anastasopoulos and Neubig (2019) with the data
augmentation method proposed in this paper. The
experimental results are presented in Table 5. A
detailed description of the comparative experiment
is provided in Appendix A.

The experimental results in Table 3 show that
three strategies proposed in this paper outperform
the baseline model on test set. Compared to the
baseline-nonneural model, the overall accuracy is

1https://github.com/sigmorphon/2022InflectionST/blob
/main/evaluation/evaluate.py
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Lang.
Development Test

Total Both Lemma Feature Neither Total Both Lemma Feature Neither
Kaz 998 412 563 13 10 1994 966 992 28 8
Kir 556 138 237 160 21 1109 303 483 272 51
Tat 784 776 0 8 0 1567 1551 0 16 0
Uig 835 206 312 274 43 1668 427 601 562 78
Uzb 998 793 79 121 5 1988 1540 159 281 8

Table 2: Statistics of four kinds of overlaps

Lang
Baseline-nonneural Baseline-neural CLUZH Our model
dev test dev test dev test dev test

Kaz 37.58 42.88 68.04 65.55 55.41 55.42 69.64 68.81
Kir 46.40 44.91 66.01 71.87 78.06 76.47 74.10 81.24
Tat 76.02 77.15 95.41 95.72 97.07 97.00 96.43 97.26
Uig 50.30 51.50 77.25 76.80 77.61 77.28 83.35 83.75
Uzb 89.17 88.03 91.68 91.05 96.99 96.53 92.18 92.96
Total 60.86 62.11 80.41 80.41 80.65 80.24 83.41 84.58

Table 3: Comparison experimental results of baseline
models

improved by 22.55% and 22.47%, while compared
to the baseline-neural model, the improvement is
3.00% and 4.17%, respectively. Compared with
the CLUZH, it has increased by 2.76% and 4.34%,
respectively. There have been significant improve-
ments in test sets for all languages except Uzbek.
This indicates that the proposed methods are effec-
tive for low-resource agglutinative languages. It’s
worth noting that although the rule-based approach
has the lowest accuracy, it achieves an accuracy
of 88.03% on the Uzbek language test set, while
the neural model only reaches 91.05% and 92.96%.
The improvement is not as significant compared
to other languages. Similarly, there are interest-
ing findings in the case of Kazakh. The neural
network improves accuracy compared to the rule-
based method, but the improvement is not signifi-
cant. Through analysis, it was found that this may
be related to three factors in the dataset: 1) the dis-
tribution of lemmas and features, 2) the frequency
of phonological phenomena occurrences.

In addition to the comparative experiments with
the baseline model mentioned above, this paper
also compared the experimental results of systems
such as CLUZH, Flexica, OSU, TüM Main, and
UBC on Kazakh in the Sigmorphon 2022 shared
task (Kodner et al., 2022). The experimental results
are presented in Table 4.

From the experimental results on the Kazakh
dataset in Table 4, it is observed that the model
achieves higher accuracy when both the lemma and
the feature are attested in the training set or only the

Partition CLUZH Flexica OSU TüM Main UBC Our model
overall 58.38 34.20 49.20 53.61 65.75 68.81
both 96.17 67.70 98.76 89.96 97.52 97.72

lemma 20.87 0.81 0.00 17.44 34.38 40.22
features 100.00 71.43 96.43 96.43 92.86 96.43
neither 0.00 0.00 0.00 0.00 25.00 25.00

Table 4: Experimental results of Kazakh in Sigmarphon
2022 shared task

feature is attested in the training set. On the con-
trary, the model’s accuracy is relatively low when
only the lemma is attested, or neither of them is at-
tested in the training set. This is one of the reasons
for the lower accuracy in Kazakh. Therefore, we
consider that in some languages, the phonological
phenomena that occur in word differ with different
sets of labels, and important morphological varia-
tions are rarely learned through overlaped lemmas.
This leads to the lower accuracy of the model in
the case of lemma overlap. The data hallucina-
tion seems to improve the model’s robustness by
increasing the variety of lemmas. But in reality, it
enables the model to learn the relationship between
the labels and suffixes through the overlap of MSD.
This phenomenon can also be observed in the ex-
perimental results in Appendix A.2, where there is
an improvement in accuracy on lemma overlap for
languages other than Tatar.

Lang
Baseline-Neural Baseline-Neural+hall Baseline-Neural+our hall
dev test dev test dev test

Kaz 62.12 61.89 63.83 61.69 68.44 66.40
Kir 64.75 70.51 84.89 87.92 83.99 87.29
Tat 92.22 92.92 93.24 92.79 94.90 95.28
Uig 74.61 72.00 94.01 93.05 91.14 92.63
Uzb 89.87 87.68 95.69 95.62 94.38 94.57
Total 77.27 77.06 85.83 85.42 86.24 86.60

Table 5: The results of comparison experimental based
on hallucinations

Therefore, to further improve the model’s ac-
curacy, this paper investigates the technique of
data hallucination. From Table 5, it is observed
that data hallucination has a significant impact on
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Model
Overall Both lemma features neither

Dev Test Dev Test Dev Test Dev Test Dev Test
Baseline 80.41 80.41 96.56 96.93 66.84 62.55 48.79 52.03 39.74 37.24

+Feature extraction 81.94 82.56 96.65 96.99 68.18 66.58 55.73 58.50 47.44 44.83
+Model input 82.35 82.75 96.77 97.41 67.34 63.89 59.20 63.07 52.56 46.90

+Common substrings 80.74 81.46 96.00 96.37 67.84 65.10 51.22 56.43 41.03 41.38
+++ 83.41 84.58 96.22 96.93 70.11 67.61 62.85 70.15 56.41 53.79

Table 6: The experimental results of ablation study. ’+Feature extraction’ means adding feature extraction module
to the baseline.’+Model input’ means adding model input module to the baseline. ’+Common Substrings’ means
adding finding common substrings module to the baseline."+++" means adding all three modules to the baseline.

all languages. Compared to the baseline-neural
model, the proposed approach in this paper shows
improvements of 8.97% and 9.54% on the vali-
dation set and test set, respectively. Compared
with the method proposed by Anastasopoulos and
Neubig (2019) (baseline-neural+hall), it has in-
creased by 0.41% and 1.18%, respectively. On
Kyrgyz, Uyghur, and Uzbek, comparable to the
baseline-neural+hall model, there is not much dif-
ference between the performance. Through anal-
ysis of the experiments in Appendix A.2, it is
found that baseline-neural+our hall model slightly
outperforms baseline-neural+hall in both overlap
and lemma overlap, but underperforms baseline-
neural+hall in feature overlap and neither overlap.

4.4 Experimental analysis

To further validate the impact of the three strate-
gies on model performance, this paper conducted
a set of ablation experiments, and the results are
shown in Table 6. From the overall results, it can
be seen that each strategy contributes to improving
the model’s accuracy. When the baseline model
is added with the feature extraction module, the
accuracy is improved by 1.53% and 2.15% on the
validation set and test set, respectively. Adding
the model input module improves the accuracy by
1.94% and 2.34%. Incorporating the common sub-
string enhances the accuracy by 0.33% and 1.05%.
Finally, when all three strategies are combined, the
accuracy is improved by 3.00% and 4.17%. In sim-
ple scenarios where both lemma and features are
attested, the model achieves an accuracy of over
96.00%. However, the model’s accuracy is rela-
tively low in complex scenarios where only one
or neither of them are attested. The three strate-
gies proposed in this paper show improvements in
lemma overlap, feature overlap, and neither overlap
compared to the baseline model. The accuracy on
the validation set and test set is increased by 3.27%,

5.06%, 14.06%, 18.12%, 16.67%, and 16.55%, re-
spectively.

Through error analysis, it was discovered that
phonological phenomena in agglutinative lan-
guages are also a major source of errors. When
the lemma is connected to suffixes, there are many
uncertainties, such as: 1) which phonological phe-
nomena will occur; 2) which character will change;
3) which character should be generated. Therefore,
errors may arise in insertion, deletion, and sub-
stitution operations. In addition to errors caused
by phonological phenomena, this paper also found
that when the lemma contains repeated characters
(regardless of whether they are consecutive), the
generated word often omits some characters. This
phenomenon exists in the baseline model and the
proposed method, as demonstrated by the examples
in Kazakh and Uyghur languages below. Positional
encoding is considered a possible factor contribut-
ing to such errors.

Figure 5: Error analysis

5 Conclusion

This paper addressed the challenges of low-
resource agglutinative language morphological in-
flection and proposed four strategies. Firstly, to
tackle the main issue of limited training data in low-
resource settings, a data hallucination approach that
incorporates syllable features is introduced. A syl-
lable feature extraction module is added to the en-
coder, enabling the model to learn the context and
transformation of characters through syllables. Sec-
ondly, the lemma and MSDs are separately encoded
at the encoder’s input. Reversed token embeddings
and positional encoding are also incorporated to
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establish correlations between labels and gener-
ated suffixes. Lastly, the model’s ability to copy
common parts of lemmas is enhanced by marking
common substrings at the encoder-decoder. Ex-
perimental results demonstrate that the proposed
strategies effectively alleviate the issues caused by
data scarcity or agglutinative language features,
and all strategies lead to improvements in model
accuracy, outperforming other comparative mod-
els. This paper initially explores the agglutinative
language morphological inflection model in low-
resource scenarios. In future research, we will
continue optimizing the model’s ability to learn
positional encoding and extract syllable features,
further enhancing its generalization capabilities.

Limitations

Although the strategies proposed in this paper have
achieved good experimental results in different
types of overlap, the accuracy is not very high for
overlaps other than "both overlap," especially in
"neither overlap." Of course, the task is also chal-
lenging. Through analyzing the experimental re-
sults, it is found that positional encoding is crucial
in morphological inflection tasks. When the same
characters appear in the lemma, there are still cases
where other characters are omitted in the word.
This paper has conducted further research based
on previous studies, there is still a lot of room for
improvement.
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Kieraś, Marcin Woliński, Totok Suhardijanto, Niklas
Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M.
Tyers, Edoardo M. Ponti, Grant Aiton, Richard J.
Hatcher, Emily Prud’hommeaux, Ritesh Kumar,
Mans Hulden, Botond Barta, Dorina Lakatos, Gá-
bor Szolnok, Judit Ács, Mohit Raj, David Yarowsky,
Ryan Cotterell, Ben Ambridge, and Ekaterina Vy-
lomova. 2021. SIGMORPHON 2021 shared task
on morphological reinflection: Generalization across
languages. In Proceedings of the 18th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 229–259,
Online. Association for Computational Linguistics.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation for
morphological reinflection. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 90–99, Van-
couver. Association for Computational Linguistics.

Assaf Singer and Katharina Kann. 2020. The NYU-
CUBoulder systems for SIGMORPHON 2020 task
0 and task 2. In Proceedings of the 17th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 90–98,
Online. Association for Computational Linguistics.

Aleš Tamchyna, Marion Weller-Di Marco, and Alexan-
der Fraser. 2017. Modeling target-side inflection in
neural machine translation. In Proceedings of the
Second Conference on Machine Translation, pages
32–42, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Alymzhan Toleu, Gulmira Tolegen, and Rustam Muss-
abayev. 2022. Language-independent approach for
morphological disambiguation. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 5288–5297, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv e-prints, page arXiv:1706.03762.

Ekaterina Vylomova, Jennifer White, Elizabeth Salesky,
Sabrina J. Mielke, Shijie Wu, Edoardo Maria
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef
Valvoda, Svetlana Toldova, Francis Tyers, Elena

https://doi.org/10.18653/v1/2022.sigmorphon-1.19
https://doi.org/10.18653/v1/2022.sigmorphon-1.19
https://doi.org/10.18653/v1/2022.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.17
https://doi.org/10.18653/v1/2020.sigmorphon-1.17
https://doi.org/10.18653/v1/2021.insights-1.13
https://doi.org/10.18653/v1/2021.insights-1.13
https://doi.org/10.18653/v1/2022.acl-short.84
https://doi.org/10.18653/v1/2022.acl-short.84
https://doi.org/10.18653/v1/2022.acl-short.84
https://doi.org/10.18653/v1/W16-2006
https://doi.org/10.18653/v1/W16-2006
https://doi.org/10.18653/v1/W16-2006
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2022.sigmorphon-1.20
https://doi.org/10.18653/v1/2022.sigmorphon-1.20
https://doi.org/10.18653/v1/2022.sigmorphon-1.20
https://doi.org/10.18653/v1/2022.insights-1.7
https://doi.org/10.18653/v1/2022.insights-1.7
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/K17-2010
https://doi.org/10.18653/v1/K17-2010
https://doi.org/10.18653/v1/2020.sigmorphon-1.8
https://doi.org/10.18653/v1/2020.sigmorphon-1.8
https://doi.org/10.18653/v1/2020.sigmorphon-1.8
https://doi.org/10.18653/v1/W17-4704
https://doi.org/10.18653/v1/W17-4704
https://aclanthology.org/2022.coling-1.470
https://aclanthology.org/2022.coling-1.470
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762


518

Klyachko, Ilya Yegorov, Natalia Krizhanovsky,
Paula Czarnowska, Irene Nikkarinen, Andrew
Krizhanovsky, Tiago Pimentel, Lucas Torroba Henni-
gen, Christo Kirov, Garrett Nicolai, Adina Williams,
Antonios Anastasopoulos, Hilaria Cruz, Eleanor
Chodroff, Ryan Cotterell, Miikka Silfverberg, and
Mans Hulden. 2020. SIGMORPHON 2020 shared
task 0: Typologically diverse morphological inflec-
tion. In Proceedings of the 17th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 1–39, Online.
Association for Computational Linguistics.

Silvan Wehrli, Simon Clematide, and Peter Makarov.
2022. CLUZH at SIGMORPHON 2022 shared tasks
on morpheme segmentation and inflection generation.
In Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 212–219, Seattle, Washing-
ton. Association for Computational Linguistics.

Adam Wiemerslage, Miikka Silfverberg, and Mans
Hulden. 2018. Phonological features for morpho-
logical inflection. In Proceedings of the Fifteenth
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 161–166, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Adam Wiemerslage, Changbing Yang, Garrett Nicolai,
Miikka Silfverberg, and Katharina Kann. 2023. An
Investigation of Noise in Morphological Inflection.
arXiv e-prints, page arXiv:2305.16581.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Ap-
plying the transformer to character-level transduction.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1901–1907, Online.
Association for Computational Linguistics.

Weijia Xu and Marine Carpuat. 2021. Rule-based mor-
phological inflection improves neural terminology
translation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5902–5914, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Changbing Yang, Ruixin (Ray) Yang, Garrett Nicolai,
and Miikka Silfverberg. 2022. Generalizing mor-
phological inflection systems to unseen lemmas. In
Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 226–235, Seattle, Washing-
ton. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2022.sigmorphon-1.21
https://doi.org/10.18653/v1/2022.sigmorphon-1.21
https://doi.org/10.18653/v1/W18-5818
https://doi.org/10.18653/v1/W18-5818
https://doi.org/10.48550/arXiv.2305.16581
https://doi.org/10.48550/arXiv.2305.16581
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.emnlp-main.477
https://doi.org/10.18653/v1/2021.emnlp-main.477
https://doi.org/10.18653/v1/2021.emnlp-main.477
https://doi.org/10.18653/v1/2022.sigmorphon-1.23
https://doi.org/10.18653/v1/2022.sigmorphon-1.23


519

A Detailed experimental results

A.1 Detailed comparison of experimental results with baseline models

Lang Partition
Baseline-nonneural Baseline-neural CLUZH Our Model

dev test dev test dev test dev test

kaz

total acc 37.58 42.88 68.04 65.55 55.41 55.42 69.64 68.81
both 87.86 85.61 97.57 97.10 95.15 93.06 97.82 97.72

lemma 0.00 0.00 46.89 34.27 26.47 17.94 49.56 40.22
feats 100.00 100.00 100.00 96.43 92.31 100.00 100.00 96.43

neither 0.00 0.00 0.00 25.00 0.00 0.00 0.00 25.00

kir

total acc 46.40 44.91 66.01 71.87 78.06 76.47 74.10 81.24
both 74.64 75.58 96.38 99.67 97.10 98.02 94.93 98.02

lemma 0.00 0.00 71.73 74.74 58.65 54.66 81.86 86.54
feats 96.88 98.90 34.38 44.49 93.13 95.96 46.88 60.29

neither 0.00 0.00 42.86 25.49 57.14 50.98 57.14 43.14

tat

total acc 76.02 77.15 95.41 95.72 97.07 97.00 96.43 97.26
both 75.90 77.11 95.49 95.68 97.17 96.97 96.52 97.23

lemma - - - - - - - -
feats 87.50 81.25 87.50 100.00 87.50 100.00 87.50 100.00

neither - - - - - - - -

uig

total acc 50.30 51.50 77.25 76.80 77.61 77.28 83.35 83.75
both 80.58 76.58 99.52 99.06 99.03 98.13 99.52 99.30

lemma 0.00 0.00 91.67 90.18 58.97 54.91 91.67 90.02
feats 92.70 94.66 48.54 50.36 87.59 88.61 63.87 68.68

neither 0.00 0.00 48.84 42.31 46.51 53.85 69.77 58.97

uzb

total acc 89.17 88.03 91.68 91.05 96.99 96.53 92.18 92.96
both 97.23 97.08 96.34 96.95 97.10 97.53 94.45 95.26

lemma 0.00 0.00 96.20 97.48 98.73 96.23 96.20 96.23
feats 97.52 90.75 60.33 55.52 95.04 91.82 76.03 78.29

neither 0.00 0.00 25.00 75.00 100.00 75.00 50.00 100.00

total

total acc 60.86 62.11 80.41 80.41 80.65 80.24 83.41 84.58
both 85.63 85.11 96.56 96.93 96.95 96.53 96.22 96.93

lemma 0.00 0.00 66.84 62.55 46.18 41.39 70.11 67.61
feats 94.97 94.65 48.79 52.03 90.80 91.54 62.85 70.15

neither 0.00 0.00 39.74 37.24 46.15 51.03 56.41 53.79

Table 7: Detailed comparison of experimental results with baseline models
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A.2 Detailed comparison of experimental results between two data hallucination

Lang Partition
Baseline-neural Baseline-neural-hall Our Model-hall
dev test dev test dev test

kaz

total acc 62.12 61.89 63.83 61.69 68.44 66.40
both 91.51 92.65 97.09 96.27 98.30 97.62

lemma 41.21 31.65 39.79 27.62 47.07 35.48
feats 84.62 85.71 100.00 92.86 100.00 96.43

neither 0.00 12.25 0.00 0.00 0.00 25.00

kir

total acc 64.75 70.51 84.89 87.92 83.99 87.29
both 95.65 98.02 96.38 97.69 97.10 99.01

lemma 68.78 72.05 79.75 84.06 83.54 87.37
feats 34.38 45.96 83.13 87.50 76.25 77.21

neither 47.62 23.53 80.95 68.63 61.91 70.59

tat

total acc 92.22 92.92 93.24 92.79 94.90 95.28
both 92.27 92.84 93.30 92.71 94.97 95.23

lemma - - - - - -
feats 87.50 100.00 87.50 100.00 87.50 100.00

neither - - - - - -

uig

total acc 74.61 72.00 94.01 93.05 91.14 92.63
both 98.54 97.42 98.54 98.83 99.52 99.30

lemma 91.35 89.19 91.67 89.85 94.87 94.18
feats 42.70 39.50 94.53 92.71 81.75 87.72

neither 41.86 34.62 86.05 88.46 83.72 79.49

uzb

total acc 89.87 87.68 95.69 95.62 94.38 94.57
both 95.84 96.49 95.97 96.82 96.60 97.47

lemma 97.47 98.74 97.47 98.74 98.73 99.37
feats 47.93 34.52 92.56 87.54 78.51 76.51

neither 25.00 37.50 100.00 87.50 50.00 75.00

total

total acc 77.27 77.06 85.83 85.42 86.24 86.60
both 94.11 94.72 95.53 95.61 96.65 97.03

lemma 63.56 60.63 65.16 61.61 70.28 67.03
feats 43.06 41.76 90.97 90.34 80.04 82.92

neither 37.18 29.66 74.36 76.55 65.39 73.10

Table 8: Detailed comparison of experimental results between two data hallucination


