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Abstract

There is growing interest in incorporating eye-
tracking data and other implicit measures of hu-
man language processing into natural language
processing (NLP) pipelines. The data from
human language processing contain unique in-
sight into human linguistic understanding that
could be exploited by language models. How-
ever, many unanswered questions remain about
the nature of this data and how it can best be
utilized in downstream NLP tasks. In this pa-
per, we present eyeStyliency, an eye-tracking
dataset for human processing of stylistic text
(e.g., politeness). We develop a variety of meth-
ods to derive style saliency scores over text us-
ing the collected eye dataset. We further inves-
tigate how this saliency data compares to both
human annotation methods and model-based
interpretability metrics. We find that while eye-
tracking data is unique, it also intersects with
both human annotations and model-based im-
portance scores, providing a possible bridge
between human- and machine-based perspec-
tives. We propose utilizing this type of data
to evaluate the cognitive plausibility of models
that interpret style. Our eye-tracking data and
processing code are publicly available.1

1 Introduction

Human perception and understanding of text is crit-
ical in NLP. Typically, this understanding is lever-
aged in the form of ground-truth human annotations
in supervised learning pipelines, or in the form of
human evaluations of generated text. However,
human language understanding is complex; mul-
tiple cognitive processes work together to enable
reading, many of which occur automatically and
unconsciously (DeVito, 1970).

Because of the complexity, disciplines con-
cerned with understanding and modeling how hu-
mans read – e.g., psycholinguistics and cognitive
science – heavily utilize implicit measures of the

1https://github.com/minnesotanlp/eyeStyliency

BERT: 
@Delta.  Are you kidding?  Delayed from 7:30pm to
11:00 - only to cancel it because the pilot is overtime.

Annotation: 
@Delta.  Are you kidding?  Delayed from 7:30pm to
11:00 - only to cancel it because the pilot is overtime.

Eye Tracking: 
@Delta.  Are you kidding?  Delayed from 7:30pm to
11:00 - only to cancel it because the pilot is overtime.

Figure 1: Salient words for impoliteness from three different
perspectives. We find that eye tracking data contains some
overlap between machine and human-annotated salience.

human reading experience that capture signals from
these automatic processes in real time. Examples
of implicit measures include event-related poten-
tial, reaction times, and eye movements. In con-
trast, explicit measures include surveys and other
methods that directly ask people to report their per-
ceptions and experiences. We posit that traditional
NLP pipelines, which have widely used explicit
measures of human understanding, can also benefit
from implicit measures. In this paper, we focus
specifically on the use of eye movements as an im-
plicit measure of textual saliency.

Recent research in NLP has demonstrated the
feasibility of incorporating various types of eye
movement data into NLP models in order to im-
prove performance on a number of tasks (see Ta-
ble 2 for an overview). However, this is still an
underexplored area: best practices remain unclear,
and it’s not obvious whether there are tasks that
are unsuitable for eye movement data, or how eye
movement data should be balanced with traditional
annotation data. In this work, we address two main
research questions: RQ1: Does eye-tracking-based
saliency meaningfully differ from simply gather-
ing word-level human annotations, or from model-
based word importance measures? RQ2: How can
we measure eye movements specific to a high-level
textual feature like style, and which eye tracking
metrics and data processing methods are best suited
to capturing textual saliency?

https://github.com/minnesotanlp/eyeStyliency
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To address these questions, we conduct an eye
tracking case study in which participants read texts
the HummingBird dataset (Hayati et al., 2021).
We choose this dataset because it contains lexical-
level human annotations indicating which words
contribute to the text’s style and because its do-
main (textual styles) has not to our knowledge been
widely explored for eye tracking applications – al-
though prior work investigates eye tracking and
sentiment analysis, it does not extend to other lin-
guistic styles such as politeness.

We collect style-specific eye movements through
a carefully designed experiment (see Section 3 for
details), and we use these eye movements to de-
rive saliency scores over the text. We compare this
eye-based saliency to human annotations as well
as two large language model (LLM)-derived im-
portance scores: integrated gradient scores from
a BERT model fine-tuned on style datasets (Hay-
ati et al., 2021), and word-surprisal scores from
GPT-2 (Radford et al., 2019) (see Figure 1 for an
example). Our findings indicate that eye-tracking-
based saliency highlights some unique areas of the
text, but it also intersects with both saliency from
model-based metrics and saliency from human an-
notations, making a bridge of sorts between the
human- and machine-based perspectives. We dis-
cuss some implications of these findings for NLP
research.

Specifically, our contributions are:
• An experimental paradigm for obtaining eye

tracking-based signals for specific features of
text (in our case, textual style).

• A first-of-its-kind eye movement dataset on
style saliency, collected from 20 participants
and consisting of both control readings and
style-focused readings for polite, impolite, pos-
itive, and negative textual styles.

• An illustration of the distinction between this
dataset’s explicit human annotations and im-
plicit human eye data through a unique com-
parison between salient text obtained via an-
notation and via eye tracking.

2 Related Work

Eye tracking has been a staple of psycholinguis-
tic investigations of reading for decades (Rayner,
1978; Just and Carpenter, 1980). Eye movement
data is compelling because it provides realtime in-
formation about how people process language in a
natural, ecologically valid setting (i.e., there is no

NLP Area H M learning
from eye

data

Ours Textual
Style ✓ ✓ ✗

Kuribayashi et al. (2021) Perplexity ✗ ✓ ✗

Malmaud et al. (2020) QA ✗ ✗ Joint learning

Bolotova et al. (2020) QA ✗ ✓ ✗

Sood et al. (2020b) QA ✗ ✓ ✗

Sood et al. (2020a) Paraphrasing ✗ ✗ Joint learning

Hollenstein et al. (2019) Sentiment
Clf., NER ✗ ✗ Joint learning

Barrett et al. (2018) PoS tagging ✗ ✗ HMM

Tokunaga et al. (2017) NER ✗ ✗ ✗

Klerke et al. (2015) Summarization ✓ ✗ ✗

Green (2014) Parsing ✗ ✗ ✗

Table 1: A summary of prior work applying eye tracking meth-
ods to NLP. The H column indicates whether traditional hu-
man annotations are considered in relation to the eye tracking
data, and the M indicates whether model attention is consid-
ered. Most prior research has focused on either (a) comparing
and contrasting eye movements with various models’ atten-
tion mechanisms, or (b) using eye movements for multi-task
learning, where NLP task performance can be improved by a
model that jointly learns to predict eye movements in addition
to the relevant NLP task. To our knowledge, there have not
been three-way comparisons between attention mechanisms
from eye tracking, large language models, and manual human
annotations.

explicit experimental task, such as question answer-
ing, for participants to complete) (Kaiser, 2013).
Eye data provides insight into cognitive processes
through the eye-mind assumption, which posits
that (1) our eyes fixate on whatever our brains are
currently processing, and (2) as cognitive effort
to process an item increases, the amount of time
that the eyes fixate on that item also increases (Just
and Carpenter, 1980). Analysis of eye data under
this framework has led to important insights into
many unconscious phenomena in human language
comprehension, e.g. the mechanisms involved in
ambiguity resolution during reading (Traxler and
Frazier, 2008).

Eye Tracking in NLP. Due to the eye-mind
assumption, eye-tracking data is particularly well-
suited to inferring patterns of reader attention, or
saliency, over text. This saliency information has
so far shown promising results when integrated into
NLP models for question answering (e.g. Malkin
et al. (2022); Sood et al. (2020a); Malmaud et al.
(2020)). However, this is still a developing research
area: there is limited available data, and there is
little consensus regarding how to effectively collect
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data and incorporate it into NLP pipelines. To our
knowledge there is no previous research that inves-
tigates saliency for style via eye tracking, nor any
previous research that compares saliency from eye
tracking to human annotations (Table 1 compares
our work with the prior work).

Outside of textual saliency, eye-tracking data has
been leveraged for a variety of NLP tasks. Mishra
et al. (2013) quantify the difficulty of sentences
in machine translation tasks using eye movement
data; Mishra et al. (2016) determine whether a
reader understands sarcasm in text, and Søgaard
(2016) evaluate the quality of word embeddings
and text generations, respectively. Other work uses
existing datasets, sometimes augmenting the data
with a learned gaze predictor model, and uses this
eye movement data as an additional signal when
training models for various NLP tasks, includ-
ing named entity recognition (Hollenstein et al.,
2019; Tokunaga et al., 2017), paraphrasing (Sood
et al., 2020b), part-of-speech tagging (Barrett et al.,
2018), and sentiment analysis (see also Mathias
et al. (2020) for a review).

Saliency in Linguistic Styles. People apply
styles to language in order to express attitudes, re-
flect interpersonal intentions or goals, or convey so-
cial standings of the speaker or listener. (Note that
while many sociolinguistics theories distinguish
between textual style and textual attributes, in this
work, we follow the common convention in recent
NLP papers of broadly using ‘style’ to encompass
both of these ideas (Jin et al., 2022).) The meaning
expressed by textual styles can be significant; in
fact, there is strong evidence that effective commu-
nication requires an understanding of both style and
literal semantic meaning (Hovy, 1987). Although
BERT (Devlin et al., 2018) based fine-tuned mod-
els show strong performance on style classification,
there are notable differences between how BERT
perceives style at the lexical level and how humans
perceive it, and that using data about these differ-
ences during training improves model performance
(Hayati et al., 2023).

3 eyeStyliency: A Dataset of Eye
Movement for Textual Saliency

We describe the data collection procedure for eye-
Styliency dataset from 20 participants and methods
for computing saliency scores over text.

3.1 Data Setups
Our dataset consists of items from the Humming-
bird dataset (Hayati et al., 2021) in the following
stylistic categories: polite, impolite, positive sen-
timent, and negative sentiment.2 We chose this
subset because of the small correlation between
categories (other categories, e.g. anger, disgust,
and negative sentiment are all highly correlated).

In this study, we limit participants’ total time
commitment to one hour. To achieve this, the
dataset size is 90 items across the four style cate-
gories. (The average word count per item in the
dataset is 21.6 overall; for the impolite, polite, neg-
ative, and positive styles average word count is
21.3, 22.8, 21.4, and 20.8, respectively.) Most par-
ticipants finished the experiment in 40-60 minutes,
depending on both the individual’s reading speed
and the time needed to calibrate the individual to
the eye tracker.

3.2 Eye-Tracking Measures
Monocular eye movement data is collected with an
EyeLink 1000 Plus3 at a rate of 1000Hz. We look
at the following eye-tracking metrics:

• First Fixation Duration (FFD): The duration
of the first fixation in an interest area.

• First Run Dwell Time (FRD): The time in-
terval beginning with the first fixation in the
interest area and ending when the eye exits an
interest area (whether to the right or left).

• Go Past Time (GP): The time interval begin-
ning with the first fixation in an interest area
and ending when the eye exits the interest area
to the left (i.e., to reread).

• Dwell Time (DT): The total fixation duration
for all fixations in an interest area. Also known
as gaze duration.

• Reread Time (RR): The total fixation duration
for all fixations in an interest area after the area
has already been entered and exited once.

• Pupil Size (PS): The average pupil size over
all fixations in an interest area.
(Note that First Run Dwell Time + Reread
Time = Dwell Time.)

These measures can broadly be categorized into
early measures (first fixation duration, pupil size)
that reflect more low-level reading processes and

2Politeness and sentiment datasets in Hummingbird are
originally sourced from Danescu-Niculescu-Mizil et al. (2013)
and Socher et al. (2013).

3Made by SR Research, Ontario, Canada; https://
www.sr-research.com/eyelink-1000-plus/

https://www.sr-research.com/eyelink-1000-plus/
https://www.sr-research.com/eyelink-1000-plus/
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Applications N FFD FC FRD DT RR RC PL

eyeStyliency (Ours) Textual Style 20 ✓ ✗ ✓ ✓ ✓ ✗ ✓

Kuribayashi et al. (2021) Language model perplexity ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Malmaud et al. (2020) Question Answering 269 ✗ ✗ ✗ ✓ ✗ ✗ ✗

Bolotova et al. (2020) Question Answering 20 ✗ ✓ ✗ ✓ ✓ ✗ ✗

Sood et al. (2020b) Paraphrasing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Sood et al. (2020a) Question Answering 23 ✗ ✗ ✗ ✓ ✗ ✗ ✗

Hollenstein et al. (2019) NER, Sentiment/Relation Classification ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Barrett et al. (2018) PoS tagging ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗

Tokunaga et al. (2017) Named entity recognition (NER) ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Mishra et al. (2016) Sarcasm detection 7 ✗ ✗ ✗ ✓ ✗ ✗ ✗

Klerke et al. (2015) NLG evaluation 24 ✗ ✓ ✗ ✓ ✓ ✓ ✓

Green (2014) Phrase-structure parsing 40 ✗ ✗ ✗ ✗ ✓ ✗ ✗

Table 2: A comparison of prior works with respect to the eye tracking metrics studied, data processing techniques, and number
of participants whose eye tracking data is collected. FFD = first fixation duration, FC = fixation count, RC = regression count,
RR = reread time, PL = pupil size, N = number of participants if new eye data collected.

late measures (go past time, dwell time, reread
time) that reflect higher-level processing and mean-
ing integration (Conklin et al., 2021). Previous
eye tracking applications for NLP have commonly
used dwell time, but a variety of measures have
been examined (see Table 2). In this study, we aim
to compare a wide variety of measures in order
to estimate which may be best-suited to capturing
textual saliency. Note that to avoid redundancy, we
chose to omit fixation counts from our analysis af-
ter finding high correlations between this measure
and dwell time (pearson’s r = 0.93, p < 0.01).
We also chose to omit regression counts from our
analysis after finding that regression counts were
extremely sparse – specifically, 1.8% of the dataset
had a non-zero regression count.

3.3 Experimental Procedure

The experiment follows a between-subjects,
blocked design. The key part of our experiment
is the technique to isolate eye movements that are
specifically relevant to the text’s style. In order to
do this, we inform participants at the beginning of
each block that the block will contain only stim-
uli that share a style (polite, impolite, positive, or
negative) and source (Twitter, IMdB, or Stack Ex-
change/Wikipedia forums) – but in fact, we will
occasionally present an incongruent style in the
block (e.g., present an impolite Tweet during the
polite Tweet block). We expect that incongruency
to cause readers to pay more attention to style-
specific aspects of the text, as they are unexpected.
We are interested in comparing the eye movements

of participants who read a stimulus in the congruent
condition with those of participants who read that
stimulus in the incongruent condition. Note that the
experiment has a between-subjects design, i.e. the
same participant does not see the same text in both
conditions. The congruent reading of the text pro-
vides a control. Figure 2 shows a concrete example
of these two conditions, while Figure 3 shows a
visualization of these contrasted eye movements.

Figure 4 shows a procedure of our experiments.
The experimental procedure is as follows (more
details in Appendix A). Participants complete nine
blocks. At the beginning of block, the participant
is informed of the style and source, and asked to
pay attention to the style of the following texts.
Each block contains 10 items, eight of which are
congruent with the target style. The remaining
two items are incongruent with the target style.
Incongruent items are counterbalanced across par-
ticipants. Blocks are presented in a random order,
and items within the blocks are pseudorandom-
ized to ensure adequate spacing between congruent
and incongruent trials (Egner, 2007) (there is also
a context-free text as an added control). Partici-
pants are asked True/False comprehension ques-
tions pseudorandomly after 30% of the items in
order to maintain motivation to read carefully. Af-
ter the experiment concludes, participants complete
the Perceived Awareness of Research Hypothesis
Scale (PARH) (Rubin, 2016) to evaluate whether
demand characterstics (Nichols and Maner, 2008)
of the experiment may have influenced reading be-
havior. The study procedure was approved by the
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Congruent
Setup

A densely constructed, highly referential film, and an audacious return to
form that can comfortably sit among Jean-Luc Godard's finest work. 

Incongruent
Setup

C
on

te
xt

St
im

ul
i

Watching its rote plot points connect
is about as exciting as gazing at an
egg timer for 93 minutes.

The movie, directed by Mick Jackson,
leaves no cliche unturned, from the
predictable plot to the characters
straight out of central casting.

An entertaining, colorful, action-filled
crime story with an intimate heart.

The mesmerizing performances of
the leads keep the film grounded and
keep the audience riveted.

.. highly
referential
film, and ..

.. highly
referential
film, and ..

.. highly  
referential  
film, and ..

Eye-based
saliency

The following movie reviews were
written by critics who disliked the film.

The following movie reviews were
written by critics who liked the film.

incongruent
gaze

congruent gaze
(control)

Figure 2: Illustrative example of congruent vs incongruent
presentation of the same stimulus. We rely on expectation
effects to induce participants to attend to the unexpected style
(in this case, positive sentiment); in other words, we assume
that the surprise regarding the style will result in longer gaze
durations for words that contribute to the perception of that
style — in this case, words relating to positive sentiment.

institutional review board (IRB).

Participants We collect data from 20 partici-
pants (12 male, 7 female, 1 non-binary; median age
23 years) recruited from the University community
and word-of-mouth. An additional 6 participants
were recruited but unable to complete the study due
to problems with eye calibration. Participants were
compensated with a $15 Amazon gift card.

Apparatus Monocular eye movement data is col-
lected with an EyeLink 1000 Pro, using the desktop
mount, at a rate of 1000Hz. Participants use a chin-
rest while reading in order to stabilize the head.
We use the Experiment Builder software to present
stimuli to participants in a 16pt serif font with 1.5
line spacing, on our display monitor with a 508mm
display area and a 1680x1050 resolution. Partic-
ipants are seated with their eyes 50-60cm away
from the display monitor.

Study Design Rationale Based on the well-
documented phenomenon of expectancy effects in
cognition (see Schwarz et al. (2016) for further
discussion), we assume that the incongruent texts
that subvert the stylistic expectation will lead to
participants reacting with surprise and increased
processing difficulty in response to parts of the text
associated with the unexpected style.

Alternative designs that explicitly ask partici-
pants to classify an item’s style were strongly con-
sidered, but were rejected for two reasons: first, we
are interested in observing a relatively natural read-

Figure 3: Exemplary eye-tracking data showing saliency for
polite style, with comparison to human word-level style im-
portance highlighting. The eye-tracking data is visualized as a
heat map showing gaze data from the incongruent style con-
dition, with the gaze data from the congruent style (control)
condition subtracted.

Intro Block (specific style + medium) 

Instructions

Practice Items

View
Context

View
Stimuli

Comprehension
Question

80% congruent 
20% incongruent

Questions occur
every ~3 items

Demand
Characteristic

Survey 

Post-survey

Repeat 9 times

Figure 4: Experimental procedure.

ing process and introducing a classification task
runs counter to that goal; second, the style clas-
sification task could increase the saliency of not
only the target style but also its opposing style, as
both can be relevant to the decision (e.g., the pres-
ence of an impolite word is relevant to the decision
of whether a statement is polite). We also consid-
ered designs in which congruency is established
via explicit text labels rather than implicit expecta-
tions, but decided to instead choose an experimen-
tal paradigm that adheres as closely as possible to
an ecologically valid reading task.

3.4 Pre-processing Eye Tracking Data

Eye data was delineated into fixations and saccades
using the DataViewer software with EyeLink’s stan-
dard algorithm and default velocity and accelera-
tion thresholds. We further cleaned the data by
removing trials with significant track loss (i.e. tri-
als with track loss in over 50% of the text area);
1.5% of trials were removed due to track loss. An
outlier analysis showed that 0.5% of fixations were
outliers and were removed in our analysis.

3.5 Calculating Saliency Scores

We divide the text into interest areas (IAs) and
calculate saliency scores for each IA. We do not
segment the IAs such that each IA contains a single
word, because in a single fixation people can read
a span of about 21 surrounding characters (Rayner,
1978), meaning that many short words are not fix-
ated on, leading to difficulties with our desired
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analyses. Instead, we use the natural language pro-
cessing toolkit (NLTK)’s stopwords list (Bird et al.,
2009) to define each IA such that stopwords share
an IA with the closest non-stopword. Specifically,
each stopword is combined with the closest non-
stopword, with non-stopwords to the right being
preferred in the case of a tie. We also ensure that
no IA contains a line break.

We utilize two techniques for calculating each
eye tracking-based metric for each IAi. Note that
these techniques are applied across all eye track-
ing measures x ∈ {DT, FRD, GP, DT, RR, PS} as
defined in Section 3.2.

• z-score: For each participant pk, denote the
eye tracking measurement in IAi as xki. We
calculate the participant-specific z-score of eye
tracking measurement from IAi as zk(IAi) =
xki−µk

σk
, where µk and σk are the participant-

specific arithmetic mean and standard devia-
tion, respectively. Then, the saliency score for
IAi is given by

∑n
k=0 zk(IAi)

n .
• raw: We aggregate the raw values of the eye

tracking measurements from each IA. The
saliency score for IAi is given by

∑n
k=0 xki

n .

4 Experimental Results

4.1 Comparison with Other Saliency Metrics
We investigate how eye tracking metrics compare
with other existing measures for lexical-level sig-
nificance – namely, human annotations, integrated
gradient scores, and large language model surprisal
scores (see Figure 5 for a visualization of these
scores):

• Surprisal scores: For the text in the ith

interest area, denoted IAi, the surprisal is
P (IAi|IA0, IA1, ...IAi−1). We obtain this
probability estimate from the pre-trained GPT-
2 model (Radford et al., 2019). 4 In the event
that an IA includes multiple tokens, we sum
the surprisal of those tokens.

• Model gradient scores: The integrated gra-
dient method (Sundararajan et al., 2017) is
often used to obtain scores over the input to-
kens to a deep neural network, where a token’s
score reflects how much that token influenced
the network’s final output. We obtain these
scores with the Captum codebase (Kokhlikyan
et al., 2020), using the fine-tuned BERT model

4We include word-surprisal scores from GPT-2 as they
have previously been found to correlate with human reading
times (Wilcox et al., 2020).

from Hayati et al. (2021). For IAi, the in-
tegrated gradient score is the average of the
individual tokens within IAi.

• Human annotations: Human annotations
come from the Hummingbird dataset (Hayati
et al., 2021). Three annotators per item were
asked to highlight words that contribute to the
text’s style. We averaged these binary high-
lighting scores over each annotator to arrive at
a saliency score for each interest area.

Throughout the comparison, we answer the fol-
lowing two questions: How much do the salient IAs
derived from each measure overlap and how much
does each measure agree on the saliency strength
of each IA?

To find the overlap between salient interest ar-
eas derived from different measures, we compute
a binary saliency map over the dataset for each
measure. We then compute the pairwise Jaccard
similarity coefficient for each possible pairing of
salient text sets (Fig 6), where the Jaccard simi-
larity coefficient is their intersection over union.
We use the median saliency score as the threshold
that determines whether the IA is labeled “salient”
so that each measure results in the same number
of salient words, allowing a more straightforward
comparison between measures.

We find that the intersection over union of salient
interest areas from eye tracking methods and both
integrated gradient scores and human annotations
falls between 0.26 and 0.31. Critically, the three-
way intersection over union between salient text
from integrated gradients, human annotations, and
eye tracking metrics falls between 0.05 and 0.06,
indicating that each metric captures a relatively
unique set of text within the dataset (see Fig 7).

We also investigate what types of words are se-
lected as salient by each method by performing
part-of-speech (POS) tagging on the salient interest
areas for each measure, finding that while distri-
butions of parts of speech are similar, humans se-
lect proportionally more adjectives while eye track-
ing metrics select proportionally more verbs and
adverbs (Figure 9). This discrepancy may be ex-
plained by human annotators focusing more on sin-
gle words with high stand-alone style (oftentimes
these are adjectives such as happy, gracious), while
people’s eyes attend to the context surrounding that
word (oftentimes this context includes verbs and
adverbs). For example, in the polite phrase “Thank
you for removing...,” human annotators highlight
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Thank you for your kind comment. Do you have a suggestion where the portals  
should be placed in the article? 

Thank you for your kind comment. Do you have a suggestion where the portals  
should be placed in the article? 
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Thank you for your kind comment. Do you have a suggestion where the portals  
should be placed in the article?

Annotation

BERT Gradient

GPT2 Surprisal

Eye Dwell Time

(a) Saliency scores for politeness.

-1: For not specifying what is to be done later with the data. If you claim  
the question is open-ended (interview and all) then why accept an answer?
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the question is open-ended (interview and all) then why accept an answer? 

Annotation

BERT Gradient

GPT2 Surprisal

Eye Dwell Time

(b) Saliency scores for impoliteness.

The movie, directed by Mick Jackson, leaves no cliche unturned, from  
the predictable plot to the characters straight out of central casting. 
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BERT Gradient

GPT2 Surprisal

Eye Dwell Time

(c) Saliency scores for negative sentiment.

It's one of those baseball pictures where the hero is stoic, the wife is patient,  
the kids are as cute as all get-out and the odds against success are long enough  
to intimidate, but short enough to make a dream seem possible. 
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It's one of those baseball pictures where the hero is stoic, the wife is patient, 
the kids are as cute as all get-out and the odds against success are long enough 
to intimidate, but short enough to make a dream seem possible.

Annotation

BERT Gradient

GPT2 Surprisal

Eye Dwell Time

(d) Saliency scores for positive sentiment.
Figure 5: A comparison of saliency scores from various methods: manual human annotations, language model introspection, and
eye tracking. Darker highlights indicate stronger saliency scores.
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Figure 6: Confusion matrix of the Jaccard similarity score for salient text derived from each metric. (See Appendix for the
correlation coefficient for saliency scores derived from each metric.)

only “thank you” whereas eye gaze also focuses on
the gerund verb “removing.”

To measure agreement between different mea-
sures with respect to saliency strength, we compute
a saliency score for each IA in the dataset derived
from each measure. We then compute the pair-
wise Pearson’s r correlation coefficient, finding
most coefficients are near 0 (see Appendix). In
other words, while there is some agreement across
human-, machine-, and eye-based methods with
respect to which IAs are above median saliency,
there is little correlation with respect to the saliency
scores themselves.

4.2 Qualitative Results

For a qualitative visualization of saliency over the
politeness style, see Figure 8. In general, human an-
notations have a tendency to focus on segments of
text with clear style markers. For instance, phrases
such as “please” are consistently highlighted by
human annotators. Our eye tracking data indicates
that these phrases do not reliably draw the reader’s
gaze during the realtime reading process. We no-
tice that the eyes often focus on the object of the
politness marker rather than the politeness marker
itself: For instance, the polite text “Thank you for
your kind comment,” human annotators highlight
only “thank you” whereas gaze data focuses on
“your kind comment.”
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Figure 8: Venn diagram showing interest areas salient to the
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areas with the top five highest saliency scores are shown.

We also observe that eye data, and in particular
dwell time, shows high attention to certain nouns
– i.e., names, usernames, and movie titles. This
cannot be explained by word frequency effects, as
participants in the control condition did not spend
as long attending to these nouns.

4.3 “Eye-in-the-loop” few-shot learning

We utilize “eye-in-the-loop” few-shot learning in
order to roughly probe the cognitive plausibility of
GPT-3 (Brown et al., 2020). Our prompts present
a classification task and include zero to four ex-
amples from our dataset, including an “important
words” section that contains the salient text as de-
fined by each eye-tracking measure, human anno-
tations, and integrated gradient scores (see Sec-
tion 3.5 for details). As a baseline, we omit the
“important words.” We expect that if GPT-3 has a
particularly strong cognitive understanding of style

Human Annotations
Integrated Gradients

Dwell Time 
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Figure 9: Top 5 most common parts of speech for each mea-
sure’s salient IA set. IN: prepositions and subordinating con-
junctions, JJ: adjectives, NN: nouns, RB: adverbs, VB: verbs.

Figure 10: Few-shot learning classification experiment accu-
racy scores, averaged over 5 rounds with randomly selected
demonstrations. Error bars indicate 95% confidence interval.

processing, “important words” from eye movement
data may improve its task performance (in these
experiments, we use the text-davinci-002 model).
Results are relatively inconsistent across each of
the four shots, but in most cases, it seems that in-
cluding salient words has little effect on the model
accuracy on the style classification task. A subset
of the results are shown in Figure 10; see Appendix
for full results and prompt details.

5 Key Findings and Discussion

Here we discuss the relationship between our re-
sults and our research questions:

RQ1: Does eye tracking data for saliency mean-
ingfully differ from simply gathering word-level
human annotations, or from model-based word
importance measures? Our data show a substan-
tial difference between eye-tracking-based saliency,
model-based saliency, and human annotations. It
is perhaps unintuitive that reading behavior would
differ from self-reports after reading, but this is
consistent with findings in psycholinguistics that
establish strong distinctions between explicit mea-
sures (i.e., human annotations) and implicit mea-
sures (i.e., eye tracking) of human language pro-
cessing. Interestingly, there is some intersection
between eye tracking-based saliency and model-
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based saliency that is not shared with human anno-
tators. This suggests that some automatic aspects
of human language processing, accessible through
eye tracking but not necessarily survey methods,
may be shared with large language models.

RQ2: How can we measure eye movements
specific to a high-level textual feature like style,
and which eye tracking metrics and data process-
ing methods are best suited to capturing textual
saliency? The results from our experiment indi-
cate that our experimental paradigm exploiting con-
gruency effects may be effective in finding eye
movements specific to certain text features. In a
linear mixed effect model analyzing the data, we
find significant effects of the congruency condi-
tion on dwell time and pupil size (see Appendix
A.2). This suggests that the congruency effect does
impact reading patterns – whether this impact is
directly linked to the textual style is difficult to
definitively answer, but given the overlap between
eye-tracking-based style saliency and other style
saliency measures, it seems reasonable to believe
that the experimental manipulation resulted in an
implicit measure of style perception. Experiments
based on congruency effects may be a promising
route for capturing eye movements related to other
high-level textual features such as sarcasm and
metaphor. We find that dwell time appears to be
the strongest eye-tracking metrics for capturing
textual saliency, as it has both the highest overlap
with human- and machine-based saliency and most
strongly responded to the experimental manipula-
tion. Using the same criteria, we also find that
using participant-level z-scores to represent the eye
movement data yields the best results.

6 Limitations

In this exploratory study, our dataset and sample
size are both small, limiting the possibilities for
a more thorough evaluation of the data e.g. by
fine-tuning a language model. We also note that
by design, our experiment presents incongruent
items rarely, and consequently we have consider-
ably more congruent datapoints than incongruent
datapoints – an inherent limitation of the proposed
experimental paradigm. In light of our results,
which suggest that eye-tracking data contains use-
ful and unique information, we plan to develop
methods for collecting this kind of real-time human
reading data at scale – i.e., without the constraints
of costly in-person eye tracking – in future work.

Finally, eye tracking analysis in general is lim-
ited by the eye-mind assumption, which holds that
the eye fixates on what the mind is currently pro-
cessing. While there is strong evidence supporting
the eye-mind assumption during reading, there is a
notable exception: retrieval processes (i.e. access-
ing memory) are not reflected in eye movements
(Anderson et al., 2004).
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A Appendix

A.1 Experimental Materials

The following materials were presented to partici-
pants during the experiment. Informed consent was
obtained from each participant before the experi-
ment began. Instructions were displayed as shown
in Figure 11.

The practice items, which participants completed
after reading the instructions and before beginning
the experiment, were as follows:

Text: What does this have to do with programming
? Are you trying to solve this problem
with a program?

Question: None

Text: this is source code... what is the
question? Do you really think that throwing
code at us will solve your problem?!

Question: Do you agree or disagree with the
following statement: The writer of the post
seems upset.

See also Figure 11 for screenshots of the dis-
play shown to participants at various points in the
experiment.

A.2 Mixed Effect Modeling

We fit linear mixed effect models to predict our
eye tracking measures, using the R packages lme4
and lmetest. Our fixed effects are the number of
characters in the interest area, the HAL frequency
of the interest area, whether the previous interest
area was viewed, and whether the interest area is
in the congruent or incongruent condition. Our
random effect is the participant ID. All variables
are normalized prior to analysis.

model = lmer(EYE_TRACKING_MEASURE ~ 1 +
congruent + previous_viewed+ LENGTH +
HAL_FREQ + (1 | RECORDING_SESSION_LABEL))

The Dwell Time and Pupil Size eye tracking
measure showed significance for the the fixed con-
gruency effect. The other eye tracking measures
– First Run Dwell Time, First Fixation Duration,
Reread Time, and Go Past Time – result in a singu-
lar fit, likely because they are considerably more
sparse (i.e., many interest areas have a null values
for these metrics).

t value Pr(> |t|) Sig. VIF
(Intercept) -19.114 < 0.001 ∗ ∗ ∗
frequency -18.238 < 0.001 ∗ ∗ ∗ 2.53
length 31.858 < 0.001 ∗ ∗ ∗ 2.53
congruency 2.449 < 0.05 ∗ 1.00
previous IA 26.662 <0.001 ∗ 1.00

Table 3: Fixed Effects: predicting dwell time

t value Pr(> |t|) Sig. VIF
(Intercept) -4.098 < 0.001 ∗ ∗ ∗
frequency 1.865 0.06 . 2.28
length 3.056 < 0.01 ∗∗ 2.27
congruency -8.382 < 0.001 ∗ ∗ ∗ 1.00
previous IA 9.915 <0.001 ∗ ∗ ∗ 1.00

Table 4: Fixed Effects: predicting pupil size

We tested variables for collinearity using the
variance inflation factor (VIF) (Zuur et al., 2010)
(none exceeded the recommended threshold of 3).

A.3 Additional Saliency Comparisons
A.3.1 Saliency Scores
Figure 12 shows the Pearson’s r value for saliency
score over interest areas derived from each method.
We also include more example items from the
dataset with associated saliency scores in Fig-
ure 5b.

A.4 Few-Shot Learning Experiment Details
and Results

The full few-shot learning results can be found
in Table 5. The experiment was conducted with
the OpenAI API5 completion endpoint and the fol-
lowing parameters: the text-davinci-002 model, a
temperature of 0, and a top_p of 1.

We generated in-context learning prompts over
our dataset by including important words as fol-
lows:
Decide whether the following text is Polite or

Impolite.
Text: Thank you for your kind comment. Do you have a

suggestion where the portals should be placed?
Important words: thank you, suggestion
Polite or Impolite:

5https://openai.com/api, accessed in accordance with Ope-
nAI’s terms of use
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(a) Experiment instructions screen. (b) One of the “context” screens shown at the be-
ginning of each block. This information makes
participants aware of what type of text to expect in
the following screens.

(c) One of the screens displaying an item from the
dataset.

(d) One of the comprehension question screens.

Figure 11: Screenshots from the experiment program.
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Metric for Saliency Data aggregation (eye-tracking only) Experimental Conditions 0-shot 1-shot 2-shot 4-shot
Baseline NA NA 95.18 93.98 (2.46) 90.36 (0.96) 95.18 (0.96)
Human Annotations NA NA 93.98 91.57 (2.89) 90.36 (3.27) 93.98 (1.80)
Integrated Gradients NA NA 93.98 93.98 (1.93) 92.77 (2.46) 96.39 (0.96)
GPT2 Surprisal NA NA 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
Dwell Time z score All 93.98 92.77 (1.80) 93.98 (0.96) 96.39 (2.89)
Dwell Time z score Incongruent - Congruent 93.98 93.98 (1.93) 91.57 (1.93) 95.18 (2.36)
Dwell Time LME All 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
Dwell Time LME Incongruent - Congruent 93.98 92.77 (1.18) 91.57 (1.93) 95.18 (2.36)
Dwell Time raw All 93.98 93.98 (1.18) 95.18 (1.93) 96.39 (1.80)
Dwell Time raw Incongruent - Congruent 93.98 92.77 (1.80) 89.16 (2.89) 95.18 (2.46)
Reread Time z score All 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
Reread Time z score Incongruent - Congruent 93.98 93.98 (2.36) 90.36 (2.36) 97.59 (2.16)
Reread Time raw All 93.98 92.77 (1.18) 91.57 (2.46) 93.98 (2.81)
Reread Time raw Incongruent - Congruent 92.77 92.77 (2.46) 86.75 (2.81) 96.39 (1.80)
Go Past Time z score All 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
Go Past Time z score Incongruent - Congruent 93.98 91.57 (2.89) 87.95 (3.86) 92.77 (2.46)
Go Past Time raw All 92.77 92.77 (0.96) 91.57 (2.46) 96.39 (1.18)
Go Past Time raw Incongruent - Congruent 93.98 92.77 (3.27) 90.36 (3.20) 93.98 (2.46)
First Run Dwell Time z score All 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
First Run Dwell Time z score Incongruent - Congruent 93.98 92.77 (2.46) 92.77 (1.18) 92.77 (2.46)
First Run Dwell Time raw All 93.98 92.77 (1.18) 92.77 (2.46) 96.39 (2.36)
First Run Dwell Time raw Incongruent - Congruent 93.98 92.77 (1.80) 89.16 (3.54) 93.98 (2.46)
First Run Dwell Time LME All 93.98 92.77 (1.93) 92.77 (2.36) 95.18 (2.46)
First Run Dwell Time LME Incongruent - Congruent 93.98 92.77 (2.46) 89.16 (3.54) 93.98 (2.46)
First Fixation Duration z score All 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
First Fixation Duration z score Incongruent - Congruent 93.98 92.77 (2.46) 90.36 (0.96) 95.18 (2.46)
First Fixation Duration raw All 93.98 93.98 (2.64) 89.16 (1.80) 96.39 (0.96)
First Fixation Duration raw Incongruent - Congruent 93.98 92.77 (2.81) 90.36 (3.27) 95.18 (1.93)
Pupil Size z score All 93.98 92.77 (0.96) 92.77 (0.96) 97.59 (1.18)
Pupil Size z score Incongruent - Congruent 92.77 93.98 (2.46) 86.75 (4.31) 93.98 (1.80)
Pupil Size raw All 93.98 92.77 (1.18) 92.77 (1.80) 95.18 (2.81)
Pupil Size raw Incongruent - Congruent 93.98 91.57 (1.93) 86.75 (4.03) 96.39 (2.46)
Pupil Size LME All 93.98 91.57 (2.46) 95.18 (2.36) 92.77 (1.18)
Pupil Size LME Incongruent - Congruent 93.98 92.77 (2.16) 86.75 (4.03) 96.39 (2.46)
Hybrid (Human + Dwell Time) z score All 95.18 93.98 (1.18) 93.98 (2.46) 96.39 (1.52)
Hybrid (Human + Dwell Time) z score Incongruent - Congruent 93.98 92.77 (4.15) 93.98 (3.05) 96.39 (1.18)

Table 5: Accuracy results on few-shot learning experiments over dataset. For 1-, 2-, and 4-shot learning, five different randomly
selected prompts were chosen and the average accuracy is reported (the 95% confidence interval is reported in parentheses after
the accuracy score).


