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Abstract

This paper presents the formalization of tree-
shape uncertainty that enables us to analyze
the inherent branching bias of unsupervised
parsing models using raw texts alone. Previ-
ous work analyzed the branching bias of un-
supervised parsing models by comparing the
outputs of trained parsers with gold syntactic
trees. However, such approaches do not con-
sider the fact that texts can be generated by dif-
ferent grammars with different syntactic trees,
possibly failing to clearly separate the inher-
ent bias of the model and the bias in train data
learned by the model. To this end, we formu-
late tree-shape uncertainty and derive sufficient
conditions that can be used for creating texts
that are expected to contain no biased informa-
tion on branching. In the experiment, we show
that training parsers on such unbiased texts can
effectively detect the branching bias of existing
unsupervised parsing models. Such bias may
depend only on the algorithm, or it may depend
on seemingly unrelated dataset statistics such
as sequence length and vocabulary size.

1 Introduction

In unsupervised parsing, a model receives raw texts
as training data and produces trained parsers. The
branching bias of an unsupervised parsing model
is the bias in the branching direction of tree struc-
tures it is likely to learn (Li et al., 2020a), where
branching direction refers to whether trees grow
deeper on the left or right side. Such a bias is im-
portant in applications; for example, a model with
a right-branching bias is likely to be more accu-
rate for a right-branching language such as English
but less accurate for a left-branching language like
Japanese. A theoretical bias analysis was done by
Dyer et al. (2019), but their method is specific to
certain models, such as PRPN (Shen et al., 2018),
and not general in nature. Instead, the branch-
ing bias of a model is observed by empirically
comparing the performances of trained parsers for

Figure 1: An illustration of the critical problem in
branching bias analysis of unsupervised parsing models

languages with different gold tree branching di-
rections, e.g., different natural-language treebanks
such as English and Japanese (Li et al., 2020b),
original and reversed treebanks (Li et al., 2020a),
and synthetic languages (Jin et al., 2018).

However, performance comparison based on
gold syntactic trees is theoretically incomplete as
bias analysis. In principle, to analyze the inherent
bias of a model in a model-agnostic way, we need
to examine the bias in the output tree structures
of trained parsers. Yet, to make this procedure
theoretically valid, it needs to be clarified what in-
formation the train texts can provide to the models
regarding branching direction because the bias ob-
servable in the parser outputs are two folds: the
inductive bias inherent in the model and the bias
in the train data that can be learned by a parser.
We call the latter the potential branching bias of
texts. The problem with previous work is that the
bias in the branching directions of gold trees may
not be equal to the potential branching bias of the
texts. For example, Jin et al. (2018) assumed the
language L0 ≡ {abn | n > 0} is left-branching
because it can be generated by a left-branching
grammar (Figure 1: GL); similarly, they assumed
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L1 ≡ {anb | n > 0} is right-branching. They
train parsers on each language and compare the
likelihoods to show that models have no bias. How-
ever, in fact, L0 can also be generated by a right-
branching grammar (Figure 1: GR), and L1 by a
left-branching grammar. Therefore, it is not trivial
to claim that the texts drawn from L0 provide left-
branching information to models and, hence, that
the performance gap between L0 and L1 reveals
the models’ inherent branching bias. This points
out that assumptions about gold trees may lead to a
misestimate of the potential branching bias of texts
and, thus, the branching bias of the models.

How can we avoid such problems? One so-
lution is to use texts that contain no potential
branching bias. Similar to how Kharitonov and
Chaabouni (2020) study the inductive bias of
sequence-to-sequence models by training them on
non-informative data, if we train parsers on unbi-
ased texts, we can directly observe the model’s
inherent branching bias as the bias in the outputs of
trained parsers without the need to compare with
gold trees. In other words, parsers must decide
the branching directions based solely on the bias
inherited from the model if the train texts give no
information about the branching directions. In this
paper, we first introduce the concept of tree-shape
uncertainty, which formulates the property of cer-
tain texts that can be produced by syntactic trees
of different shapes. Then, we revisit the work by
Li et al. (2020a) and derive sufficient conditions
for tree-shape uncertainty to construct texts with
no potential branching bias.

In the experiments, we analyze the inherent
branching bias of models by constructing unbiased
texts based on natural language corpora. To ex-
amine the biases in the parser outputs, we extend
existing tree imbalance measures (Fischer et al.,
2021) to capture branching directions. The exper-
iments on popular unsupervised parsing models
DIORA (Drozdov et al., 2019), PRPN (Shen et al.,
2018), and URNNG (Kim et al., 2019b) demon-
strate that our method can effectively detect the
different branching biases of these models. We
also find that the bias of URNNG may be sensitive
to seemingly unrelated dataset statistics such as
sequence length and vocabulary size.

2 Measuring Branching Direction

In this section, we describe the measures for branch-
ing direction. We denote by T the set of all, possi-

bly non-binary, unlabeled trees and formalize the
requirements for a branching measure as follows.

Definition 1. We call a function B : T → [−1, 1]
branching measure if it meets the following require-
ments:

1. B(t) = −1 and 1 when t is a complete left
and right-branching tree, respectively.

2. B(t) = 0 when t is a complete n-ary tree.

3. B(t) = −B(t−1) for any t and its flip t−1.

Here, flipping a tree is defined as reversing the
order of the child subtrees for all internal nodes.

In the field of phylogeny, a number of tree-
shape metrics have been proposed based on leaf
depths (Kirkpatrick and Slatkin, 1993; Coron-
ado et al., 2020; Fischer, 2021), number of
leaves (Heard, 1992; Mooers and Heard, 1997),
and number of inner vertices satisfying certain con-
ditions (Rogers, 1996; Kersting and Fischer, 2021;
Norström et al., 2012). However, these metrics are
mostly about the (im)balance of tree structures and
do not address branching directions. For this rea-
son, we pick up and modify three metrics, namely,
the corrected Colles index (Heard, 1992), the equal
weights Colles index (Mooers and Heard, 1997),
and the Rogers J index (Rogers, 1996). Further-
more, since these three metrics are only defined for
binary trees, we naively generalize them to apply
to non-binary trees. As can be seen in Table 1, all
the modified branching measures used in this paper
satisfy the requirements in Definition 1 .

2.1 Corrected Colles Index
First, the Colles index (Colless, 1982; Shao and
Sokal, 1990) is an imbalance measure for binary
trees defined as the sum of the absolute difference
in the number of leaves of left and right subtrees
of each inner vertex:

∑
v∈V in

t
||tv0 | − |tv1 ||. Here,

V in
t is the set of inner vertices of t, v0, v1 are the

left and right children of v, tv is the subtree rooted
at v, and |t| denotes the number of leaves of a tree
t. One problem with the Colles index is that its
maximum value is dependent on tree size, mak-
ing it impossible to compare the values between
trees with different numbers of leaves. The cor-
rected Colles index (Heard, 1992) remedies such a
problem by normalizing the Colles index with its
maximum value of (|t|−1)(|t|−2)

2 .
Since the original formula for the Colles index

is defined only for binary trees, we cannot extend
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t0 t1 t2 t−1
1 t−1

0

B

CC± −1 − 1
21 0 1

21 1

EWC± −1 1
12 0 − 1

12 1

RJ± −1 0 0 0 1

Table 1: An example of trees and corresponding branching scores for CC±, EWC±, and RJ±

it to a branching measure for n-ary trees by simply
removing the absolute operator. Hence, we modify
the corrected Colles index by substituting the abso-
lute difference with a weighted relative difference.
Let |v| be the number of children of a vertex v; we
consider the following weights for the child node
vi indexed from the left:

wv(i) ≡

{
g(i− ( |v|−1

2 )) · 1
⌊|v|/2⌋ |v| > 1,

0 otherwise,

where g(x) ≡ sign(x) · ⌈|x|⌉ is a rounding toward
infinity. For example, when |v| = 5, the weights
are (−1,−1

2 , 0,
1
2 , 1); note that unary nodes always

assign weight 0 to their children. The weighted
relative difference h is then calculated as follows:

h(v) ≡
|v|−1∑
i=0

wv(i) · |tvi |.

Finally, the modified version of the corrected
Colles index is described in the following:

CC±(t) ≡ 2

(|t| − 1)(|t| − 2)
·
∑
v∈V in

t

h(v).

2.2 Equal Weights Colles Index

One of the characteristics of the (corrected) Colles
index is that branches closer to the root are evalu-
ated more heavily than those closer to the leaves.
Instead of simply summing up the absolute differ-
ence in the number of leaves for the inner vertices,
the equal weights Colles index (Mooers and Heard,
1997) sums up the normalized values to treat the
inner vertices equally.

We denote by EWC± the extended version of

the equal weights Colles index:

EWC±(t) ≡ 1

|t| − 2
·

∑
v∈V in

t :|tv |>2

h(v)

|tv| − 2
.

2.3 Rogers J Index
As Zhang et al. (2022) determined whether a phrase
is left-branching or not by simply comparing the
sizes of the left and right subtrees, we can also em-
ploy such phrase-level binary decisions to a whole
sentence. The Rogers J index (Rogers, 1996) com-
putes the degree of tree imbalance simply by count-
ing the number of inner vertices that are not bal-
anced. Compared to the Colles index-based metrics
above, such count-based metrics can evaluate tree
imbalance more coarsely.

In this paper, we normalize the Rogers J index by
dividing it by its maximal value of |t|−2 and extend
it to capture the branching direction as follows:1

RJ±(t) ≡ 1

|t| − 2
·
∑
v∈V in

t

sign(h(v)).

3 Formalizing Texts with No Potential
Branching Bias

Linguistically, branching directions in natural lan-
guage syntactic trees reflect the relative position
of the head and modifier in a phrase. For exam-
ple, Figure 2 shows that the syntactic tree of the
same phrase is right-branching in English and left-
branching in Japanese. In this way, we can observe
the branching bias in natural language as a bias in
the shape of syntactic trees if they are given. But
what if we do not assume any underlying syntactic

1An imbalance metric staircase-ness (Norström et al.,
2012) divides the Rogers J index by |t| − 1, but obviously, it
does not assign 1 to completely right/left-branching trees.
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Figure 2: An example of syntactic trees of the same
phrase in Japanese (left) and English (right)

trees? In fact, for some texts, whether they belong
to left or right-branching language cannot be de-
cided on their own. To formalize such a textual
property, we use probabilistic context-free gram-
mar (PCFG), a well-established and widely used
grammar formalism in natural language process-
ing (Johnson et al., 2007; Liang et al., 2007; Wang
and Blunsom, 2013; Kim et al., 2019a). In sec-
tion 3.2, we first define uncertainty in general tree
shapes and then specialize it to branching direction.

3.1 Probabilistic Context-free Grammar

As is clear from the definition below, PCFG it-
self does not have any preference for left or right-
branching structures. At this point, PCFG is a suit-
able tool for formalizing the potential branching
bias of texts without assuming gold syntactic trees.

A probabilistic context-free grammar (PCFG) G
is defined as a tuple (Σ, NG, SG, RG, πG) consist-
ing of a finite set of terminal symbols Σ, a finite set
of nonterminal symbols NG, a start symbol SG ∈
NG, a finite set of production rules RG, and the
rule probabilities πG ≡ {πG

r ∈ (0, 1] | r ∈ RG}.
We consider production rules in a general form:

A → β A ∈ NG, β ∈ (Σ ∪NG)+.

Besides, the rule probabilities must sum
up to 1 for each nonterminal: ∀A ∈
NG.

∑
r:A→∗∈RG(πG

r ) = 1. Given a gram-
mar G, the joint probability of a string s ∈ Σ∗

and an unlabeled tree t ∈ T is calculated
by pG(s, t) ≡

∑
t∈TG(s,t)

∏
r∈RG

t
(πG

r ), where
TG(s, t) is the set of derivation trees of s with the
shape t, and RG

t is the enumeration of the rules
used in the derivation tree t. We denote by G the
set of all PCFGs with terminals Σ.

3.2 Tree-shape Uncertainty

In order to formalize texts that have no potential
branching bias, we first abstract branching direc-
tion and define uncertainty in general tree shapes.

Given a text corpus, i.e., a finite multiset of
texts, D, its corresponding tree structure assign-
ment T : Σ∗ → T , and a PCFG G, we denote
by G

T−→
P

D that, the corpus D is generated by

G with T with probability P ∈ [0, 1], that is,
P =

∏
s∈D pG(s, T (s)).2

Definition 2. A text corpus D is said to be tree-
shape uncertain with respect to NG and N T if the
following proposition holds:

∀G. ∀T. G T−→
P

D =⇒

∃G′ ∈ NG(G). ∃T ′ ∈ N T (T,D). G′ T ′
−→
P

D,

where NG and N T define the neighborhood and
non-neighborhood of grammar and tree structure
assignment, respectively.

Intuitively, tree-shape uncertainty illustrates that
no matter what grammar and syntactic tree underlie
the texts, there is always a grammar that is similar
in terms of NG but generates the same texts differ-
ently in terms of tree shapes. Here, N T (T,D) can
be considered as generally defining the “differently
shaped trees” for T and D. Note that tree-shape
uncertainty is different from ambiguity in gram-
mar (Hopcroft et al., 2001). Whereas the latter
concerns the ambiguity of derivation trees within
a single grammar, the former is rather broad and
allows trees from different grammars.

Now, we define N T specific to the branching
direction so that tree-shape uncertainty describes
the uncertainty in the branching directions of texts.
Definition 3. A tree non-neighborhood N T is
called a branching non-neighborhood if there is
a branching measure B and

N T (T,D) ={
T ′

∣∣∣∣∣∑
s∈D

B(T (s))

|D|
= −

∑
s∈D

B(T ′(s))

|D|

}
.

We denote such non-neighborhood by NB
T .

For example, if T assigns right-branching trees
to D, then any T ′ ∈ NB

T (T,D) has the opposite
branching directions on average, specifically left-
branching, measured by average B.3

2Note that there is no restriction on T for s ∈ Σ∗ \D.
3Note that, by Definition 3 , T is included in NB

T (T,D)
when

∑
s∈D B(T (s)) = 0. Nevertheless, this won’t be prob-

lematic since the T in Definition 2 is universally quantified,
and the underlying branching direction of D must be uncertain
with respect to T s.t.

∑
s∈D B(T (s)) ̸= 0. Developing more

sophisticated non-neighborhoods is left for future work.
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Definition 4. We call a grammar neighborhood
NG complexity neighborhood if there is a grammar
complexity measure C : G → R≥0 and

NG(G) = {G′ | C(G) = C(G′)}

We denote such grammar neighborhood by NC
G .

Moreover, we call NC
G

• production-flip invariant iff
∀G.∀G̃ ∈ F(G). C(G) = C(G̃),

• symbol-mapping invariant iff
∀G.∀ϕ ∈ Aut(Σ). C(G) = C(Gϕ),

where F(G) is the set of grammars G̃ that can be
obtained by flipping the right-hand side of some
production rules of G, Aut(Σ) is the set of auto-
morphisms on Σ, and Gϕ denotes the grammar
whose terminal symbols are remapped by ϕ.4

For instance, commonly used grammar complex-
ity measures such as the number of nonterminals,
the number of production rules, etc. (Gruska, 1971;
Ginsburg and Lynch, 1976), all induce production-
flip and symbol-mapping invariant complexity
neighborhoods.

4 Sufficient Conditions for Unbiased
Texts

In this section, we revisit the approach taken by Li
et al. (2020a) and extend it to derive sufficient con-
ditions for tree-shape uncertainty, which is useful
for branching bias analysis.

Li et al. (2020a) analyzed the branching bias of
the syntactic trees extracted from pre-trained lan-
guage models such as BERT (Devlin et al., 2019;
Liu et al., 2019) and GPT2 (Radford et al., 2019).
To do this, they trained language model m on nat-
ural language treebank corpus D and m′ on the
reversed corpus D−1. Let F1(m,Tgold) be the F1
score of m for the gold syntactic trees Tgold of
D; they measured the branching bias by the differ-
ence in accuracy F1(m,Tgold)− F1(m′, Tgold

−1),
based on the intuition that reversing the text of a
right-branching language yields the text of a left-
branching language. However, such bias evaluation
is highly dependent on the choice of gold trees. It
becomes problematic when D can be generated by
trees with different shapes from Tgold, potentially
over/underestimating the bias of the models.

The problem above is that the potential branch-
ing bias of texts is not necessarily the same as that

4An automorphism ϕ on Σ is a bijective function Σ → Σ.

of gold trees. On the other hand, if we can train
parsers on texts that contain no potential branching
bias, we can directly observe the inherent branch-
ing bias of unsupervised parsing models without
worrying about the choice of gold trees. To con-
struct such unbiased texts, we can extend the intu-
ition of Li et al. (2020a). That is, reversing given
texts yields texts of completely opposite underly-
ing branching directions, and if the reversed texts
coincide with the original, the text should not con-
tain left-right branching direction bias. For in-
stance, we can combine a corpus Z and its flip,
i.e., D ≡ Z ∪ Z−1. If a grammar G generates D,
then the flipped grammar G−1 generates D−1 with
the same probability but with flipped derivations,
which leads to completely the opposite branching
directions for the same texts D (= D−1). The fol-
lowing theorem further generalizes such construc-
tion by allowing re-mappings of terminal symbols.

Theorem 1. The following holds for any text cor-
pus D:

∃ϕ ∈ Aut(Σ). ∃Z ⊂ D.

D =

|ϕ|−1⋃
k=0

fk(Z) ∧ ∃n ∈ N>0.|ϕ| = 2n

=⇒
D is tree-shape uncertain with respect to

any NB
T and any NC

G that is production-flip

and symbol-mapping invariant,

where |ϕ| denotes the order of ϕ, and f(Z) ≡
ϕ(Z−1) flips each sequence in Z and remaps each
symbol by ϕ.5

Proof. First, we show that if D = ϕ(D−1), then
D is tree-shape uncertain with respect to NC

G and

NB
T . Take any G and T . For any sequence s and

tree t, it can be seen that

pG(s, t) =
∑

t∈TG(s,t)

∏
r∈RG

t

(πG
r )

=
∑

t∈TG(s,t)

∏
r∈RG

t

(π
G−1

ϕ

ϕ(r−1)
)

=
∑

ϕ(t−1)∈T
G−1
ϕ

(ϕ(s−1),t−1)

∏
ϕ(r−1)∈R

G−1
ϕ

ϕ(t−1)

(π
G−1

ϕ

ϕ(r−1)
)

= pG−1
ϕ
(ϕ(s−1), t−1)

5|ϕ| is defined as the smallest k ∈ N>0 s.t. ϕk = 1.
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holds.67 Thus, G−1
ϕ

T−1
ϕ−−→
P

D follows since we have∏
ϕ(s−1)∈D

pG−1
ϕ
(ϕ(s−1), T−1

ϕ (ϕ(s−1)))

=
∏

ϕ(s−1)∈D

pG(s, T (s))

=
∏
s∈D

pG(s, T (s))

= P,

where we denote by T−1
ϕ : ϕ(s−1) 7→ T (s)−1 ∈ T

the flipped tree structure assignment.8 The follow-
ing equations show T−1

ϕ ∈ NB
T (T,D); that is, T−1

ϕ

is a member of the branching non-neighborhood:

∑
ϕ(s−1)∈D

B(T−1
ϕ (ϕ(s−1)))

|D|
=

∑
s∈D

B(T (s)−1)

|D|

= −
∑
s∈D

B(T (s))

|D|
.

Since NC
G is production-flip and symbol-mapping

invariant, we also have G−1
ϕ ∈ NC

G (G), which
leads to the tree-shape uncertainty of D.

Therefore, to prove the theorem, it suffices to
show D = ϕ(D−1):

ϕ(D−1) =

|ϕ|−1⋃
k=0

fk+1(Z)

= ϕ|ϕ|(Z−|ϕ|) ∪
|ϕ|−1⋃
k=1

fk(Z)

= Z ∪
|ϕ|−1⋃
k=1

fk(Z) = D,

since |ϕ| is the order of ϕ, and we have, by defini-
tion, ϕ|ϕ| = 1. We also have Z−|ϕ| = Z−2n = Z
because a string does not change when flipped an
even number of times.

6The second line follows from the fact that the rule proba-
bilities do not change by flipping and remapping terminal sym-
bols on the right-hand side of the rules: πG

A→β = πG−1

A→β−1 =

π
G−1

ϕ

A→ϕ(β−1)
(≡ π

G−1
ϕ

ϕ(r−1)
).

7The third line follows because ϕ(·−1) induces one-to-
one mappings TG(s, t) → T

G−1
ϕ

(ϕ(s−1), t−1) and RG
t →

R
G−1

ϕ

ϕ(t−1)
.

8Note that since ϕ(·−1) induces a one-to-one mapping
on Σ∗, T−1

ϕ is well-defined. Besides, we always have∏
ϕ(s−1)∈D ∗ =

∏
ϕ(s−1)∈ϕ(D−1) ∗ =

∏
s∈D ∗ as we as-

sume D = ϕ(D−1). Similar equations also hold for
∑

.

The intuition behind considering automorphisms
on terminal symbols is that when we use one-hot
encoding or randomly initialize word embedding,
exchanging the embedding between different words
does not make any essential difference to models.9

In our formalization, such intuition is formulated
as the symbol-mapping invariance of the grammar
neighborhood. Thus, Theorem 1 can be inter-
preted as indicating that we can construct a text
corpus D with any base texts Z and vocabulary
automorphism ϕ (|ϕ| = 2n) such that the underly-
ing branching direction cannot be identified from
the texts alone when using one-hot encoding or
randomly initialized word embedding.

Consideration for Natural Language One
might wonder if natural language texts satisfy the
sufficient conditions introduced in Theorem 1 .
The answer, in short, is probably no. This can
be seen from a very simple example. Consider
texts D = {x = “S V”, y = “S V O”}. If there is
an automorphism ϕ such that D = ϕ(D−1), then
it is clear that for x, S must map to V, but for y,
S must map to O, contradicting that ϕ is an au-
tomorphism. However, Theorem 1 shows only
sufficient conditions, and whether natural language
texts are tree-shape uncertain or not is an open
problem. Moreover, it is still difficult to design toy
languages that are not tree-shape uncertain. This
is because, to prove that given texts are not tree-
shape uncertain, we must construct a grammar and
show that any similarly complex grammar does
not generate the texts with the same probability or
with differently shaped syntactic trees, which is not
trivial.

5 Experimental Settings

To analyze the inherent branching bias of unsuper-
vised parses, we utilize Theorem 1 . More con-
cretely, we create DZ

ϕ ≡
⋃|ϕ|−1

k=0 fk(Z) based on
some base texts Z and morphism ϕ; we then use
DZ

ϕ to train unsupervised parsers.10

5.1 Datasets

5.1.1 Base Text Z
As the choice of base text Z, we use natural lan-
guage corpora. In order to verify whether DZ

ϕ can
be used for branching bias analysis regardless of

9This is not the case for pre-trained word embedding.
10The URL for the codes: https://github.com/mynlp/

tree-shape-uncertainty

https://github.com/mynlp/tree-shape-uncertainty
https://github.com/mynlp/tree-shape-uncertainty
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the underlying branching direction of Z, we fol-
low Li et al. (2020b) and use the English Penn
Treebank (PTB) (Marcus et al., 1993) as a cor-
pus for right-branching language and the Japanese
Keyaki Treebank (KTB) (Butler et al., 2012) for
left-branching language. For preprocessing, we use
the same script used in Li et al. (2020b).11 For PTB,
sections 02-21 are used as train split, 22 as dev split,
and 23 as test split. The KTB corpus is randomly
split into train, dev, and test in an 8-1-1 ratio. Then,
punctuation is removed, and the sentences in train
and dev splits are filtered by the maximum length
of 10 and 40.12 In addition, numbers are replaced
by the “<num>” token, and words that occur only
once are replaced by the “<unk>” token.13 We
denote by PTB10, PTB40, KTB10, and KTB40
the preprocessed datasets for PTB and KTB with
maximum lengths of 10 and 40, respectively.

5.1.2 Morphism ϕ

After obtaining Z, we randomly generate vocabu-
lary automorphisms ϕ for each Z. Since the size of
DZ

ϕ is |ϕ| times the size of Z, we only consider the
morphisms such that |ϕ| = 2 to save computational
resources, where 2 is the smallest order satisfying
condition |ϕ| = 2n (n > 0).

To generate such morphisms, we first collect all
the words from train, dev, and test splits; we then
randomly shuffle the vocabulary list V to obtain
ϕ(V [i]) = V [−i].14 In this way, we randomly
generate three morphisms for each of PTB10 and
KTB10, but two morphisms for each of PTB40
and KTB40 due to computational resource limit.
Table 2 summarizes the size of the generated
datasets DZ

ϕ . Note that although the train vocabu-
lary size of DZ

ϕ may differ depending on the ran-
domly generated ϕ, the vocabulary sizes of the
generated datasets turn out to be mostly the same
across different random seeds in our setting.

5.2 Models
In this paper, we analyze three popular un-
supervised parsing models: DIORA (Drozdov
et al., 2019), PRPN (Shen et al., 2018), and
URNNG (Kim et al., 2019b). DIORA is an auto-
encoder-based discriminative model using inside-

11https://github.com/i-lijun/
UnsupConstParseEval

12The sentences in the test split are not filtered.
13The preprocessing procedure specific to each target model

is also applied to DZ
ϕ .

14The morphisms must be consistent across the train, dev,
and test splits and cannot be generated for each of these splits.

Dataset Train Dev Test Vocab

DPTB10
∗ 11.5K 0.5K 4.8K 7.8K

DPTB40
∗ 76.5K 3.2K 4.8K 19.0K

DKTB10
∗ 29.5K 3.8K 7.3K 14.1K

DKTB40
∗ 56.9K 7.1K 7.3K 14.3K

Table 2: Summary of dataset size. The Vocab column is
the vocabulary size of train data. The vocabulary sizes
are mostly the same for randomly generated different ϕ.

outside dynamic programming. PRPN is a neural
language model that jointly learns syntactic struc-
tures by utilizing a gate mechanism. URNNG is a
transition-based model, an unsupervised version of
RNNG (Dyer et al., 2016) that explicitly models
top-down generation in language modeling.

We use the implementations released by the au-
thors of the models.151617 As for the hyperparame-
ters, we basically use those from the original papers
and author implementations.18 Whereas DIORA
originally uses pre-trained word embedding such
as ELMo (Peters et al., 2018), we instead use one-
hot encoding for our analysis.19 To reduce learning
time and amount of computation, training is termi-
nated when the training loss converges. In addition,
we apply early stopping when the validation loss is
not improved for five epochs. We train parsers with
15 different random seeds for each dataset. For
each training, we save the best-performing model
in terms of validation loss and use it for analysis.

5.3 Evaluation

First, for each trained parser m, we compute the
average B̄m of branching scores B(t) over the out-
put tree structures for the test data.20 Next, for
each dataset and unsupervised parsing model, we
calculate the mean of B̄m over the parsers trained
with different random seeds. Note that while each
trained parser m may be biased, there is equally
likely to be another trained parser m′ that exhibits
the opposite score B̄m′ = −B̄m and cancels out
the mean of B̄m to zero if an unsupervised parsing

15https://github.com/iesl/diora
16https://github.com/yikangshen/PRPN
17https://github.com/harvardnlp/urnng
18Details are shown in Appendix D.
19In the implementation, the pre-trained word embeddings

are multiplied by a trainable matrix. In our case, since we
use one-hot encoding, the matrix can be viewed as randomly
initialized trainable word embeddings.

20Trivial sentences of length ≤ 2 are not included in the
evaluation.

https://github.com/i-lijun/UnsupConstParseEval
https://github.com/i-lijun/UnsupConstParseEval
https://github.com/iesl/diora
https://github.com/yikangshen/PRPN
https://github.com/harvardnlp/urnng
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Figure 3: Histograms of branching measures calculated for the gold trees. The top row is for PTB10 and KTB10;
the bottom row is for PTB40 and KTB40. Each dotted line shows the mean value for the corresponding dataset.
Note that the negative and positive values correspond to left and right-branching structures, respectively.

model is not biased.

6 Results and Discussion

6.1 Branching of Gold Trees

In section 2, we extended the existing imbalance
measures for binary trees to measures for branching
directions of general n-ary trees. First, we examine
whether these branching measures can successfully
quantify the branching directions of syntactic trees
of natural languages. Figure 3 shows the histogram
of the branching scores calculated for the prepro-
cessed treebanks PTB10, PTB40, KTB10, and
KTB40 using CC±, EWC±, and RJ±. In Fig-
ure 3, it can be seen that, for all branching measures,
the gold trees of KTB10 and KTB40 show nega-
tive branching scores indicating, that the trees are
left-branching, while those of PTB10 and PTB40
are mostly positive and hence right-branching. This
supports that our extended branching measures can
capture the difference in the branching direction of
natural languages.

In Figure 3, for PTB40 and KTB40, the means
(dotted lines) and the modes are mostly consistent,
but for CC±, the modes are closer to 0 than the
means. This may be due to the fact that CC± puts
more weight on the branches near the root, and the
branches near the leaves are evaluated more weakly
than the other two measures. It is also interesting
to note that, even though the word order is not

completely reversed between Japanese and English
(SOV and SVO, respectively), the distributions in
Figure 3 are line-symmetric with little overlap.

6.2 Branching of Unsupervised Parsers
Figure 4 shows the branching scores for the three
unsupervised parsing models, DIORA, PRPN, and
URNNG, averaged over different random seeds.21

The y-axes show the datasets used for training and
testing. In Figure 4, it can be seen that DIORA,
PRPN, and URNNG show different results. The
branching scores for DIORA are close to 0 for all
the datasets and branching measures, suggesting
that it has no inherent branching bias. On the other
hand, PRPN consistently shows a right-branching
bias for all datasets and measures. In fact, Dyer
et al. (2019) point out the right-branching bias of
PRPN by theoretically proving that PRPN cannot
parse certain structures. Although the proof by
Dyer et al. (2019) is model-specific, the fact that the
right-branching bias of PRPN was also observed
in our experiment suggests that our branching bias
analysis utilizing tree-shape uncertainty is valid
and effective while being model-agnostic. Interest-
ingly, URNNG shows different branching biases de-
pending on the datasets, unlike DIORA and PRPN.
For example, URNNG shows branching scores
close to 1, i.e., completely right-branching, for
DPTB10

∗ , while it has smaller scores for DKTB10
∗

21More detailed plots are shown in Appendix F.
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Figure 4: Average branching scores of DIORA, PRPN, and URNNG trained on each DZ
ϕ . The scores are calculated

on the parser outputs on test splits. The top row is for the datasets created based on PTB10 and KTB10. The
bottom row is for those based on PTB40 and KTB40. Note that each ϕi in DZ

ϕ is a morphism generated randomly
with a seed i for Z. Error bars show standard errors.

and DKTB40
∗ , and even negative scores, i.e., left-

branching, for DPTB40
∗ . Since we can reasonably

expect the branching direction of DZ
ϕ to be un-

certain from Theorem 1 , we conjecture that the
branching bias of URNNG is sensitive to factors
other than the branching direction of the texts, such
as dataset size, vocabulary size, word frequency,
sentence length, and so on.

Following Li et al. (2020b), we also evaluate the
models on shorter sequences by setting the max-
imum length to 10 for the test data.22 While the
results for DIORA and PRPN are mostly the same,
URNNG shows slightly more right-branching re-
sults for DPTB40

∗ compared to when the maximum
length is not set for test data. This also indicates
the URNNG’s sensitivity to sentence length.

6.3 Practical Implication
One important application of bias analysis is cor-
rect model performance evaluations by, for exam-
ple, rescaling or reranking the parsing scores with
respect to the biases. However, using the bias ob-
served in Figure 4 for such a “model performance
correction” is theoretically non-trivial for two rea-
sons. Firstly, the numerical relation, e.g., whether it
can be approximated linearly, between bias scores
and model performance scores, e.g., F1 parsing
score and likelihood, is not clear yet. Secondly,

22The results are shown in Appendix E.

since what we know from this experiment is the
bias for the texts that contain no potential branch-
ing bias, it is possible that models show different
biases for the base text Z. At least, there is cur-
rently no theoretical guarantee that the bias is the
same for Z and DZ

ϕ for any model. Nevertheless,
the results in Figure 4 still prove that the models
are somehow biased, and they are still useful as
a milestone in developing and using unsupervised
parsing models.

7 Conclusion

This paper proposes a theoretically founded branch-
ing bias analysis of unsupervised parsing models.
We consider the possibility of the same texts being
generated by PCFGs that assign differently shaped
tree structures, which we formalize as tree-shape
uncertainty. We derive sufficient conditions for
tree-shape uncertainty with respect to branching
direction under a reasonable grammar complexity
assumption and use it to construct text corpora that
are expected to contain no potential branching bias.
By training unsupervised parsers on such unbiased
texts, we demonstrate that the inherent branching
bias of models can be directly observed by quan-
tifying the branching direction of the output tree
structures without the need to compare them with
gold trees.
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A Limitations and Future Work

First, as described in section 4, one of the major
limitations of this study is that it is not clear yet
whether natural language corpora are tree-shape
uncertain or not. One solution to this problem
is to quantify the degree of tree-shape uncertainty
instead of considering it as a binary true/false value.
For example, in a Bayesian framework, one can
consider a prior distribution over grammars and
calculate the expected branching scores for a text
corpus D.

Next, we only considered the tree-shape uncer-
tainty with respect to branching directions in this
paper. However, the definition of tree-shape uncer-
tainty (Definition 2 ) is general and not limited to
branching direction. Extension to other tree shapes,
such as the degree of center embedding, is left for
future work.

To consider the potential syntactic trees of text
corpora, we used PCFG as a grammar formalism.
However, while PCFG can generate any finite text
corpus D, it has been pointed out that PCFG has
a strong independence assumption and does not
fully capture the grammatical features of natural
languages (Kim et al., 2019a). Considering gram-
mar formalization other than PCFG is an important
future work.

B Ethics Statement

Our research focuses on the analysis of the branch-
ing bias of unsupervised parsing models, and we
do not propose any models to be used in practice.
We believe our research does not raise any ethical
issues.

C Dataset License

Here, we describe the licenses of the natural lan-
guage corpora used in this paper. We download
the PTB corpus from Linguistic Data Consortium
and use it as LDC members.23 The KTB corpus is
published under CC BY 4.0 license.24

We confirmed that all the above licenses allow
us to use the datasets in our experiment.

D Models

Here, we show the hyperparameter settings for the
target unsupervised parsing models. Table 3 shows
the hyperparameters for DIORA. Table 4 shows

23https://catalog.ldc.upenn.edu/LDC99T42
24http://www.compling.jp/keyaki/index.html

Parameter Value
max_epoch 75

batch_size 32

hidden_dim 400

lr 1× 10−4

k_neg 100

freq_dist_power 0.75

margin 1.0

Table 3: Hyperparameters for DIORA. The parameter
names are based on the author’s implementation: https:
//github.com/iesl/diora

Parameter Value
epochs 75

batch_size 64

emsize 200

nhid 400

nlayers 2

nslosts 15

nlookback 5

lr 1× 10−3

weight_decay 1× 10−6

clip 1.0

dropout 0.2

idropout 0.2

rdropout 0.0

tied True

hard True

res 0

resolution 0.1

Table 4: Hyperparameters for PRPN. The parameter
names are based on the author’s implementation: https:
//github.com/yikangshen/PRPN

the hyperparameters for PRPN. Table 5 shows the
hyperparameters for URNNG.

To reduce learning time and amount of compu-
tation, training was terminated when the training
loss converges, i.e., when the absolute difference
of the training losses between the current and pre-
vious epoch is within 1 × 10−4. In addition, we
apply early stopping when the validation loss is not
improved for 5 epochs.

E Results on Short Sentences

Figure 5 shows the mean branching scores calcu-
lated for the test data with a maximum length of

https://catalog.ldc.upenn.edu/LDC99T42
http://www.compling.jp/keyaki/index.html
https://github.com/iesl/diora
https://github.com/iesl/diora
https://github.com/yikangshen/PRPN
https://github.com/yikangshen/PRPN
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Figure 5: Average branching scores of DIORA, PRPN, and URNNG trained on each DZ
ϕ . The scores are calculated

on the parser outputs on test splits with a maximum length of 10. The top row is for the datasets created based on
PTB10 and KTB10. The bottom row is for those based on PTB40 and KTB40. Note that each ϕi in DZ

ϕ is a
morphism generated randomly with a seed i for Z. Error bars show standard errors.

10.25 For DIORA and PRPN, the overall trend is
mostly the same as when there is no restriction
on the maximum length (Figure 4). However, for
URNNG, when the maximum length is set to 10,
the branching scores, especially CC±, for DPTB40

∗
are closer to 0 compared to when there is no limit.
Nevertheless, for EWC± and RJ±, URNNG still
shows a left-branching bias. We conjecture that
these observations might align with the results re-
ported by Li et al. (2020b): URNNGs trained on
PTB40 show higher F1 scores for test sentences
with a maximum length of 10 compared to the other
models, such as DIORA and PRPN.

F Branching Distributions of Model
Outputs

Figure 6, Figure 7, and Figure 8 show the his-
tograms of branching scores calculated for the out-
puts of DIORA, PRPN, and URNNG, respectively.
Each parser is trained on the train split of DZ

ϕ and
evaluated on the train, dev, and test splits. Each
dotted vertical line indicates the average branching
score B̄m over the dataset calculated for each parser
m trained with different random seeds. Also, note
that the results of randomly generated morphisms
ϕ are plotted overlaid on the same row since we do
not find significant differences between them.

25Note that the results of the same trained parsers are shown
in Figure 4 and Figure 5.

Parameter Value
num_epochs 18

min_epochs 8

batch_size 16

train_q_epochs 2

w_dim 650

h_dim 650

q_dim 256

num_layers 1

dropout 0.5

samples 8

lr 1.0

q_lr 1× 10−4

action_lr 0.1

decay 0.5

kl_warmup 2

max_grad_norm 5.0

q_max_grad_norm 1.0

Table 5: Hyperparameters for URNNG. The parameter
names are based on the author’s implementation: https:
//github.com/harvardnlp/urnng

https://github.com/harvardnlp/urnng
https://github.com/harvardnlp/urnng
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Figure 6: Histograms of branching scores calculated for the outputs of DIORA. Each parser is trained on the train
split of DZ

ϕ and evaluated on the train, dev, and test splits. Each dotted vertical line shows the mean for each parser.
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Figure 7: Histograms of branching scores calculated for the outputs of PRPN. Each parser is trained on the train
split of DZ

ϕ and evaluated on the train, dev, and test splits. Each dotted vertical line shows the mean for each parser.
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Figure 8: Histograms of branching scores calculated for the outputs of URNNG. Each parser is trained on the train
split of DZ

ϕ and evaluated on the train, dev, and test splits. Each dotted vertical line shows the mean for each parser.


