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Introduction

CoNLL is a conference organized yearly by SIGNLL (ACL’s Special Interest Group on Natural
Language Learning), focusing on theoretically, cognitively and scientifically motivated approaches to
computational linguistics. This year, CoNLL was held alongside EMNLP 2023.

The program of CoNLL 2023 comprises 40 papers. This was the result of a careful selection process.
Reviewing 143 received submissions resulted in a 28% acceptance rate.

Reviewing was organized into 10 tracks, each of them headed by one or two area chairs:

* Computational Psycholinguistics, Cognition and Linguistics (Mary Kelly)

* Computational Social Science (Jana Diesner, Wei Gao)

* Interaction and Grounded Language Learning (Hao Tan)

* Lexical, Compositional and Discourse Semantics (Shane Steinert-Threlkeld)

* Multilingual Work and Translation (Maja Popovic)

* Natural Language Generation (Fei Liu)

* Resources and Tools for Scientifically Motivated Research (Sebastian Gehrmann)
* Speech and Phonology (Kyle Gorman)

» Syntax and Morphology (Ryan Cotterell)

* Theoretical Analysis and Interpretation of ML Models for NLP (Dieuwke Hupkes, Kevin Small)

We thank our reviewers and area chairs for curating the program. The conference also invited
Mohit Bansal and Preslav Nakov to present keynotes, and included a session of 18 additional papers
on the BabyLLM Challenge, a shared task that challenges community members to train a language model
from scratch on the same amount of linguistic data available to a child.

We would like to acknowledge support from our sponsor, Google.

Jing Jiang (Singapore Management University)
David Reitter (Google DeepMind)
CoNLL 2023 conference co-chairs
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Can Language Models Be Tricked by Language Illusions? Easier with
Syntax, Harder with Semantics

Yuhan Zhang
Linguistics

Edward Gibson
Brain & Cognitive Sciences

Forrest Davis
Computer Science

Harvard University Massachusetts Institute of Technology Colgate University

yuz551@g.harvard. edu

Abstract

Language models (LMs) have been argued to
overlap substantially with human beings in
grammaticality judgment tasks. But when hu-
mans systematically make errors in language
processing, should we expect LMs to behave
like cognitive models of language and mimic
human behavior? We answer this question by
investigating LMs’ more subtle judgments as-
sociated with “language illusions” — sentences
that are vague in meaning, implausible, or un-
grammatical but receive unexpectedly high ac-
ceptability judgments by humans. We looked
at three illusions: the comparative illusion (e.g.
“More people have been to Russia than I have”),
the depth-charge illusion (e.g. “No head injury
is too trivial to be ignored”), and the negative
polarity item (NPI) illusion (e.g. “The hunter
who no villager believed to be trustworthy will
ever shoot a bear”). We found that probabilities
represented by LMs were more likely to align
with human judgments of being “tricked” by
the NPI illusion which examines a structural
dependency, compared to the comparative and
the depth-charge illusions which require sophis-
ticated semantic understanding. No single LM
or metric yielded results that are entirely con-
sistent with human behavior. Ultimately, we
show that LMs are limited both in their con-
strual as cognitive models of human language
processing and in their capacity to recognize
nuanced but critical information in complicated
language materials.

1 Introduction

Linguistic evaluations of language models use hu-
man language processing data (e.g. human norm-
ing data (Nair et al., 2020; Zhang et al., 2022), ac-
ceptability judgments (Linzen et al., 2016; Marvin
and Linzen, 2018), behavioral or neural measures
of language processing (Schrimpf et al., 2021; Kauf
et al., 2022)) as benchmarks to investigate whether
LMs possess knowledge of language. This assumes
that human-produced data correctly instantiates ab-
stract rules of a language and that humans fully

egibson@mit.edu

1

fdavis@colgate.edu

utilize their linguistic knowledge in laboratories
and everyday life. However, this assumption is an
oversimplification. Humans make consistent errors
during language processing (Gross, 1983). Under
these circumstances, should we expect language
models to behave the same as humans? Or should
they circumvent human limitations and achieve
error-free performance?

Consider, for example, the well-studied case of
subject-verb agreement. While we expect an LM
of Standard American English to prefer “the key
to the cabinets is on the shelf” to “the key to the
cabinets are on the shelf” (as discussed in Linzen
et al., 2016), a wealth of psycholinguistic research
has systematically documented that humans can
ignore errors and accept globally ungrammatical
strings (stemming from Bock and Miller, 1991).
Should LMs follow the ideal grammar or mimic
human’s (sometimes) errorful behavior?"

We add to this discussion by investigating
three language illusions. Basic examples of each
are given in (1): the comparative illusion (1-a),
the depth-charge illusion (1-b), and the negative-
polarity item (NPI) illusion (1-c). All three in (1)
are literally unnatural English sentences, despite
the fact that humans often find them surprisingly
acceptable.

(1) a. More people have been to Russia than
I have.

b. No head injury is too trivial to be ig-
nored.

c.  The hunter who no villager believed to
be trustworthy will ever shoot a bear.

In this paper, we relied on minimally different
strings springing out from the basic illusion sen-
tences that are either (a) considered fully accept-
able by human participants, (b) considered fully

'For additional critiques of the role of ideal grammatical
knowledge in evaluations of LMs, see Pannitto and Herbelot
(2020); Weissweiler et al. (2023).

Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 1-14
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unacceptable by human participants, or (c) rated
surprisingly acceptable by humans (i.e. instances
of the relevant illusion). We explored whether lan-
guage models capture the basic contrast between
acceptable and unacceptable strings, whether they
rate illusion sentences as better than their unac-
ceptable counterparts, and finally, whether mod-
els capture nuanced linguistic manipulations that
influence human judgments of the illusion mate-
rial. Further, we compared two ways of measuring
models’ preferences, one over the whole sentence
(perplexity) and another of a privileged position in
the sentence (surprisal).

If LMs pattern like human comprehension be-
havior that involves errors, we expect to derive mea-
sures that similarly rate illusion sentences as more
acceptable than typical unacceptable sentences. If,
on the other hand, LMs align with ideal grammati-
cal judgments, illusion sentences should be rated
as unacceptable. Our findings indicate that none of
the language models we investigated consistently
exhibited illusion effects or demonstrated overall
human-like judgment behaviors. Nor do they pos-
sess the necessary linguistic knowledge for error-
free, literal sentence processing. These findings
add more insights into the discussion of LMs’ em-
ulation of human behavior and their construal as
cognitive models of human language processing.

2 Related work

2.1 LMSs’ linguistic abilities

We draw insights from evaluation work relying on
acceptability tasks. The construction of minimal
pairs has been used to evaluate models for a vari-
ety of linguistic processes, including subject-verb
agreement (e.g. Linzen et al., 2016), filler-gap de-
pendency (e.g. Wilcox et al., 2018), control (e.g.
Stengel-Eskin and Van Durme, 2022), and binding
(e.g. Davis, 2022). This basic template has been
expanded into a variety of benchmarks, both for in-
vestigations of English (e.g. Warstadt et al., 2020),
but also, other languages (e.g. Chinese (Song et al.,
2022); Russian (Mikhailov et al., 2022); Japanese
(Someya and Oseki, 2023)). While aggregated re-
sults suggest that models overlap with human ac-
ceptability judgments in a variety of cases (e.g. Hu
et al., 2020), LMs can behave in distinctly non-
human-like ways in capturing the intricacies of
grammatical phenomenon (e.g. Lee and Schuster,
2022), the interaction between linguistic processes
(e.g. Davis and van Schijndel, 2020), and in gen-

eralizing knowledge to infrequent items (e.g. Wei
et al., 2021).

In our experiments, we are interested in cases
where human interpretations and behaviors differ
from what is expected given the literal content of
the entire string. Garden path sentences are a clas-
sic example of this basic phenomenon. Strings
like “The horse raced past the barn fell” are often
difficult for humans on first reading because the
word raced is misparsed as a main verb (e.g. the
horse raced past) rather than a reduced relative
clause (e.g. the horse that was raced past the barn
fell). LMs have been shown to similarly misprocess
these sentences (van Schijndel and Linzen, 2021),
though they fall short of capturing the magnitude of
the processing cost (Arehalli et al., 2022). Here we
expand these investigations to language illusions
that similarly trigger errorful acceptable judgments
in humans while being unnatural and unacceptable.
We find that LMs do not pattern like humans in all
cases.

2.2 Language illusions

Language illusions refer to ungrammatical, seman-
tically vague, or pragmatically implausible sen-
tences that receive higher than expected accept-
ability by humans (Phillips et al., 2011). We study
three language illusions in particular: compara-
tive illusion (Montalbetti, 1984) (Section 4), depth-
charge illusion (Wason and Reich, 1979) (Section
5), and NPI illusion (Xiang et al., 2009) (Section
6). Existing human research has found that the
illusion effects for both the comparative and the
depth-charge illusion are robust and overwhelm-
ing but the NPI illusion effect only appears during
speeded judgment tasks or word-by-word online
paradigms (Parker and Phillips, 2016; Wellwood
et al., 2018; Paape et al., 2020; Orth et al., 2021).
For human sentence processing, it has been sug-
gested that language illusions provide evidence for
rational inference of error-prone strings which in-
tegrates heuristics and available context informa-
tion during processing (Ferreira et al., 2002; Levy,
2008; Gibson et al., 2013; Futrell et al., 2020; Hahn
etal.,2022; Zhang et al., 2023a). These phenomena
raise fundamental questions like what is the role of
our grammatical knowledge in comparison to other
cognitive resources when it comes to assigning a
specific interpretation to a linguistic string, and
how we can model their interactions to make better
predictions about human sentence processing.



Studying LMs’ processing of language illusions
provides a way to explore whether they can be
viewed as cognitive models of human sentence pro-
cessing. As large language models like ChatGPT
improve at generating grammatically appropriate
strings, it becomes ever more important to inves-
tigate whether they are comparable to human lan-
guage processing behavior at all (see Mahowald
et al., 2023, for a review). From there, we can
reason about what characteristics in the training of
LMs, the architecture of LMs, and the “abilities”
of LMs enable them to carry out either literal in-
terpretations and detect the anomaly, or to fall into
the illusion rabbit hole.

3 Methods
3.1 Models and Measures

We analyzed four models, two masked language
models, and two autoregressive models: BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
GPT-2 (Radford et al., 2019), GPT-3 (Brown et al.,
2020). BERT, RoBERTa, and GPT-2 were accessed
via HuggingFace (Wolf et al., 2020), and GPT-3
via OpenAI’s API.> We used two measures, sen-
tence level perplexity and surprisal of specific tar-
get words. For autoregressive models, the surprisal
of a specific word? is given by the following equa-
tion:

Surp(w;) = —log Prob(w,|w;...w;—1) (1)
Perplexity for a sentence of N words is:
9% ity Surp(wy) )

For bidirectional models, we calculated the sur-
prisal of a word in a context by using the mask-
ing technique in Kauf and Ivanova (2023), which
corrects for words that are subworded.* Further,
we used this masking technique to calculate the
pseudo-perplexity of a sentence (Salazar et al.,
2020).

>We used ‘bert-base-cased’, ‘roberta-base’, ‘gpt2’, and
‘text-davinci-003’. Code for replicating the results, statisti-
cal tests, and figures can be found at https://github.com/
forrestdavis/LanguageIllusions.git .

3For words that are subworded, the joint probability was
calculated.

“For example, consider the word ‘souvenir’. This is sub-
worded by BERT into ‘so’, ‘##uven’, and ‘ir’. Rather than
MASK each subpart, one at a time, (e.g. ‘so’ [MASK] ‘ir’),
the right context of the target subword is always masked (e.g.
‘so’ [MASK] [MASK])).

3.2 Evaluation procedure

We treated LMs as psycholinguistic research sub-
jects to generate both whole-sentence perplexity
and surprisals at critical words for carefully con-
trolled minimal pairs for each illusion (following,
Futrell et al., 2019). Assuming these two scores
are correlated to human acceptability judgments
(Lau et al., 2017), we constructed mix-effects lin-
ear regression models from the R package [me4 to
test whether LMs were also sensitive to reported
manipulations that affect human judgments. For
each scoring metric, we took it as the dependent
variable and coded the manipulation condition rep-
resenting a certain hypothesis into the independent
variable. We read the estimated coefficient(s) of
the tested condition variable(s) to infer whether
LMs show sensitivity to the effect of that condition
manipulation on the scoring metric. We evaluated
language models in three broad aspects: acceptabil-
ity differentiation, illusion effect, and sensitivity to
manipulations.

* Acceptability differentiation We first asked
whether language models could distinguish
acceptable sentences from unacceptable sen-
tences that humans have no trouble deal-
ing with.> Models with relevant knowledge
should assign lower perplexity/surprisal to ac-
ceptable sentences versus unacceptable ones.

* Illusion effect We took the results from the ac-
ceptability differentiation task as the founda-
tion to test the illusion sentences. Here, we hy-
pothesized that language models should either
(1) align with humans’ illusionary judgments,
reflected by models’ generating a lower per-
plexity/surprisal for illusion sentences than
the unacceptable controls, or (ii) deviate from
human behavior and show hints of being a
literal processor, reflected by models’ gener-
ating a higher or similar perplexity/surprisal
score compared to the unacceptable condition.
If models behave like humans, then we ex-
pected (i) to be the models’ consistent behav-
ior. If models conform to (ii), we take this as
evidence of non-human-like behavior.

* Sensitivity to manipulations Lastly, we as-
sessed whether language models were sensi-

5 According to finer-grained linguistic criteria, acceptable
sentences are those that are grammatical, plausible, and feli-
cious. Please refer to Tonhauser and Matthewson (2015) for
detailed definitions and review.



Illusion type  item BERT RoBERTa GPT-2 GPT-3
PPL Surp PPL Surp PPL Surp PPL Surp
Comparative 32 -0.36  -0.001 -0.56 -0.09 -022 -0.05 -030 -0.25
Depth-charge 32 -0.37  -0.15 -061 -045 -0.12 -041 -037 -0.98
NPI 32 -0.26 -246 -0.71 -2.60 -021 -1.73 -029 -2.55

Table 1:

Estimated coefficients of the main effect (acceptable sentence condition vs. unacceptable condition

(reference)) for each statistical model. If LMs rate acceptable sentences as more acceptable, the coefficients for
perplexity or surprisal should be significantly negative. Cells color-coded in blue represent statistical significance
level (p < .05) in the expected direction. White cells represent an insignificant main effect. In other words, blue cells
indicate the statistical model output supports LMs’ ability to distinguish sentences based on linguistic acceptability.

tive to illusion-specific linguistic manipula-
tions that affect human judgments. A greater
degree of sensitivity indicates that the cor-
responding linguistic knowledge and how
the knowledge affects sentence acceptability
could be encoded in or learned by LMs. This
allowed us to draw a fine-grained comparison
between humans and LMs. If language mod-
els are insensitive, that indicates a difference
between humans and LMs.

4 Comparative illusion

A canonical comparative illusion surfaces in sen-
tences like “More people have been to Russia than
I have”. People accept it at first glance but have
trouble pinning down the exact meaning (Montal-
betti, 1984) one of which could be that the number
of the group of people who’ve been to Russia is
greater than the number of “me”. Potential rational
nonliteral inference could be “people have been to
Russia more times than I have” or “people have
been to Russia but I haven’t” (O’Connor, 2015;
Christensen, 2016). Psycholinguistic research has
found that various factors modulate the strength of
the illusion, including the repeatability of the event
described by the verb phrase, the subject form of
the than-clause subject (e.g. “... than the student
has” vs. “...I have”), as well as the number of that
subject (e.g. “I have” vs. “we have”)(Wellwood
et al., 2018). There is also a claim arguing that the
processing mechanism follows the noisy-channel
predictions under an information-theoretic account
(Zhang et al., 2023b).

We adapted the experimental materials with 32
items from Zhang et al. (2023b).° An example
is in (2) where (2-a) is the canonical comparative
illusion, (2-b) is the acceptable control, and (2-c)
is the unacceptable one.’

8See Table 3 in the Appendix for the full paradigm.
"The repeatability of the verb phrase is responsible for this

2) a. (?7) More teenagers have used Tiktok

than I have. (illusion)

b. Many teenagers have used Tiktok
more than I have. (acceptable)

c. (#) Many teenagers have installed Tik-

tok more than I have. (unacceptable)

4.1 Acceptability differentiation

We first ensured that LMs distinguish acceptable
neighbors (2-b) of the illusion sentence from un-
acceptable ones (2-c). We ran statistical mixed-
effects linear regression models on whole-sentence
perplexity and the surprisal at the word have for
the four language models. Either the perplexity or
the surprisal was taken as the dependent variable
with the condition “acceptability” as the fixed ef-
fect (reference level = the unacceptable condition,
with a nonrepeatable verb phrase vs. the accept-
able condition, with a repeatable verb phrase) and
the random intercept of each item as the random
effect.®

Table 1 shows the estimated coefficient for the
main effect of each mixed-effect model for each
LM and each illusion phenomenon. A significant
negative estimated coefficient suggests that accept-
able sentences received lower perplexity/surprisal
compared to the unacceptable ones, indicating that
LMs distinguish sentences based on acceptability.
Except for surprisal values from BERT and GPT-
2, the other six statistical models indicate that the
LMs capture the acceptability difference of base-
line sentences for the comparative illusion.

4.2 Illusion effect

This task investigated whether language models pat-
tern with humans in demonstrating illusion effects

contrast, as it is more natural to say “use Tiktok more often
or frequent” compared with “install Tiktok more often” when
the action typically takes place once (in a while).

8The model syntax in R was PPL/SURP ~
acceptability + (1]item).
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Figure 1: The y axis shows the coefficient estimates which represent the increase in perplexity/surprisal when the
sentence is unacceptable compared to the illusion case, crossing three language illusions and four LMs. “+” marks a
human-like behavior, in this case, an illusion effect where the unacceptable condition receives significantly higher
perplexity/surprisal values than the illusion condition. “*”” means that the estimated coefficient is significant.

with the basic comparative illusion construction.
The contrast involves the illusion condition (2-a)
with existing control conditions ((2-b) and (2-c)).
The standardized metrics of the four LMs are dis-
played in Figure 6 in the Appendix. To evaluate
whether LMs capture an illusion effect, we con-
structed another suite of statistical models across
the four LMs and two metrics where the main effect
has three levels — the illusion condition (reference),
the acceptable condition, and the unacceptable con-
dition — and the random effect included a random
intercept for items.’

We analyzed the coefficient estimates of the
main effect of the unacceptable condition compared
with the illusion condition.!” An illusion effect
would appear with higher perplexity/surprisal for
the unacceptable condition compared to the illusion
case. In other words, the estimated coefficients for
the unacceptable condition should be significantly
positive.

Figure 1 and Table 2 (in Appendix) display the
estimated coefficients for the unacceptable condi-
tion compared with the illusion condition. For the
comparative illusion, only BERT and RoBERTa
measured by perplexity show a human-like illusion
effect. Other LM-metric combinations indicate that
the illusion condition was rated either the same or
worse than the unacceptable condition (contrary to
humans).

°The model syntax in R was PPL/SURP ~ condition +
(1]item) where condition had three levels.

0The coefficients for the acceptable condition generate
similar conclusions. Further, no illusion sentences were rated
better than acceptable ones.

singular/plural non/repeatable
14 o
« |8
* )
* > B F <
* L e > model
01 Fm T+ || ¥ Ty
[} i BERT
‘(—d *
£, - RoBERTa
3 + . GPT-2
+ GPT-3
14 L
*x X ) + z
. . 1 ®
++ +
0 +

Perpiexity Surplr\sal Perpiex]ty Surplrisal
measure

Figure 2: Estimated coefficients for critical linguistic
manipulations in comparative illusion. The y axis
shows the estimated coefficients for the increase in per-
plexity/surprisal with respect to singular vs. plural than-
clause subjects, or nonrepeatable vs. repeatable verb
phrases, respectively. “*” means statistically significant
contrasts; “+” means human-like results.

4.3 Sensitivity to manipulations

In this step, we evaluated whether language models
were sensitive to sentence manipulations that affect
human judgments. Three factors were investigated:
(1) than-clause subject structure (pronoun vs. NP),
(2) subject number (singular vs. plural), and (3)
verb repeatability (repeatable vs. nonrepeatable).
For humans, plural than-clause subjects are more
acceptable than singular ones only in the NP case.
Overall, repeatable verbs are more acceptable than
nonrepeatable ones (O’Connor, 2015; Wellwood
et al., 2018; Zhang et al., 2023b).



Figure 2 displays the estimated coefficients for
the main effects from the statistical models.!!
As for the subject number, when the than-clause
subject was a pronoun, only BERT and GPT-2
(with perplexity) aligned with human-like behavior:
there is no difference between singular and plural
than-clause subjects. When it comes to NP subjects,
all four LMs with both metrics showed human-like
behavior where the singular NP subject was more
unacceptable than the plural NP subject. As for
repeatability, all four LMs captured this distinction
in the pronoun condition but in the NP condition,
only RoBERTa and GPT-3 achieved human-like
results with perplexity.

In general, we only found partial overlap be-
tween LMs and humans. This indicates that even
though LMs show some knowledge of acceptability
for comparative structures, they might operate dif-
ferently from humans when processing more subtle
differences. None of the language models fully
captured all the manipulations.

S Depth-charge illusion

Consider the most famous depth-charge sentence
No head injury is too trivial to be ignored (Wason
and Reich, 1979). People overwhelmingly inter-
pret it as meaning “no matter how trivial head in-
juries are, we should not ignore them”, while the
literal meaning is the opposite as “we should ignore
them”.

To understand the depth-charge sentence re-
quires knowing meaning composition rules, multi-
ple negation processing (Wason and Reich, 1979),
adequate world knowledge reasoning (Paape et al.,
2020), and the neighboring constructions of too...to
such as so...that, so...as to and enough to... (Zhang
et al., 2023a). Since existing research already
shows that language models are quite limited in pro-
cessing negation (e.g. Kassner and Schiitze, 2019;
Ettinger, 2020), we speculate that LMs might en-
counter difficulty in the more complicated case of
depth-charge sentences.

The evaluation materials were adapted from
Zhang et al. (2023a) with 32 items. An example is
(3) where we take the surprisal of the sentence-final
word for comparison.

"More statistic model information: Iterating over LMs,
metrics, and the subject structure (NP vs. pronoun), we ini-
tiated statistical models taking both repeatability (reference
= repeatable) and subject number (reference = plural) as the
main effects with the random effect including a random inter-
cept for the items.
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3) a. (?7) No head injury is too trivial to be

ignored. (depth-charge sentence)

b. Some head injury is too severe to be
ignored. (plausible, acceptable)

c.  (#) Some head injury is too trivial to be

ignored. (implausible, unacceptable)

5.1 Acceptability differentiation

Utilizing the same methodology as the compar-
ative illusion, we found, as depicted in Table 1,
that all combinations of LMs and metrics, except
GPT-2 (perplexity), captured the acceptability dif-
ference between ((3-b)) and ((3-c)) with a signifi-
cantly lower perplexity/surprisal for the acceptable
sentences like (3-b).

5.2 TIllusion effect

Next, we studied if LMs “experience” the illu-
sion effect by assigning lower perplexity/surprisal
scores to the depth-charge sentence (3-a) compared
to the unacceptable one (3-c).

Our statistical results show, in Figure 1 and Ta-
ble 2 (Appendix), that only ROBERTa and GPT-3
demonstrated an illusion effect (for surprisal) by
assigning a significantly higher score to the unac-
ceptable control sentences. This means that it is not
easy to “trick” LMs with the depth-charge illusion.
Similar results have led concurrent work to suggest
that LMs are better at deriving the literal meaning
of a sentence, which is in sharp contrast with the
overwhelming illusion effect from humans (Paape,
2023, a.0.).

5.3 Sensitivity to manipulations

This task tested LMs’ sensitivity to the plausibility
contrast of three near-neighbor pairs of the depth-
charge sentence. These pairs differ by the degree
quantifier construction (too...to vs. so...as to vs.
t00...to not).'> Competent language models should
differentiate plausible sentences from implausible
ones.

Figure 3 displays estimated coefficients of statis-
tical models’ main effect. We expect implausible
sentences to receive higher perplexities/surprisals
when the illusion occurs.'® We find that LMs cap-
tured some of the distinctions in the foo...fo con-
dition and the so...as fo condition. However, im-

2The full suite of paradigms is shown in Table 4 in the
Appendix.

13 Iterating over sentence pairs, LMs, and metrics, we ran
mixed-effects linear regression models on scores over the
plausibility contrast (reference = plausible).



model BERT RoBERTa GPT-2 GPT-3
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Figure 3: Estimated coefficients for the plausibility
contrast (reference = plausible) in depth-charge il-
lusions. The y axis shows the increase in perplex-
ity/surprisal when the sentence is implausible vs. plau-
sible. “*” means statistically significant contrasts; “+”
means human-like behavior. While we see differences
among LMs and metrics in the “no...so...as to” and the
“no...too...to”" conditions, the condition of “no...too...to
not” yielded completely opposite results to humans.

plausible sentences with foo...to not were rated as
more acceptable than their plausible counterparts,
which flouts what linguistic rules predict.'* The
fact that “No head injury is too trivial to be treated”
and “No head injury is too trivial to not be ignored”
generate opposite results while having the same
meaning suggests LMs still struggled with nega-
tion, antonyms, and meaning composition (Kim
and Linzen, 2020; She et al., 2023; Truong et al.,
2023).

6 NPI illusion

Negative polarity items and their licensing condi-
tions have been investigated in prior work with
language models. For a canonical NPI (e.g. ever,
any) to be acceptable, it has to be in the scope of
negation.!> Existing computational research has
shown that the syntactic dependency between the li-
censor and the NPI is captured by language models
(Jumelet and Hupkes, 2018; Jumelet et al., 2021;
Shin et al., 2023) but with more difficulty as com-
pared to subject-verb agreement or other syntactic
dependencies (Marvin and Linzen, 2018; Warstadt
et al., 2019, 2020). In this task, we expanded the
suite of LMs and metrics and explored sensitivities
to four types of licensors.

“The sentence No head injury is too trivial to not be ig-
nored should be plausible because compositionally, “too triv-
ial to not be ignored” means “too trivial to be treated” which
yields a plausible sentence given the sentential negation.

5The licensing conditions of negative polarity items are far
more than in the scope of negation. We focus on the classic
licensing condition and refer to Giannakidou et al. (2019) for
areview.
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Our materials came from Orth et al. (2021) with
32 items. The essential triad is (4) where the illu-
sion condition has the NPI ever not in the scope of
the negation word no.

@) a. (?7) The hunter who no villager be-
lieved to be trustworthy will ever shoot
a bear. (NPI illusion)

b.  No hunter who the villager believed to
be trustworthy will ever shoot a bear.
(Matrix No, acceptable)

c.  (*) The hunter who the villager be-
lieved to be trustworthy will ever shoot
a bear. (Licensor Absent, unaccept-

able)

6.1 Acceptability differentiation

Table 1 shows that all the four LMs could capture
the acceptability difference of control sentences
(4-b) and (4-¢) (with both metrics).

6.2 Illusion effect

Figure 1 and Table 2 show that only in the case
of surprisal did we see an illusion effect where
the unacceptable sentences (e.g. (4-c)) received
significantly higher surprisals than the illusion sen-
tence (e.g., (4-a)). This finding replicates Shin et al.
(2023) in that, for the illusion condition ((4-a))
where no linearly precedes ever but is in an un-
licensing position, ever incurs higher surprisal. It
is interesting to see the sharp discrepancy between
surprisal and perplexity, which we leave to Section
7.4 for discussion.

6.3 Sensitivity to variations

The linguistic manipulations we explored concern
the illusion effect in the illusion condition with
different NPI licensors. Among the ones we tested,
didn’t, did not, and never,'® human research shows
that none of these triggers illusion effects (Orth
et al., 2021; cf. Vasishth et al., 2008).

Iterating over licensors, LMs, and metrics, we
ran statistical models with the same structure in
Section 6.2. We plotted the estimated coefficients
of the unacceptable main effect in Figure 4 and
predicted that a significantly positive coefficient
indicates an illusion effect. Contrary to human-like
behavior, for all three licensors there were some
LM-metric combinations that indicate an illusion

16please refer to Table 5 for the full experimental condi-
tions.
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Figure 4: Estimated coefficients for the illusion effect
(unacceptable vs. illusion = reference) in NPI illusions.
The y axis shows the increase in perplexity/surprisal
when the sentence is ungrammatical vs. is in the illu-
sion condition. “+” marks an illusion effect while none
of the three licensors should trigger an illusion effect
according to human behavior; “*” means a significant
contrast.

effect: for the licensor did not, RoOBERTa (perplex-
ity) and GPT-2 (perplexity) show an illusion effect;
for didn’t, all four LMs with perplexity show an il-
lusion effect; for never, all four LMs with surprisal,
plus RoBERTa with perplexity, show an illusion
effect. This pattern shows that with NPI illusions,
LMs are more easily tricked than humans.

7 Discussion

7.1 Illusion effect

Successful language processing requires a dy-
namic integration of lexical knowledge, grammati-
cal knowledge, logical reasoning, and world knowl-
edge, among other cognitive abilities and sources
of knowledge. An illusion effect in humans where
unacceptable sentences receive unexpectedly high
acceptability presents a unique case where the
comprehender might prioritize different processing
mechanisms or linguistic constraints for meaning
inference over those employed for common pro-
cessing. Studying how language models process
language illusions helps us understand (1) from a
superficial level, whether LMs appear to be human-
like — circumventing some grammatical facts and
reaching a good-enough sentence representation,
and (2) from a deeper level, whether LMs employ
the same set of resources and abilities to process a
sentence (i.e. whether they can serve as cognitive
models).

In this research, we aim for the first level of un-

derstanding. By studying four language models’
acceptability judgments of three language illusions,
we found that LMs were good at the basic accept-
ability differentiation task and yet no LMs showed
consistent human-like illusion effects among three
illusion phenomena by any metric (Figure 5). We
conclude from this result that LMs might not be a
good cognitive model of human language process-
ing. With this said, we do observe a divergence
between the comparative/depth-charge illusion and
the NPI illusion — it seems more likely for LMs to
be tricked by the NPI illusion compared to the for-
mer two. Since the NPI illusion is more relevant to
the hierarchical structure of language whereas both
the comparative illusion and depth-charge illusion
emphasize semantic nuances, we tentatively con-
clude that LMs are more easily tricked by syntactic
illusion rather than semantic illusions.

7.2 Human-like behaviors & Potential
processing mechanisms

For both the comparative illusion and depth-charge
illusion, the illusion effect test did not show human-
like behavior. This could either mean that LMs
strictly abide by linguistic rules to compose the
language literally or that LMs have trouble under-
standing this complicated set of sentences overall.
For the comparative illusion, the sensitivity task
(Section 4.3) suggests that they might have some
capacity to process comparative structures. For
the depth-charge illusion, that LMs seem to have
trouble understanding the literal contrast between
plausible/implausible pairs (Section 5.3) suggests
sentences involving multiple negations could pose
a challenge to LMs. The two cases indicate we still
need to develop more robust evaluations to gauge
LMs’ semantic capabilities in various semantic do-
mains.

For the NPI illusion, the interpretation could be
more complicated. On one hand, the illusion test
for the licensor no yields human-like results (with
surprisal) but other licensors also elicit non-human-
like illusion effect (cf. Orth et al., 2021). On the
other hand, the discrepancy between sentence per-
plexity and surprisal makes it difficult to conclude
to what degree LMs and humans overlap (cf. Shin
et al., 2023).

Ultimately, we want to address whether LMs are
like humans that utilize not only grammatical rules
but also contexts, frequencies, and semantic priors
to rationally process language, or LMs are like



BERT RoBERTa GPT-2 GPT-3
PPL Surp  PPL Surp | PPL Surp | PPL Surp
Acceptability differentiation v v v v v v
lllusion effect v v
. R Number effect: Pronoun v 4 v

Comparative illusion
Number effect: NP v v v v v v v v
Repeatability: Pronoun v v v v v v v v
Repeatability: NP v v
Acceptability differentiation v v v v v v v
lllusion effect v v

Depth-charge illusion Plausibility contrast (so...as to) v v v v
Plausibility contrast (too...to) v v v v v v
Plausibility contrast (too...to not)
Acceptability differentiation v v v v v v v v
lllusion effect for Relative No v v v v

NPl illusion lllusion effect for Relative Did not v v v v v v

lllusion effect for Relative Didn't v v v v
lllusion effect for Relative Never v v v

Figure 5: Language models’ performance on all three illusions. v'means LMs show human-like behavior.

grammarians that interpret string inputs in a strict
compositional manner. Our investigation does not
yield consistent results given the three language
illusions but the behavioral inconsistency suggests
that language models are far from being a cognitive
model of human language.

7.3 Language models’ performance in general

All four language models performed on par with
each other. If we tallied the number of tests where
LMs reported expected results from Figure 5 and
averaged between perplexity and surprisal, we have
a ranking order from RoBERTa (N=10) and GPT-3
(N=9), to BERT (N=8.5) and GPT-2 (N=8). The
successors of both the masked language model and
the autoregressive model perform better than their
predecessors.

7.4 Perplexity & Surprisal

It is surprising to see that the two widely used
probability-based metrics can generate different re-
sults for a given hypothesis and a given language
model. Future work should (i) investigate both
mathematically and practically why the difference
could occur and (ii) check if better definitions for
the critical regions exist to capture surprisals. Fu-
ture evaluation work that utilizes one metric should
be mindful of the intrinsic limitations of that met-
ric.

7.5 Limitations

Considering the research methodology, acceptabil-
ity judgment tasks (even with carefully controlled
minimal pairs) are indirect measures of language
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comprehension and it is hard to infer the exact in-
terpretation based on probability-based measures.
Further studies should work on direct comprehen-
sion measures (e.g. generating paraphrases) that
reveal LMs’ hidden knowledge.

8 Conclusion

We tested four language models’ ability to pro-
cess three language illusions and asked (1) whether
they judge unacceptable illusion sentences to be
more acceptable as humans (termed an illusion
effect) and (2) whether they are sensitive to lin-
guistic manipulations that modulate human judg-
ments. Our results are based on whole-sentence
perplexity and critical word surprisal. We show that
none of the LMs demonstrated consistent illusion
effects or exhibited overall human-like judgment
behaviors. We conclude that given the case of lan-
guage illusions, language models neither behave
like humans with full sets of cognitive abilities and
error-prone behavior nor possess the necessary lin-
guistic knowledge for error-free, literal sentence
processing. Language models cannot be viewed
as cognitive models of language processing, which
makes understanding them even more intriguing.
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llusion type BERT RoBERTa GPT-2 GPT-3

PPL  Surp PPL Surp PPL Surp PPL Surp

Comparative 043 -0.07 045 -0.22 -0.33 -0.08 0.15 -0.04
Depth-charge = -0.61 -0.01 -0.20 0.28 -041 -0.01 0.12 0.90
NPI -0.87 027 -021 0.54 -0.79 0.48 -0.70 0.41

Illusion sentences are more acceptable than unacceptable sentences.
The unacceptable sentences are more acceptable than illusion sentences.
No significant difference between the two conditions.

Table 2: Estimates of the main effect (unacceptable sentences vs. illusion sentences) for each statistical model.
Positive estimates mean larger perplexity or word surprisals for the unacceptable condition which indicates an
illusion effect. Negative estimates mean the unacceptable condition is more acceptable than the illusion condition,
which is opposite to the prediction. Bolded estimates represent statistical significance (p < .05). We mark the cell
in green if there is an illusion effect; in orange for no illusion effect.

COMPARATIVE ILLUSION
Number VP Examples
When the than-clause subject is noun phrase:
Singular  Repeatable More students have been to Russia than the teacher has.
Singular Non-repeatable More students have escaped from Russia than the teacher has.
Plural Repeatable More students have been to Russia than the teachers have.
Plural Non-repeatable More students have escaped from Russia than the teachers have.
Control ~ Repeatable More students have been to Russia than teachers have. (Good)

Control  Non-repeatable More students have escaped from Russia than teachers have. (Good)
When the than-clause subject is pronoun:

Singular  Repeatable More students have been to Russia than I have.

Singular Non-repeatable More students have escaped from Russia than I have.

Plural Repeatable More students have been to Russia than we have.

Plural Non-repeatable More students have escaped from Russia than we have.
Control ~ Repeatable Many students have been to Russia more than I have. (Good)

Control ~ Non-repeatable Many students have escaped from Russia more than I have. (Bad)

Table 3: Full manipulation for the Comparative illusion

DEPTH CHARGE ILLUSION

Conditions Examples
Canonical depth-charge ~ No head injury is too trivial to be ignored.
Plausible control Some head injury is too severe to be ignored.
Implausible control Some head injury is too trivial to be ignored.
too...to plausible No head injury is too trivial to be treated.
too...to implausible No head injury is too trivial to be ignored.
too...tonot plausible No head injury is too trivial to not be ignored.

too...tonot implausible No head injury is too trivial to not be treated.
$0...as to plausible No head injury is so trivial as to be ignored.
$0...as to implausible No head injury is so trivial as to be treated.

Table 4: Full manipulation for the Depth-charge illusion
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NPI ILLUSION

Conditions Examples

Matrix No No hunter who the villager believed to be trustworthy will ever shoot a bear.

Licensor Absent The hunter who the villager believed to be trustworthy will ever shoot a bear.
Relative No The hunter who no villager believed to be trustworthy will ever shoot a bear.

Relative Didn’t ~ The hunter who didn’t believe the villager to be trustworthy will ever shoot a bear.

Relative Did not  The hunter who did not believe the villager to be trustworthy will ever shoot a bear.

Relative Never ~ The hunter who never believed the villager to be trustworthy will ever shoot a bear.

Table 5: Full manipulation for the NPI illusion

Comparative lllusion Depth-charge lllusion NPI lllusion
4 -
21 T
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acceptable illusion unacceptable acceptable illusion unacceptable acceptable illusion unacceptable
Conditions

Figure 6: Standardized scores of the Perplexity & Surprisal for sentences in three conditions crossing LMs and
language illusion types. If the illusion effect appears, the illusion condition should be rated more acceptable (thus
lower in the graph) than the unacceptable condition and therefore has lower perplexity/surprisal. (Error bars are
95% bootstrapped confidence intervals).

14



ToMChallenges: A Principle-Guided Dataset and Diverse Evaluation Tasks
for Exploring Theory of Mind

Xiaomeng Ma!, Lingyu Gao?, Qihui Xu®

'The Graduate Center, CUNY
2Toyota Technological Institute at Chicago
3Basque Center on Cognition, Brain and Language (BCBL)
xma3@gradcenter.cuny.edu, lygao@ttic.edu, g.xu@bcbl.eu

Abstract

Theory of Mind (ToM), the capacity to compre-
hend the mental states of distinct individuals,
is essential for numerous practical applications.
With the development of large language models
(LLMs), there is a heated debate about whether
they are able to perform ToM tasks. Previous
studies have used different tasks and prompts
to test the ToM on LLMs and the results are
inconsistent: some studies asserted that these
models are capable of exhibiting ToM, while
others suggested the opposite. In this study, we
present TOMCHALLENGES, a dataset for com-
prehensively evaluating the Theory of Mind
based on the Sally-Anne and Smarties tests
with a diverse set of tasks. In addition, we
also propose an auto-grader to streamline the
answer evaluation process. We tested three
models: davinci, turbo, and gpt-4. Our evalua-
tion results and error analyses show that LLMs
have inconsistent behaviors across prompts and
tasks. Performing the ToM tasks robustly re-
mains a challenge for the LLMs. In addition,
our paper wants to raise awareness in evaluat-
ing the ToM in LLMs and we want to invite
more discussion on how to design the prompts
and tasks for ToM tasks that can better assess
the LLMs’ ability. !

1 Introduction

With the recent advancement of large language
models (LLMs; Devlin et al., 2019; Brown et al.,
2020; Raffel et al., 2020), expectations for arti-
ficial intelligence systems to effectively interact
with people have significantly increased. This may
necessitate the development of human-like capabil-
ities in these systems, such as reasoning not only
about their own observations and beliefs but also
understanding the mental states of others. This abil-
ity, termed as Theory of Mind (ToM), refers to the
capacity to attribute mental states—such as beliefs,

'The data and code are available at

https://github.com/xiaomeng-ma/ToMChallenges.
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Figure 1: An example of Smarties test, as well as Men-
talizing and False-Belief Understanding criteria.

emotions, and intentions—to oneself and others
(Wimmer and Perner, 1983; Gallese and Sinigaglia,
2011). In psychology, it is an essential milestone
in the social development of a child. However,
the challenges that persist are whether LLMs have
already developed ToM capabilities and how to
identify the appropriate tool to accurately assess
these capabilities.

Recent studies addressing those issues often
draw inconsistent conclusions, some studies assert-
ing that models exhibit ToM (Kosinski, 2023; Wu
et al., 2023; Bubeck et al., 2023), some suggest the
opposite (Le et al., 2019; Nematzadeh et al., 2018;
Sap et al., 2022; Ullman, 2023a; Shapira et al.,
2023), and others maintain caution and questions
(Sileo and Lernould, 2023; Aru et al., 2023).

These varied results could be due to different
evaluation methods. First, these studies have tested
the models on different tasks, ranging from tasks
of perspective-taking reasoning (i.e., does the other
person know what I know; e.g., Kosinski, 2023) to
intention ascription (i.e., what does a movie char-
acter intend to do at the end of an open-ended
movie; e.g., Shapira et al., 2023). Additionally,
the type of prompts varies across studies. For in-

Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 15-26
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stance, Le et al. (2019) and Sap et al. (2022) used
question answering prompts, while Kosinski (2023)
employed sentence completion prompts. This lack
of clear principles in approaches poses challenges
to the validity of ToM assessments for LLMs. If
only specific prompts lead to high-performance re-
sults while others do not, it becomes questionable
whether the correct responses truly reflect ToM or
are simply the result of algorithmic shortcuts. Simi-
larly, if some tasks are not valid for assessing ToM,
the results cannot be interpreted in terms of mod-
els’ ToM capability regardless of the conclusions
drawn.

What is considered a valid ToM test? A valid
test should be both theoretically grounded and
methodologically validated to ensure it measures
the intended subject, and the results are not skewed
by other factors. From a theoretical standpoint,
ToM theories in child development (Wellman et al.,
2001; Quesque and Rossetti, 2020; Navarro, 2022)
suggest that valid tests should focus on assessing
the respondent’s ability to a) represent mental states
of one’s own and others based on physical events
(but not other factors such as emotions and inten-
tions) (mentalizing), and b) differentiate one’s own
mental state and other’s (false-belief understand-
ing). Tasks not meeting these criteria might not be
considered valid assessments because they either
introduce confounding factors such as emotional or
social ascription or fail to contrast the respondent’s
mental state and other’s mental state.

From a methodological perspective, both psy-
chology and NLP studies demand rigorous evalu-
ation to ensure measurement validity. Unlike psy-
chology studies where individual subjects can be
randomly assigned to experimental and control con-
ditions to yield reproducible results, LLMs like
GPT-4, being a single ‘subject’, lack the capacity
for reproducibility in the traditional sense. There-
fore, any claims about an LLM possessing human-
like capabilities must be substantiated after valida-
tion with a variety of prompts and tasks, provided
these tasks align with the theoretical framework of
the intended measurement.

Validity issues of current neural ToM tests
Testing a few examples on a single format, as
done by Kosinski (2023) and Bubeck et al. (2023),
raises methodological questions and uncertainty
about whether responses are shortcut-driven. In
fact, Shapira et al. (2023) recently showed LLMs’
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inconsistent performance across ToM tasks, further
indicating possible shortcuts and the idiosyncrasy
of specific prompts. If relied upon singularly, these
could lead to misinterpretations.

Meanwhile, several tasks from previous studies
(e.g., Ullman, 2023b; Shapira et al., 2023) may not
sufficiently adhere to Mentalizing and False-Belief
Understanding criteria, casting doubt on whether
these tasks genuinely reflect ToM or other capacity
such as social ascription. In the study conducted
by Ullman (2023b), adversarial variations such as
transparent access and uninformative labels were
used to evaluate the robustness of LLMs’ ToM ca-
pability. For example, when the model is presented
with a context where a transparent bag is filled with
popcorn, but the label on the bag reads “choco-
late,” the model was likely to suggest that a person
seeing the bag for the first time would believe it’s
full of chocolate, not popcorn, despite the bag’s
transparency. However, this variation might not
be directly related to ToM. Successfully answer-
ing those questions may also require conceptual
knowledge (e.g., what information can a transpar-
ent bag provide) and inferential biases (will the
person trust the label or rely on their direct obser-
vation through the transparent bag?). Such issues
could lead to evaluations straying from the Mental-
izing and False-Belief Understanding criteria.

Likewise, certain tasks implemented in the
Shapira et al. (2023) study, such as inferring an-
other person’s intention, did not distinguish be-
tween representations of self and others. Conse-
quently, the model may depend on empathy (see
Section 2 for differences between empathy and
ToM) rather than ToM to accomplish the task,
thereby failing to fulfill the Nonmerging criteria.

Auto-grader: Enabling diverse and large-scale
evaluations One potential challenge to establish-
ing a principle-guided yet diverse evaluation sys-
tem is the intense human labor involved in evaluat-
ing models’ responses. It may not be a significant
issue when the task is in a constrained format such
as true or false questions. However, when the di-
versity and the amount of tasks increase, which is
necessary for a valid ToM test (e.g., ask models to
provide reasoning so that one can better understand
how the model reaches such a conclusion), a more
efficient evaluation method becomes essential.

Present study To improve the validity of ToM
tests, we propose a principle-guided dataset with



a diverse set of tasks. In an effort to dissect the
underpinnings of incorrect responses, we also con-
ducted error analyses, particularly focusing on
questions demanding reasoning. This approach
offers a deeper insight into the cognitive process
of the models when they arrive at incorrect conclu-
sions. Finally, addressing the need for efficient eval-
uations, we have developed an autograder based on
GPT4 to streamline the evaluation process. This
tool allows us to efficiently evaluate models’ re-
sponses across a broader spectrum of tasks and on
a larger scale, bringing a higher degree of accuracy
and efficiency to the ToM testing process.

Our evaluations and error analyses show that cur-
rent LLMs struggle to perform robustly on ToM
tasks or reason in a manner characteristic of sub-
jects possessing ToM. Moreover, we demonstrate
that our auto-grader is highly proficient at automat-
ically evaluating LLMs’ responses across various
tasks, paving the way for more efficient, larger-
scale analyses for neural ToM.

2 Related Work

ToM in humans ToM in children significantly
influences various facets of their development, in-
cluding social competence, peer acceptance, and
academic achievement (Carlson et al., 2013). Re-
search has revealed substantial changes in chil-
dren’s understanding of mental states by the age
of five (Wellman et al., 2001). Although ToM
is often linked to cognitive abilities like empathy
and visual-spatial attention, it’s crucial to note that
these are separate constructs involving distinct neu-
rological and cognitive processes (Kanske et al.,
2015; Schurz et al., 2021; Zaki and Ochsner, 2012).
These abilities also yield largely divergent effects
on other aspects of social and cognitive develop-
ment (Happé et al., 2017). Take for instance an
individual with ToM but not empathy. They have
the intellectual ability to interpret and understand
the thoughts, intentions, and beliefs of others. Nev-
ertheless, when tasked with sharing or connecting
with others’ emotions, they may encounter diffi-
culty.

ToM tasks Quesque and Rossetti (2020) re-
viewed tasks frequently employed to assess ToM.
Among these, the False Belief task, one of the most
widely utilized tasks in human and language model
studies, fulfills the criteria. This task requires par-
ticipants to infer the belief of a character who holds
a false belief about a particular scenario, which
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contrasts with the participants’ updated belief of
the same scenario. The Smarties and the Sally-Ann
tests are the two most frequently employed False
Belief tasks. For instance, in the Smarties Test, a
child is shown a box labeled as ‘candies’. After re-
vealing that the box indeed contains crayons rather
than candies, the child is asked what another per-
son, unaware of the box’s contents, would guess is
inside. Younger children often answer ‘crayons’,
while older children, understanding others would
base their belief on the box’s label, answer ‘candies’
(Gopnik and Astington, 1988).

On the other hand, several tasks either do not
demand the distinction between one’s own men-
tal state and that of others or they actually mea-
sure processes not directly related to ToM. The
tasks in Shapira et al. (2023) - Intention Ascrip-
tion (included in the SOCIAL IQA dataset; Sap
et al., 2019) and Animated Shapes - fall under this
category. These tasks often foster shared represen-
tations between self and others, rather than creating
a distinction (Brass et al., 2009). For example, in
the Animated Shapes task, participants watch short
animated films featuring geometrical shapes, and
they are then asked to interpret the thoughts or feel-
ings of these shapes. However, this task probes
more into empathy rather than ToM.

Evaluations of ToM in LLMs ToM evaluations
in LLMs vary greatly in terms of tasks and prompts.
Nematzadeh et al. (2018) was the first work for
evaluating ToM in LLMs, finding all models un-
successful. In 2019, Le et al. (2019) found that
the question-answer benchmarks of the time were
prone to data biases, allowing models to develop
corner-cutting heuristics due to a rigid event se-
quence template for each task type. To mitigate
this, they introduced new evaluation methods along
with a novel dataset. Sap et al. (2022) later eval-
uated GPT-3 (Brown et al., 2020) on this dataset,
reporting only 55 - 60% accuracy, even after few-
shot fine-tuning with GPT-3-Davinci.

Recent two studies tested GPT-4 on a few False
Belief examples using sentence completion Kosin-
ski (2023) and question-answer prompts Bubeck
et al. (2023). Both studies reported GPT-4 achiev-
ing > 90% accuracy, leading to suggestions of
spontaneous ToM emergence in LLMs. However,
this claim was disputed by subsequent research
(Ullman, 2023a; Shapira et al., 2023). As noted
in Section 1, Ullman (2023a) introduced adversar-
ial variations to the false belief questions used in



Kosinski (2023), which resulted in a significant
decrease in LLMs’ performance. Shapira et al.
(2023) evaluated LLMs across a range of tasks
ToM, finding that current LLMs, including GPT-4,
struggled to perform consistently. The tasks in-
cluded the False Belief task from Kosinski (2023),
the False Belief task with adversarial variations
(Ullman, 2023a), the Animated Shapes task adapted
from Heider and Simmel (1944), and a set of com-
mon sense reasoning tasks including the Intention
Ascription task (Sap et al., 2019). Their findings in-
dicated that current LLMs struggle to consistently
perform well on these tasks. The high performance
of GPT-4 observed in the initial studies (Kosin-
ski, 2023; Bubeck et al., 2023) may reflect shallow
heuristics, not robust ToM capabilities.

3 TOMCHALLENGES and Tasks

We aim to build a corpus based on two types of
tests: Sally-Anne Test and Smarties Test, which fit
the ToM test criteria. Below we describe how we
construct TOMCHALLENGES data, and how we
design our evaluation tasks.

3.1 Dataset Construction

While Le et al. (2019) proposed the inclusion of
distractors to prevent models from adopting corner-
cutting heuristics, it is important to note that distrac-
tors are more relevant for fine-tuning rather than
zero-shot probing. Given the ongoing discussions
surrounding the zero-shot performance of models
in recent studies (Kosinski, 2023; Ullman, 2023b)
and we care more about the model’s inherent capa-
bilities, we introduce a dataset without distractors
as below to maintain our focus, with examples dis-
played in Tables 1 and 2. We created 30 variations
of each test (e.g., changing the person’s name, lo-
cation, and items), and the details of the tests and
variables are described as follows.

Sally-Anne Test The Sally-Anne Test was first
introduced by Baron-Cohen et al. (1985) and has
been widely used in psychology studies. The test
typically involves two characters, Sally and Anne,
where Anne hides an object while Sally’s away.
The children were usually asked where would Sally
look for the object when she returns. The narrative
consists of the following components: (1) a loca-
tion L, where the event takes place, (2) two agents,
A and B, where A moved the object while B one
is away (3) an object O, whose position changed
in the narrative, and (4) two containers, C1 and
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Variables L: attic, A: Neila, B: Juanita, O: towel, Cl:
closet, C2: cabinet

Narrative

N

Neila and Juanita were hanging out in the attic.
They saw a closet and a cabinet. They found a
towel in the closet. Juanita left the attic. Neila
moved the towel to the cabinet.

REALITY Where is the towel currently?
Answer: The cabinet.

Where was the towel previously?
Answer: The closet.

After Juanita came back to the attic,

BELIEF

+

1sTA where would Neila look for the towel?
Answer: The closet.

1sTB where would Juanita look for the towel?
Answer: The cabinet.

2NDA where would Neila think Juanita would look for
the towel?
Answer: The cabinet.

2NDB where would Juanita think Neila would look for

the rowel?
Answer: The cabinet.

The initial prompt with T is applied to 1STA, 1STB, 2NDA, and 2NDB.

Table 1: An example for Sally-Anne Test.

Variables L: attic, A: Neila, B: Juanita, C: bag, 01: plate,

02: vest

Narrative Neila found a bag in the attic. The label on the

N bag says plate. Neila couldn’t see what was
inside the bag. Neila opened the bag and found
a vest. There is no plate in the bag. Neila closed
the bag and put it back. Juanita entered the attic
and saw the bag.

REALITY What was in the bag?

Answer: A vest.

What was supposed to be in the bag?
Answer: A plate.

After Juanita opened the bag, T

BELIEF

ISTA what would Neila expect to find in the bag?
Answer: A vest.

1sTB what would Juanita expect to find in the bag?
Answer: A plate.

2NDA what would Neila think Juanita would expect
to find in the bag?
Answer: A plate.

2NDB what would Juanita think Neila would expect

to find in the bag?
Answer: A plate.

The initial prompt with f is applied to 1STA, 1STB, 2NDA, and 2NDB.

Table 2: An example for Smarties Test.

C2, representing the object’s initial and updated
positions, respectively. Using these components,
we construct narratives as shown in Table 1.2

For each narrative, we create 6 questions follow-
ing Le et al. (2019) to comprehensively evaluate
the model’s understanding of the narrative and the

The agents’ names were selected from CMU Name Cor-
pus. All the names are female names. We manually crafted L,
0, Cl, and C2.



Narrative \/

Neila and Juanita were hanging out in the artic. They saw a closet and a cabinet. They found a towel
in the closet. Juanita left the attic. Neila moved the rowel to the cabinet.

Fill-in-the-Blank

Fill in the blank (<>): N After Juanita came back to the attic, Neila would think Juanita would look
for the fowel in the < >. Answer:

Multiple Choice Choose the correct answer from A or B for the following question: Question: N After Juanita came
back to the attic, where would Neila think Juanita would look for the rowel? A. cabinet B. closet

True/False Given the context, judge True or False of the given statements A and B respectively: N Statements: A.
Juanita would look for the towel in the cabinet. B. Juanita would look for the towel in the closet.

CoT True/False Given the context, reason through statements A and B step by step and provide a True or False judgment
based on the reasoning: N Statements: A. Juanita would look for the towel in the cabinet. B. Juanita
would look for the towel in the closet.

Q&A Answer the question based on the context: Context: A/ Questions: After Juanita came back to the attic,

where would Neila think Juanita would look for the towel? Answer:

Complete the following paragraph: N After Juanita came back to the attic, Neila would think Juanita

Text Completion would look for the towel in

Table 3: An illustrative example for different task templates of the Sally-Anne Test using 2NDA question as an
example, ignoring line breaks in templates for space saving.

agents’ mental states: REALITY focuses on the up-
dated/current position of 0, and BELIEF focuses
on the initial/previous position. The first-order be-
lief (1STA and 1STB) questions ask the agents’
beliefs, and the second-order belief (2NDA and
2NDB) questions ask one agent’s belief regarding
the other agent’s mental state.

Smarties Test The Smarties Test was first intro-
duced by Gopnik and Astington (1988) and has
also been widely adopted in psychology studies. In
a typical Smarties test, the child is presented with
a ‘Smarties’ box that actually contains something
else. The child is then asked what they think an-
other person, who has not seen the contents of the
box, would believe is inside. The narrative consists
of the following components: (1) two agents, A
and B, where A saw the contents and B didn’t, (2)
one container C that holds the object, and (3) two
objects, 01 and 02, where 01 is the labeled content
and 02 is the actual content. Using these compo-
nents, we construct narratives for the Smarties Test
as shown in Table 2.

The questions of the Smarties Test narrative are
similar in nature to those of the Sally-Anne Test,
but the REALITY question focuses on the actual
object in the container, and the BELIEF question
focuses on the container’s label.

3.2 Task Formulation

Previous studies have used a single task (e.g.
question-answering task or sentence completion)
task to evaluate the model’s performance. In order
to test the robustness of the model’s performance,
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it is necessary to adapt the questions into a variety
of tasks. We construct different prompts to create
6 task formats, as demonstrated in Table 3. These
tasks can be categorized into three groups based on
the level of freedom in generation:

Fully-Constrained Fully-constrained generation
limits the model’s output to specific predefined
structures or responses. In this group, we design 3
tasks, i.e., Fill-in-the-Blank, Multiple Choice, and
True or False questions.

Semi-Constrained Semi-constrained generation
involves partial guidance by specific rules or struc-
tures, while still allowing some flexibility in the
model’s responses. This group consists of 2 tasks,
i.e., Chain-of-Thought (CoT) True or False ques-
tions and Question Answering (Q&A) tasks.

Open-Ended Open-ended generation enables the
model to generate responses without being re-
stricted by predefined rules or structures, leading
to more diverse and varied outputs. An example of
this group is Text Completion.

3.3 Experimental Setup

We evaluate the zero-shot performance of three
models: text-davinci-003 and gpt-3.5-turbo-0301,
and gpt-4-0613 (OpenAl, 2022). For the hyper-
parameters of all models, we set the temperature
as 0, top_p as 1, and both frequency penalty and
presence penalty as 0. Due to the different natures
of our task design, we choose different maximum
token limits for each task as follows: 10 tokens
for Fill-in-the-Blank, 2 tokens for Multiple Choice,



20 tokens for True or False, 100 tokens for CoT
True or False, and 50 tokens for both Question
Answering and Text Completion.

3.4 Answer Evaluation and Auto-grader

For the fully-constrained tasks, the models’ an-
swers can be graded easily since there are standard
answers. We first apply a python function to grade
these answers, and the results are double checked
by human annotators. For the semi-constrained
and open-ended tasks, the answers don’t necessar-
ily follow a standard form and are graded by hu-
man annotators. The rubrics to grade these answers
include: 1) the answer is correct; 2) the answer
doesn’t contain any information that can not be
inferred from the narrative.

In order to improve the efficiency of grading, we
develop an auto-grader based on the gpt-4-0613
model with a grading prompt. The grading prompt
consists of a general template of the narrative and
guidelines of how to construct gold answers for
the 6 questions. The model then grades the gener-
ated answers based on the gold answers. In addi-
tion, an example of a generated answer and grading
pair was also included in the prompt for in-context
learning. An example of the grading prompt is
included in Appendix A. The output of the auto-
grader consists of two parts: the reasoning part,
where it outputs the gold answers to 6 questions;
and the grade part, where it grades the generated
answer. An example of the auto-grader’s output is
shown in Table 4.

We apply the auto-grader to evaluate the answers
in two tasks: Q&A and Text Completion. First,
we evaluate the gold answers output by the auto-
grader. The auto-grader achieved 100% accuracy
on all Sally-Anne and Smarties narratives, show-
ing it can effectively produce gold answers for the
6 questions. Then we evaluated the grading re-
sults by comparing them to the human annotated
results. The auto-grader achieved 100% accuracy
on Q&A task and over 90% accuracy on Text Com-
pletion task. These results demonstrated that the
auto-grader could be an effective tool in evaluating
more freely generated answers.

4 Results and Analyses

In this section, we present the results of our evalua-
tion for all models on Sally-Anne and Smarties
tests. As we create 30 variations of the narra-
tive for each test, and each narrative comes with 6
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questions (REALITY, BELIEF, 1STA, 1STB, 2NDA,
2NDB), and each question is tested on 6 tasks, an
idealized model that is capable to solve Theory of
Mind tasks should be able to achieve high accuracy
on all questions across different tasks and in most
of the narratives.

4.1 Accuracy by Question and Task

The accuracy of each question type is calculated
by averaging the accuracy over 30 narratives (e.g.,
an accuracy of 50% for 1STA question means that
the model answered correctly for 15 out of the 30
narratives). Figure 2 and 3 show the average accu-
racy of 6 types of questions in different prompts
for Sally-Anne Test and Smarties Test.

For the Sally-Anne tests, all three models are
able to achieve near-perfect accuracy on REALITY,
BELIEF, and 1STA questions for all prompts, indi-
cating that the models can reason based on facts.
For 1STB question that requires reasoning both the
belief of A and B, the gpt-4 model achieved bet-
ter performance than the gpt-3.5 models (davinci
and turbo). For 2NDA and 2NDB questions, gpt-
3.5 models struggled to understand one person’s
belief about another person’s belief, while gpt-4 an-
swered most of the narratives correctly. For differ-
ent tasks, the models behaved differently. All three
models achieved the best overall performance with
the Text Completion task, followed by the Fill-in-
the-Blank task. In addition, introducing Chain-of-
Thought did not improve the model’s performance
on True/False task.

The Smarties test showed a different accuracy
pattern from the Sally-Anne test. All three models
showed some difficulties answering the fact-based
questions, REALITY, BELIEF, and 1STA questions
correctly. For the 1STB questions, all three models
had worse performance than the 1STB questions
in the Sally-Anne test. For 2NDA and 2NDB ques-
tions, gpt-4 model and turbo model had similar
performance as in the Sally-Anne test, while the
davinci model achieved better performance than
the Sally-Anne test. We observe that the davinci
model performed best on the Text Completion task,
the turbo model performed best on the Multiple-
Choice task, and gpt-4 model performed best on
the Fill-in-the-Blank task.

By comparing the different tests, questions, and
tasks, it is clear that the models can not reliably
perform ToM tasks well. The models are gener-
ally good at fact-based questions and struggle more



Reasoning:

This is a Sally-Anne story. Person A is Sabra and Person B is Hillary. The item is a mitten. Location X is the briefcase and Location Y is the bucket.

Gold Answers:

1. reality: The mitten is currently in the bucket because Sabra moved it there.

2. belief: The mitten was in the briefcase before.

3. Ist order belief of Sabra: Sabra would look for the mitten in the bucket because she moved it there.

4. 1st order belief of Hillary: Hillary would look for the mitten in the briefcase because she didn’t know that Sabra moved it.

5. 2nd order belief of Sabra: Sabra would think that Hillary looks for the mitten in the briefcase because she knew that Hillary didn’t see her move the mitten to
the bucket.

6. 2nd order belief of Hillary: Hillary would think that Sabra looks for the mitten in the briefcase because she didn’t know that Sabra already moved it.

The response to the prompts suggests that Hillary would look for the mitten in the bucket. The answer is incorrect because it is contradicting gold answer 4.
Grade: Incorrect.

Table 4: An example of Auto-grader output on answer 1STB question.
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Figure 3: The average accuracy of questions in Smarties test for different prompts.
Sally-Anne  Smarties 4.2 Accuracy by Narratives
Gold Answers 100 100
Q&A 100 100
Text Completion 95.7 91.4

The accuracy of each narrative is calculated as the
average accuracy over six question types. Although
the narratives are generated through the same tem-
plate, the models produced different answers. For
example, for some narratives, the model is able to
answer all the questions correctly, while for others
the model’s accuracy drops. Table 6 and Table 7

Table 5: The accuracy of auto-grader on Gold Answer,
Q&A and Text Completion.

with questions that require reasoning through dif-
ferent agents’ beliefs. The models are also sensitive
to the prompts and framing the question into dif-
ferent tasks could significantly affect the model’s
performance.
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show the average accuracy of Sally-Anne and Smar-
ties tests across narratives. For both tests, the gpt-4
model has the best and most stable performance,
which has the highest average accuracy and lowest
standard deviation.



Sally-Anne  davinci turbo gpt-4
MC 0.50+0 0.8240.17 0.91+0.10
FB 0.6140.13 0.9340.09 0.9940.03
TF 0.5+0 0.6540.10 14+0
CoT-TF 0.5+0 0.5740.12 0.9940.03
QA 0.5+0 0.68+0.17 0.84+0.04
Comp 0.7240.15 0.9240.10 0.9240.12

Table 6: The average accuracy and standard devia-
tion for narratives in the Sally-Anne test for different
prompts.

Smarties davinci turbo gpt-4

MC 0.84+0.03 0.95+40.07 0.88+0.08
FB 0.78+0.12 0.96+0.10 0.88+0.10
TF 0.33+0.11 0.464+0.12 0.92+0.08
CoT-TF 0.44+0.15 0.3440.06 0.92+0.08
QA 0.7940.12 0.3740.10 0.9040.08
Comp 0.854-0.09 0.7840.13 0.8440.13

Table 7: The average accuracy for stories in the Smarties
test for different prompts.

4.3 Error Analysis

‘We further looked into the errors the models made,
especially for the questions that the models had
low accuracy. We focused our error analysis on
the Q&A and Text Completion tasks, since the
output of these two tasks contains more information
to analyze. The errors can be divided into three
major types:® a) True Failure of ToM, b) Overly
conservative, ¢) Hallucination. The summary of
the error counts of each type of error in Q&A and
Text Completion tasks is shown in Table 8.

The errors of True Failure are similar to the er-
rors the younger children would make, where the
model assumed that an agent knew something they
shouldn’t know. An example of the wrong answer
is ‘Hillary would most likely look in the bucket
where Sabra moved the mitten.” This type of error
is more common in the davinci and turbo models,
and more frequently occurs in Sally-Anne’s narra-
tive than the Smarties narrative.

Overly conservation errors happen when the
model is being too conservative and refuses to
make inferences about the agent’s belief. This
type of error is common in the turbo and the gpt-4
models, where the model produces answers like
‘The context does not provide information on where
Juanita would look for the towel when she returns.’.
In addition, this error is more common in the Smar-

3There are also miscellaneous answers, such as ‘Neila
would expect to find a surprise inside’. These answers are not
considered in error analysis.
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True Failure Conservative  Hallucination
SA Sm SA  Sm SA Sm
davinci 136 58 0 6 4 1
turbo 66 0 3 114 14 38
gpt-4 15 18 28 17 0 11

SA = Sally-Anne, Sm = Smarties

Table 8: The total error counts of 6 questions in Q&A
and Text Completion tasks for 3 models.

ties narrative than in the Sally-Anne narrative.
Hallucination error is identified when the answer
includes information that can not be inferred from
the narrative, or the answer contains contradicting
information than the narrative. An example error
would be: ‘In the backpack, there was a note that

said, "This backpack belongs to Norina".’, where

‘note’ was not mentioned in the narrative at all. This

type of error is more frequently found in the turbo
model.

The error analyses showed that the models failed
on the ToM tasks not only because they could not
reason about reality and people’s beliefs, but also
because of the inherent limitation of LLMs. For ex-
ample, the hallucination errors and the overly con-
servative errors are related to the inference process
of the LLMs, which has always been a challenging
part of the NLP field.

5 Conclusions

In this study, we proposed TOMCHALLENGES
to comprehensively test the ToM on LLMs. The
dataset is constructed based on the Sally-Anne and
Smarties tests. For each test, we created a template
to generate variations of the test. In addition, we
incorporated 6 types of questions to examine the
model’s understanding of reality, belief, 1st order
belief, and 2nd order belief. We also included 6
tasks with different prompts for evaluation, consid-
ering the impact of prompts on model performance.
This evaluation method serves a dual purpose: it
not only measures whether the model has ToM
capacity, but also measures the robustness of the
model in performing the ToM tasks. In addition, we
also create an effective auto-grader that achieved
high accuracy in evaluating the more free-formed
answers of the ToM tasks.

Using 30 variations of Sally-Anne and Smarties
tests, we found that the GPT-based models can not
reliably perform the ToM tasks, since the accuracy
varies across different tasks, questions, and narra-
tives. Through error analysis, we found that the



failure of the models can not be simply concluded
as they lack the ability to reason reality and beliefs.
Instead, many of the errors reflect the inherent lim-
itations of the LLLMs, which might not be related
to the cognitive explanations of the ToM.

We hope our study could invite more discussions
on evaluating the ToM in LLMs. Further studies
could investigate how and why different prompt
types would affect the model’s performance, how to
improve the robustness of the model’s performance,
how to interpret the results more appropriately, etc.
In addition, one limitation of our study is that we
did not conduct human experiments. It is unclear if
human adults are able to achieve (almost) perfect
performance across different stories, prompts and
tasks. Future studies could also compare human
results and the LLMs’ behaviors side by side for
evaluation. We hope that future discussions could
not only focus on whether LLMs exhibit the ToM,
but also attend to the significance and implications
of the ToM in LLMs.
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You are a helpful grader. You will be given a series of Prompt and Response pairs about Theory of Mind. The core of grading
rubric is to see if the answer can correctly reason the reality and the knowledge of the people in the story. You first need to
reason about the context in the Prompt and figure out the key facts.

There are two types of story in the context.

The Sally-Ann story is about two people (Person A and Person B) found an item in location X. Person B left the room and
Person A moved the item to location Y.

Key facts for Sally-Ann story include:

1. reality: the current location of the item, which is location Y.

2. belief: the previous location of the item, which is location X.

3. st order belief of Person B: what Person B thinks the current location of the item, which is location X.

4. 1st order belief of Person A: what Person A thinks the current location of the item, whic is location Y.

5. 2nd order belief of Person B: what Person B thinks that Person A thinks the current location of the item, which is location
X.

6. 2nd order belief of Person A: what Person A thinks that Person B thinks the current location of the item, which is location
X.

The Smarties story is about Person A found a container. The label on the container says item X, but there’s no item X in the
container. Person A opened the container and found item Y. Later, Person B entered the room and saw the container.

Key facts for Smarties story include:

1. reality: what’s inside the container, which is item Y.

2. anti-reality: what supposed to be in the container according to the label, which is item X.

3. 1st order belief of Person B: what Person B expects to find in the container, which is item X .

4. 1st order belief of Person A: what Person B expects to find in the container, which is item Y (because Person A already
opened the bag and found Y).

5. 2nd order belief of Person B: what Person B thinks that Person A expects to find in the container, which is item X.

6. 2nd order belief of Person A: what Person A thinks that Person B thinks is in the container, which is item X.

After identifying the key facts of the context, you can take a look at the response to see if that is align with the key facts. If
the response is align with the key facts and does not contain any information that cannot be inferred from the context, it can
be graded as ’Correct’. Otherwise, it is "Incorrect’.

Here is an example:

user:

Propmt: Complete the following paragraph: Neila found a bag in the attic. The label on the bag says plate. Neila couldn’t
see what was inside the bag. Neila opened the bag and found a vest. There is no plate in the bag. Neila closed the bag and
put it back. Juanita entered the attic and saw the bag. In the bag, there was

Response: a vest.

assistant:

Reasoning:

This is a Smarties story. Person A is Neila and Person B is Juanita. The container is a bag. Item X is plate and item Y is vest.
Key facts:

1. reality: A vest is in the bag because Neila found a vest in the bag.

2. beleif: There supposed to be a plate in the bag because the label says plate.

3. 1st order belief of Juanita: Juanita expects fo find a plate in the bag because the label says plate and doesn’t know there’s
actually a vest in the bag.

4. 1st order belief of Neila: Neila expects to find a vest in the bag because she already opened the bag and found a vest.

5. 2nd order belief of Juanita: Juanita thinks that Neila expects to find a plate in the bag, because she doesn’t know that Neila
already opened the bag and found a vest.

6. 2nd order belief of Neila: Neila thinks that Juanita expects to find a plate in the bag, because she knows that Juanita
doesn’t know there’s actually a vest in the bag.

The response to the prompt suggests that there was a vest in the bag, which is align with reality. Therefore the response is
correct.

Grade: Correct.

Appendix: Example Prompt for Auto-grader.
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Abstract

Human languages are often claimed to funda-
mentally differ from other communication sys-
tems. But what is it exactly that unites them as
a separate category? This article proposes to
approach this problem — here termed the Zip-
fian Challenge — as a standard classification
task. A corpus with textual material from di-
verse writing systems and languages, as well
as other symbolic and non-symbolic systems,
is provided. These are subsequently used to
train and test binary classification algorithms,
assigning labels “writing” and “non-writing”
to character strings of the test sets. The perfor-
mance is generally high, reaching 98% accu-
racy for the best algorithms. Human languages
emerge to have a statistical fingerprint: large
unit inventories, high entropy, and few repeti-
tions of adjacent units. This fingerprint can be
used to tease them apart from other symbolic
and non-symbolic systems.

1 Introduction

“If a Martian scientist [...] received from Earth
the broadcast of an extensive speech [...] what
criteria would [...]determine whether the reception
represented the effect of an animate process
on Earth, or merely the latest thunderstorm on
Earth?” (Zipf, 1936, p. 187)

Zipf’s ideas — condensed in the above quote — have
spurred a whole research paradigm: the study of
statistical laws of language. These have emerged
as the best candidates for universals of language
(Ferrer-i-Cancho, 2005, 2007; Bentz and Ferrer-i-
Cancho, 2016; Takahira et al., 2016; Debowski,
2020; G. Torre et al., 2021; Tanaka-Ishii, 2021;
Petrini et al., 2023). Beyond languages, many
other systems have been found to follow similar
statistical laws — to the extent that their “meaning-
fulness” has been sometimes called into question
(Miller, 1957; Li, 1992; Suzuki et al., 2005). Most
recently, experimental investigations have shown
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that Zipfian distributions facilitate learning of lin-
guistic and visual input (Lavi-Rotbain and Arnon,
2021, 2022, 2023), that they arise from human cog-
nitive biases (Shufaniya and Arnon, 2022), and
that they help with learning new word-referent
mappings (Wolters et al., 2023). In this sense, such
statistical laws are quite literally “meaningful”.

However, the challenge posed in the quote
above is still only partially addressed by research
into statistical laws. Namely, a statistical pattern
might universally occur across languages, but this
does not entail that it is a unique feature of lan-
guages. The Zipfian Challenge is ultimately the
search for a statistical fingerprint: a feature, or
set of features, which uniquely identify human lan-
guages. This is related to an age-old controversy
of the language sciences: What makes human lan-
guage special — if anything?

This challenge is here broken down into a stan-
dard classification task. Assume you are provided
with strings of characters:!

AALLAQQAASIUTA

1
SSSSCSOFSPPPFPP )

Is there an algorithm which robustly classifies
these into “writing” and “non-writing”? — If yes,
how? — If no, why not?

Beyond pure scientific curiosity, there would
be concrete applications for such an algorithm:
a) cleaning of contaminated corpora, especially
when large and automatically crawled (Blevins
and Zettlemoyer, 2022); b) measuring similarity
of undeciphered scripts to known writing systems
in order to help decipherement (Rao et al., 2009,
2010; Lee et al., 2010; Sproat, 2014); c) providing
tools to systematically compare human language
with animal communication (Kershenbaum et al.,
2016).

'The first string is the beginning of the UDHR in Kalaal-
lisut (West Greenlandic), the second is a transliteration of
symbols in a wheather forecast.

Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 27-37
December 67, 2023. ©2023 Association for Computational Linguistics
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Figure 1: Number of files per subcorpus (left panel). Logarithm of the number of UTF-8 characters over files in a
given subcorpus (right panel). Note that the natural logarithm of 50k is roughly 11, while for 500 this is roughly 6.

In the following, a corpus of character strings
labelled as “writing” and “non-writing” is intro-
duced in Section 2. Given this corpus, a sampling
procedure is defined to retrieve strings of prede-
fined lengths (10, 100, 1000). Subsequently, fea-
tures from quantitative linguistics and information
theory are described an calculated on the strings
(Section 3). A series of classification algorithms
are trained on a subset of the feature values. Sec-
tion 4 then gives the results in terms of perfor-
mance of the algorithms on the test sets. Section 5
discusses the results with regards to the original re-
search question of a statistical fingerprint, as well
as some follow-up questions which arise from the
results.

2 Data

The data stems from a corpus of overall 377 files,
split into “writing” (170 files) and “non-writing”
(207).> The standard definition of writing is ap-
plied here. It refers to the tight link between spo-
ken language structure and the graphemes repre-
senting it: “Broadly defined, writing represents
speech. One must be able to recover the spoken
word, unambiguously, from a system of visible
marks in order for those marks to be considered
writing,” (Woods, 2010, p. 18). However, some
transcriptions of sign languages are also included
here. Arguably, unique structural features of a
given sign language can be identified in a transcrip-

%Files and code can be found at https://github.com/
christianbentz/NaLaFi.
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tion system, in parallel to spoken language in its
graphical form.

2.1 Writing

The writing files in this corpus consist of 50 par-
allel translations of the Universal Declaration of
Human Rights (UDHR),? transcriptions of interac-
tions in American Sign Language (ASL) and Sign
Language of the Netherlands (SLN) according to
the Berkeley system, as well as transliterations of
ancient languages (Akkadian, Cretan Hieroglyphs,
Proto-Elamite, Prakrit, and Sumerian).*

2.2 TeDDi sample

To increase the diversity of genres, registers, and
modalities (spoken vs. written) for modern day
languages beyond the UDHR, we furthermore
draw 100 files randomly from the TeDDi (Text
Data Diversity) sample (Moran et al., 2022). It
includes more than 20K texts from overall 89 lan-
guages and 15 writing systems, and aims to max-
imize the diversity of families and areas repre-
sented.

2.3 Non-writing

The files classified as “non-writing” are further
subdivided into songs of different bird species
(animal), DNA strings (natural), python code

3These were chosen to maximize the diversity of scripts.
There are 36 different scripts in this sample according to the
ISO 15924 standard.

4Mostly retrieved from https://cdli.mpiwg-berlin.
mpg.de/.



(pycode), heraldics (heraldics), weather sym-
bols (weather), morse code (morse), and proto-
cuneiform (procunei). Examples are given in Ta-
ble 1.

Bird song transcriptions of five different species
(black-headed grosbeak, chickadee, Cassin’s
vireo, California thrasher, and zebra finch) are col-
lected from an online database (Bird-DB).” It pro-
vides a “text” coding of recurrent phrases, identi-
fied by short pauses, and annotated with regular
UTF-8 character strings in Praat (Arriaga et al.,
2015).

Heraldics here refers to the description of her-
aldry (coats of arms) according to the so-called
Blazon system. It has its own syntax, and uses
a mixture of English and French words. It is
here considered “non-writing” following the dis-
cussion in Sproat (2023). However, it is a border-
line case. The usage of English words, inflectional
morphemes, and noun phrase structures partially
link it to the spoken language.

Morse code is another borderline case.
Graphemes of actual writing are here recoded
into three morse characters (plus pause character).
Hence, the actual writing can be recovered, and
the underlying spoken language can be identified.
However, this is a two-stage process. If we ac-
cept morse code as writing, we also have to ac-
cept, for instance, binary code. Such artificial
coding schemes are here rather classified as “non-
writing”.

Proto-cuneiform is strictly speaking also “non-
writing”. Take, for instance, the transcription of
a tablet from the Uruk III period (c. 3200-3000
BC)’ as given in Table 1. NI14 and N9 are tran-
scriptions of sumerograms representing numbers
(which are repeated several times for enumeration
purposes), SZE~a is an iconic sign which stands
for the concept of “barley”, and LU2 for the con-
cept of “person”. In a strict sense, we do not know
whether the scribe thought of the Sumerian spoken
words for “barley” and “person” when they pro-
duced these iconic signs. They could have spoken
any other language. As a consequence, the lan-
guage feature of this tablet is assigned the value
“undetermined” in the database.

Finally, two further sets of “non-writing” files
are generated by a) randomly drawing up to 48 dif-

6

Shttp://taylor@.biology.ucla.edu/birdDBQuery/
Thanks to one of the reviewers for raising this issue.

"https://cdli. mpiwg-berlin.mpg.de/artifacts/
5353
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ferent characters from a uniform distribution, and
b) randomly shuffling the characters of the “writ-
ing” files. Note that the latter process does not
impact certain text statistics, e.g. the frequency
distributions of characters. An overview of the file
counts in this corpus, as well as distributions of file
lengths in UTF-8 characters are given in Figure 1.

3 Methods

3.1 Preprocessing

The 377 files are preprocessed consistently to re-
move special characters which are used as anno-
tations, rather than representing genuine informa-
tion of the symbolic systems. For example, in
Sumerian transliterations, curly brackets indicate
so-called determinatives, as in {d/nansze, where
d represents the star shaped sumerogram indicat-
ing that the next sumerogram is to be interpreted
as the name of a deity, namely, the goddess nan-
sze.® Note that the curly brackets are here already
an interpretation of the person transliterating the
original sumerograms, i.e. an annotation. The
UTF-8 characters removed from all files include
the tab character, as well as ‘{’, ‘}’, ‘C, )", ‘[’ ‘T’,
‘+’, and ‘“*’. In fact, these characters also often
cause problems in later processing steps, which
is another — more practical — reason to remove
them. Examples of preprocessed character strings
are given in Table 1.

3.2 Sampling

While the numbers of files in the “writing” versus
“non-writing” categories are relatively balanced
(170 versus 207), the average file lengths in terms
of UTF-8 characters differ widely. These range
from c. 100 characters in the case of weather sym-
bols, to c. 50k characters in the case of DNA (see
also Figure 1, right panel). In most cases, this is
due to data availability issues.

To alleviate this problem, two strategies are ap-
plied: Firstly, a maximum number of 10 strings
of characters is extracted from each file. Sec-
ondly, the lengths of strings (in terms of number
of UTF-8 characters) are held constant: 10, 100,
1000. We thus achieve a consistent comparison of
strings of a given length across the different types
of writing and non-writing systems. Also, these
lengths are chosen with potential later applications

8We here use the transliterations of sumerograms into
Latin script. Mapping these back to UTF-8 sumerograms is
currently not feasible.



Corpus Subcorpus File ID Example
Writing Ancient akk 0001 Sum-ma a-wi-lum ba-wi-lam u-ub-bi-ir-ma
Signlang ts1_0001 -clVP-cITL-golVP_TOP-pstSTRmount-cl
UDHR cmn_0001  FFE S TR ARG R A E A 8™ R
eng_0001 Preamble Whereas recognition of the inherent
kal_0001 AALLAQQAASIUTA taqginassusermik inuup
kor_0001 M ZEEJNF FLY MR 2L 55
TeDDi eng_nfi_242 It’s not supposed to be like this.It’s time.
Non-Writing Animal bhg_0001 uj kd ro su sv sw sx gf jr dw kd tc jt ag ta
Heraldics bla_0001 Or, a lion rampant within a double tressure
Morse moc_0001 phh_pppp_p_hp_s_pp_hp_s_h_pppp_p_s_hphp
Natural (DNA) dna_0001 GGTAGTTAGGGTCTGAAAAAGATTTTGCG
Proto-Cuneiform prc_0001 N14[...] NI9 N19 N19 SZE~a LU2 MUD3~d
Python code pyc_0001 class Person: pass p = Person() print(p) class
Random ran_10 hihhe bh fif cd gbgdiiigc ghigbbg af icegeebiifg
Shuffled eng_0001 swr a j e eitimii hfeooa ti i d gs sfi roeviebg ep
Weather wsy_0001 SWCCSSSSSSSSSSCSOFSPPPFPPFPP

Table 1: Examples of characters strings of genuine writing systems as well as systems here classified as non-

writing.

in mind. For example, when aiming to classify un-
deciphered scripts, or comparing human commu-
nication with animal communication, the strings
available are often rather limited in length, in some
cases just a couple hundred characters. Methods
which need large amounts of data are not useful
in this context. The sampling procedure is further
illustrated in Appendix A.

Given this sampling procedure, we arrive at sev-
eral thousand character strings for each predefined
length (Table 2). For each of these strings, values
are calculated for four quantitative features out-
lined in the following.

3.3 Features

The focus is here on quantitative features which
have been explicitly proposed to distinguish differ-
ent natural languages, and other symbolic systems
(e.g. in Rao et al., 2009, 2010; Lee et al., 2010;
Sproat, 2014; Bentz et al., 2017). In particular, the
measures chosen are the type-token ratio (TTR),
the unigram entropy (H), and the entropy rate (h)
of units (i.e. UTF-8 characters), as well as the rep-
etition rate of adjacent units (?). The exact defini-
tions for these measures are given below.

3.3.1 Type-token ratio (TTR)
The type-token ratio is defined as

C

TTR = —~—,
Zicz1 fz

2

where C' is number of character types in an “alpha-
bet” A, such that C' = | A, and f; is the token
frequency of a given character type c;.

3.3.2 Unigram character entropy (H)

Compared to TTR, the unigram character entropy
is a more nuanced measure of diversity, reflecting
the distribution of units. In general, it is defined as
(Cover and Thomas, 2006, p. 14)

H(X) ==Y p(x)logy p(x),

TeEX

3)

where X is a discrete random variable, X is the al-
phabet, and p(z) is the probability of a given type
of the alphabet. In our case, we estimate the en-
tropy with the maximum likelihood or ‘plug in’
method for a given string of characters S, such that

C

H(S) == Plei) logy plei),
i=1

“

where S is assumed to be an i.i.d discrete ran-
dom variable drawn from the alphabet A, and
p(c;) is the estimated probability, i.e. the rela-
tive frequency of a character f; in S. The uni-
gram character entropy takes values in the range
[0, 00]. For an example sequence abcabcabc we
have H(X) = (1/3 x logy(1/3)) x 3 = 1.58
bits/unit.
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3.3.3 Entropy rate (h)

While TTR and unigram entropy only take into
account the frequencies/probabilities of individual
characters — independent of their co-text — the en-
tropy rate is defined for a stochastic process { X}
reflecting the concatenation of random variables,
which might or might not be independent of one
another. In general, the entropy rate is defined as
(Cover and Thomas, 2006, p. 74)

1
h(X) = lim *H(X17X27X37... (5)

n—oo n ’ Xn)
This can be seen as the per symbol entropy growth.
Note that in the case of characters in natural lan-
guage texts, we have co-occurence patterns which
limit the entropy growth to a certain extent. To
estimate the entropy rate we turn to an estimator
proposed in Gao et al. (2008), and implemented in
Bentz et al. (2017). It is defined as

n

>

1=2

~ 1 log, @

L’

(6)

where n is the length (number of characters) in
a given string S, and L; is the length (+1) of
the longest contiguous substring starting at posi-
tion ¢ which is also present in ¢ = 2 to ¢ — 1.
The entropy rate also takes values in the range
[0, 00]. For our regular abcabcabc string we get
h = 0.84 bits/character. Notice that this is lower
than the value for the unigram character entropy
(1.58 bits/character). This is because the same sub-
string abc is repeated several times. In a sense,
this entropy rate estimator “penalizes” long sub-
strings of repetitions when calculating the entropy
of a given string.

3.3.4 Repetition rate (R)

Finally, the repetition rate (for adjacent charac-
ters) is proposed in Lee et al. (2010) and Sproat
(2014) as an alternative to entropy estimation for
teasing apart writing from non-writing. The gen-
eral idea is that consecutive repetitions of charac-
ters are dispreferred in genuine writing systems —
probably reflecting the avoidance of adjacent rep-
etitions of phonemes in spoken languages. While
there are some extreme examples like Schifffahrt
in Standard German, we rarely encounter more
than two repetitions of the same character in ad-
jacency, and even these are relatively infrequent.
The repetition rate is calculated as

r

== 7 (7)
Zicz1 fz -1
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Length (Chars.) Overall Training Test

10 3741 2543 1198
100 3223 2194 1029
1000 1832 1261 571

Table 2: Number of character strings of a given length
in the training and test sets.

where 7 is the number of adjacent repetitions of
characters c¢; in a given string, and the denomi-
nator is the possible number of adjacent repeti-
tions. R takes values in the range [0,1]. In the
string abcabcabc we have zero adjacent repeti-
tions of the same character, while there could be
(3—1)+ (3—1)+ (3 —1) = 6 repetitions. The
repetition rate is then R = 0/6 = 0. For compar-
ison, in the string baccbcaab (which has the same
TTR and H as before), we have cc and aa as adja-
cent repetitions, and hence R = 2/6 = 0.33.

Overall, we thus have four vectors of feature val-
ues. The estimated values are visualized in Fig-
ure 2. Some general trends are already visible in
these panels. For instance, the marginal density
distributions of writing and non-writing overlap
considerably for the TTR, such that it will be hard
for a classification algorithm to distinguish these
in this dimension. For the repetition rate R (y-axes
on the right panels), on the other hand, the values
of writing cluster more strongly towards low val-
ues, and are more spread out for non-writing. In-
terestingly, the shuffied strings seem to move away
towards higher values in the R dimension com-
pared to the original writing strings. This suggests
that random shuffling of characters introduces sys-
tematically more adjacent repetitions than found
in real text.

3.4 Training and test sets

The feature values along with their labels (writing
vs. non-writing) are split into a training and test set
by the ratio 67% to %33. The resulting numbers
for the training and test sets per string length are
given in Table 2. The same training and test sets
are used for all algorithms.

3.5 Classification Algorithms
3.5.1 K Nearest Neighbors (KNN)

The KNN algorithm computes euclidean distances
for each data point in the test set with each data
point in the training set. It then classifies a given
target point in the test set based on a majority vote
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of the dots.

of the class labels which the k£ neighbours nearest
to the target point have. Ties are broken at ran-
dom. This is a non-parametric and fast classifica-
tion algorithm. It was proposed already in Fix and
Hodges (1952), and is still competitive today for
general classification problems such as the XOR
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distribution of data points.” The only hyperparam-
eter to tune is k, which is here assumed to range in
between 1 and 10.

°See leader board at https://paperswithcode.com/
task/classification (last accessed 29/06/2023).



3.5.2 Logistic regression

Logistic regression is a parametric technique
which was widely used in statistical learning for bi-
nary classification before the advent of neural net-
works. It is still used today in experimental stud-
ies in psychology and psycholinguistics (Baayen,
2013). For binary classification using feature val-
ues, we first need to estimate the coefficients of the
logistic model, which is specified in our case as

PY=1) .
TPy =1 "
Bo + B1X1 + BaXo + B3X3 + B4 Xy,

logit(Y") = log( ®

where X7, ..., X4 are random variables represent-
ing the feature values, Y is the binary outcome
variable we want to predict, and (3, . . . , 34 are the
parameters (coefficients) of the model which are
learned (estimated) using the feature values and la-
bels of the training set. Once these parameters are
estimated, we use them for prediction of labels in
the test set given the formula

1
1+ e—(Bo+B1X1+B2Xo+Bs Xs+BaXa)

€))

with the decision rule: if P(Y = 1) > 0.5, then as-
sign label “writing”, otherwise assign label “non-
writing”.

3.5.3 Support Vector Machines

A support vector machine (Cortes and Vapnik,
1995) uses the input vectors of the training set — in
our case (TX7TR,TH,Th, TR) — to find the hyper-
plane with dimensions n — 1 (where n is the num-
ber of features, i.e. n — 1 = 3), which maximizes
the margins to the nearest data points (i.e. support
vectors). Data points in the test set are then clas-
sified according to the position of the hyperplane
established with the training set. If the training
data cannot be separated without error (which is
almost always the case), then instead the number
of errors is minimzed. As pointed out by Good-
fellow et al. (2016, p. 141), the original formu-
lation of SVMs is very similar to the logistic re-
gression model given in Equation 8. However, it
was subsequently shown that the so-called kernel
trick can be used to allow non-linear mappings.
The main hyperparameter is then the type of ker-
nel used. Here, the linear, radial basis, sigmoid,
and polynomial kernels are tested.
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3.5.4 Multilayer Perceptrons (MLP)

Multilayer perceptrons (deep feedforward net-
works) are the archetype of deep learning (Bengio
et al., 2000; LeCun et al., 2015). In its simplest
form, a feedforward network for binary classifica-
tion consists of the input units (four in our case),
a single hidden unit, and an output unit. See Fig-
ure 3 (upper panel) for an illustration. Note that
this is mathematically equivalent to the logistic re-
gression model in Equation 8. Namely, the vector
of weights (w) — multiplied with the input values
of features (x) — is equivalent to the coefficients
(B1, ..., B4), and the bias (indicated in blue in the
figures) is equivalent to 5.

However, a crucial question is which hidden
layer architecture, activation function, error func-
tion, and backpropagation algorithm yield the best
results for a given data set. These are the hyper-
parameters to tune. Here, a search of the space of
possible architectures is performed by randomly
drawing natural numbers in the range [1, 4] for the
hidden layers, and numbers in the range [1, 5] for
the number of units in each hidden layer. The
maximal values are guided by local regression
analyses of model performance (F1 score) given
the depth and size of networks (see Appendix B).
Overall, one hundred random values are drawn for
the depth and size, yielding one hundred different
architectures (out of 5* = 625). Moreover, dif-
ferent activation functions (logistic, ReLLU, soft-
plus, tanh), error functions (SSE, cross entropy),
and backpropagation algorithms (Rumelhart et al.,
1986; Riedmiller and Braun, 1993; Hinton et al.,
2006) are considered.

4 Results

For all classification algorithms the accuracy, pre-
cision, recall, and F1 score on the test set are re-
ported alongside the respective hyperparameters.
A condensed overview of classification results are
given in Table 3. The best model overall is an MLP
trained on feature values of strings with 1000 char-
acters. It achieves an F1 score of 0.96, and an ac-
curacy of 98%. In other words, for the 571 strings
of the test set it assigns the correct label (writing
vs. non-writing) in 560 cases, erring only in 11
cases. This performance drops to 93% accuracy
when feature values of strings of length 100 are
supplied, and to 73% with strings of length 10.
The performance of the best KNNGs is very similar,
differing only by a max amount of 0.01. In gen-
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Figure 3: Upper panel: A forward pass with logistic
activation and output functions with the simplest pos-
sible MLP architecture for binary classification, with
one hidden layer, consisting of a single hidden unit.
Lower panel: MLP architecture with two layers of hid-
den units (four each) and a logistic output unit. This is
the architecture which performs best on strings of 100
characters.

eral, the KNN and MLPs show very similar perfor-
mance, while the performance of SVMs and logis-
tic regression models is lower across the board.

5 Discussion

Overall, the classification results suggest that the
Zipfian Challenge is indeed a solvable problem.
Namely, given strings of characters of length 100,
KNNs and MLPs reach performance values of
0.92 and 0.93 respectively. With 1000 charac-
ters, they are almost at the ceiling of performance.
In fact, it is questionable whether humans would
be able to correctly classify the respective strings
with 100% accuracy. Mind you that more than 36
different scripts and 90 different languages are rep-
resented in this data sample. It would be an inter-
esting project for future research to establish hu-
man performance on this task. In the following,
some further follow-up questions are briefly dis-
cussed.
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5.1 Why do algorithms perform differently?

It is surprising to see a simple, non-parametric
classification algorithm like KNN outperform
other, much more complex algorithms such as lo-
gistic regression and SVMs, and perform on a par
with the best MLPs. This is certainly related to
the data set and problem at hand. The KNN has
no parameters to “learn” from the training data. It
directly assigns a label to a given vector of fea-
ture values by finding the vector of feature val-
ues closest to it in the training set. In compari-
son, the currently best MLP given in Figure 3 has
4x444x442x1 = 34 weightsand4+4+1 =9
biases to adjust. This amounts to overall 43 pa-
rameters to optimize in the “learning” process. In
fact, few of the deeper networks with three or four
hidden layers actually reach convergence with this
data. And when they converge, they do not neces-
sarily perform better than the simpler architectures
(see Appendix B).

5.2 Why do longer strings yield better results
than shorter strings?

The main reason for this is that the respective fea-
ture values have not converged for short strings
of length 10. For strings of length 100, they start
to converge in most cases, and at 1000 characters
they have converged across the board. The conver-
gence behavior of the different measures is given
in Appendix C.

5.3 Which is the best feature?

When feature value vectors are input separately
— rather than together — into the KNN algorithm
(with k£ = 1), then the repetition rate R performs
best for 100 characters (F1-score: 0.8), followed
by TTR (0.66), with unigram entropy and entropy
rate at only 0.63. For 1000 characters, R and
TTR are similar (0.83 and 0.81), again with en-
tropy measures yielding lower F1-scores (0.7 and
0.72). This squarely confirms the argument in
Sproat (2014), namely, that the repetition rate R
is better than entropic measures for distinguishing
writing from non-writing. However, if we remove
entropic measures for the best KNN at 100 char-
acters (kK = 5), then the performance drops from
0.92 to 0.82. So they still considerably contribute
to performance. For instance, for some natural lan-
guage writing, e.g. the Kalaallisut string AAL-
LAQQAASIUTA in Table 1, the repetition rate
can be relatively high due to writing conventions



Classifier Chars. Hyperparam. Acc. Prec. Rec. F1
Baseline (only TTR) 10 k=1 0.69 0.89 048 0.63
KNN 10 k=6 071 073 0.72 0.73
100 k=5 092 092 092 092
1000 k=7 0.98 098 092 0.95
LogRegr. 10 - 0.72 0.77 067 0.72
100 - 079 084 0.71 0.77
1000 - 093 095 075 0.84
SVM 10 kernel: linear 072 083 060 0.70
100 kernel: radial 0.88 0.87 0.90 0.89
1000 kernel: radial 092 1.00 0.70 0.82
MLP 10 hidden: 5, 4; tanh; SSE; rprop+ 0.73 0.78 0.69 0.73
100 hidden: 4, 4; tanh; SSE; rprop+ 093 093 092 0.93
1000 hidden: 4, 5, 2; tanh; SSE; rprop+ 0.98 0.99 0.94 0.96

Table 3: Classification results organised by number of characters and method. Only the best models (by F1 and
Accuracy) for each number of characters is given. The baseline is the KNN algorithm (k=1) with strings of 10
characters and only TTR as a feature for training and testing.

for long vowels (aa), lateral glides (ll), and ejec-
tives (qq). In such cases, the other measures will
help with correct classification.

5.4 How are the results influenced by
subcorpora?

The corpus of strings is not fully balanced. To
get an idea of the degree to which particular sub-
corpora influence the performance, they are re-
moved individually in a post hoc experiment with
the best KNN model (k = 5) for 100 characters.
The results are given in Appendix D. Generally,
classification results are robust to removal of sub-
corpora. The strongest decrease in performance
is associated with the removal of DNA (natural)
strings. These have generally low entropies, and
high repetition rates, and are hence easily classi-
fied as non-writing. The inverse effect holds for
shuffled data. Shuffling the characters of genuine
writing does not change the unigram entropy and
TTR, and only marginally changes the entropy rate
of strings. Hence, in this case, the repetition rate
is the only feature useful for identifying the result-
ing strings as non-writing. Removing the shuffled
strings increases the overall performance.

6 Conclusions

Compared to other symbolic and non-symbolic
systems, natural languages seem to exhibit a
unique fingerprint: relatively large unit invento-
ries, relatively high entropy, and relatively few
repetitions of adjacent units. This statistical fin-
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gerprint can be used to identify written language
with high accuracy when more than 100 charac-
ters are provided. Interestingly, this seems to hold
not only for writing reflecting spoken language but
also for transcriptions of sign languages (though
only small samples of ASL and SLN were used
here). This suggests that humans have evolved the
capacity of encoding information with a diverse,
non-repetitive succession of units in three modali-
ties: speech, manual signs, and graphical codes. If
these results hold true, then it is not a single fea-
ture, and not a single modality, which defines hu-
man language, but a set of features related to rapid
information transmission in the face of space and
time limitations.
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Abstract

Semantic parsing aims to map natural language
sentences to predefined formal languages, such
as logic forms and programming languages, as
the semantic annotation. From the theoretic
views of linguistic and programming language,
structures play an important role in both lan-
guages, which had motivated semantic parsers
since the task was proposed in the beginning.
But in the neural era, semantic parsers treat-
ing both natural and formal language as se-
quences, such as Seq2Seq and LLMs, have
got more attentions. On the other side, lots of
neural progress have been made for grammar
induction, which only focuses on natural lan-
guages. Although closely related in the sense
of structural modeling, these techniques hadn’t
been jointly analyzed on the semantic parsing
testbeds. To gain the better understanding on
structures for semantic parsing, we design a
taxonomy of structural modeling methods, and
evaluate some representative techniques on se-
mantic parsing, including both compositional
and i.i.d. generalizations. In addition to the
previous opinion that structures will help in
general, we find that (1) structures must be
designed for the specific dataset and general-
ization level, and (2) what really matters is not
the structure choice of either source or target
side, but the choice combination of both sides.
Based on the finding, we further propose a met-
ric that can evaluate the structure choice, which
we believe can boost the automation of gram-
mar designs for specific datasets and domains.

1 Introduction

Semantic parsing is the task to transduce source
sentences in natural languages (NL), into the target
representations, which are usually artificial formal
languages (FL), such as Lisp, A-calculus, and SQL.
Theoretically natural languages are processed in
structures (Chomsky, 2009), and the formal lan-
guages are also defined to have a context-free syn-
tax (Linz and Rodger, 2022). Therefore inevitably
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semantic parsers such as the CCG-based are aware
of source structures, and adopt the compositional
semantics ! of the targets. But they usually parse
to A-calculus (Venant and Koller, 2019) and do not
support programming languages.

|

Make me a meeting with (Yield :output ( Create-
my team . We need a room CommitEventWrapper :
l event ( ...

Semantic
Parsing

>

We need...

Make me Yield :output

Create...

Figure 1: Structural modeling in two tasks. We’re going
to analyze how the progress in grammar induction could
help neural semantic parsing.

In the neural era, Seq2Seq based parsers add
supports to any sequential languages, but they can
make grammar errors despite the effectiveness.
Grammar-based parsers are proposed to ensure the
grammatical correctness by decoding the rule se-
quences of the target AST. Recently, the develop-
ment of the Text-to-SQL has motivated specialized
parsers to support the SQL language. But the NL
structures on the source side are seldom handled
and left to pretrained large models.

On the contrary, NL structures are the key issues
of treebanks like PTB and supervised parsers. The
grammar induction field has also invented many
methods to induce grammars with restricted forms
from unsupervised training data. These parsers can

'"Typical compositions are $-reductions in the A-calculus
and the unification in the functional grammar.
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infer trees for new sentences, but don’t process the
semantic annotations obviously.

Unfortunately, no investigations had been con-
ducted on the combination of the success of the two
fields. Our research question (RQ) is thus as fol-
lows: Is structural modeling of the natural lan-
guage or the formal language useful for neural
semantic parsing? To answer the question, we use
the encoder-decoder architecture with the attention
mechanism to connect structures of two sides, due
to its success of modeling token-level correlations.
Our investigations are kept diverse in several impor-
tant factors, such as the dataset variety, categories
of structures, and generalization levels (I.L.D., com-
positional, or zero-shot). Under every possible
combination of these factors, results are believed
more faithful than single datasets (Finegan-Dollak
etal., 2018).

Our evaluations add new knowledge to prior in-
sights (Oren et al., 2020). We find it’s not safe to
claim the effectiveness for specific structural mod-
els for either NL or FL. The structures of NL and
FL must be evaluated as a whole, and their effects
even vary across datasets and generalization levels.
Therefore, we make the conclusion that the com-
bination of structural choices are more important
than the structural choice on either the source or
target side. The result is consistent with the one of
the findings from Guo et al. (2020) in that different
grammars, leading to different tree structures, have
significantly different performance when keeping
the same semantic representations and datasets.

These arguments in total suggest we can ex-
pect improvements from searching for better struc-
tural combinations on specific application domains.
However, grammar search is not trivial but can be
highly expensive. Inspired by the recent works in
Large Language Models (LLMs) which can handle
the code inputs well, we propose the metric, Dis-
Struct, for evaluating the structural combination of
the source and target sides based on the representa-
tions given by the LLMs and the optimal transport.
The metric can be interpreted as the discrepancy
between the specific training and testing splits un-
der the structural choices. The metric is shown
negatively correlated with the parser performance.
It thus will help the automation of the grammar
search theoretically.

In summary, we make three contributions as:

* We’re the first to classify and compare repre-
sentative structural models for neural semantic
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parsing, to our best knowledge.

* By evaluating the models against a few diverse
testbeds, we find that structural combinations
are more important than structural choice of
either the natural or formal languages.

* We propose a metric of the structural combi-
nations that is negatively correlated with the
model performance which can speed up the
structure searching.

2 Evaluation Framework

2.1 Datasets

As suggested by Finegan-Dollak et al. (2018), we
conduct the experiments on a variety of datasets,
which are different in sizes, anonymized query
amounts, nested query depths, and involved SQL ta-
ble amounts. We use the ATIS, GEO, Scholar, Ad-
vising (Oren et al., 2020), COGS (Kim and Linzen,
2020), and SMCalFlow-CS (Yin et al., 2021). The
selection also covers several semantic representa-
tions. Table 1 gives the statistics. For the gen-

. # Examples
Dataset Split (train / dev / test)
ATIS (SQL) LLD. 3014 /405 /402
ATIS (SQL) Program 3061/375/373
Advising (SQL) LLD. 3440/ 451/ 446
Advising (SQL) Program 3492 /4217414
Geo (SQL) LLD. 409 /103 /95
Geo (SQL) Program 424 /91/91
Scholar (SQL) LLD. 433/111/105
Scholar (SQL) Program 454 /97 /98
COGS (\-calculus) LLD. 24160 / 3000 / 3000
COGS (A-calculus)  Linguistic 24160 /3000 / 21000
SMCI16 (Lispress) Domain 25424 /1324 /1325
SMC32 (Lispress) Domain 25440/ 1324 /1325
SMC64 (Lispress) Domain 25472 /1324 /1325
SMC128 (Lispress) LLD. 25536/ 1324 /1325
SMC128 (Lispress) Domain 25536 /1324 /1325

Table 1: The number of examples in each dataset. Dif-
ferent kinds of generalizations are explained in Sec-
tion 2.1. SMCk denotes the SMCalFlow-CS dataset
with k£ few-shot examples added into the training set.
‘We manually shuffle the SMC-128 to build an L.L.D. split.
The representation of each dataset is in the parenthesis.

eralization levels, three have been proposed for
the Question Answering task, i.e., the L.I.D., com-
positional, and zero-shot generalization(Gu et al.,
2021). For semantic parsing, usually only the
first two levels are considered. The I.I.D. gener-
alization is just a uniformly random shuffle and



split of the entire corpus. For the compositional
generalization (CG), there isn’t a standard split
procedure currently. In our work, ATIS, GEO,
Scholar, and Advising adopt the program-based
split, which anonymize SQL queries as program
templates and split the data at the template level.
The COGS constructs CG examples in a linguis-
tic view. The SMCalFlow-CS adopts the domain-
based split, which uses single-domain questions
for training, and questions requiring multi-domain
knowledge for testing.’

2.2 Problem Formalization

We are focusing on encoder-decoder models to map
a source sentence X into the target formal language
Y. Basic forms of X,Y are provided as linear
sequences, i.e. X = (z1,z2,...,2,) and Y =
(y1,Y2, - -, Ym), Where each x; and y; are tokens.
Trees of source and target sides are denoted as S, T’
with respectively X and Y as their leaf nodes. For
both S, T, three structural choices are available:
absent, latent, and given. An absent structure is a
pure sequence. Latent structure means the tree is
not observed and jointly learned from the training
data. Given structures rely on external parsers. The
combination of choices of .S, T yields a total of 9
probabilistic models as in Table 2.

Model Form S Choices T Choices
P(Y | X) Absent Absent
PY, T | X) Absent Latent
P(T | X) Absent Given
P(S|X)P(Y | S, X) Latent Absent
P(S|X)P(Y,T|S,X) Latent Latent
P(S|X)P(T|S,X) Latent Given
PY|S,X) Given Absent
P, T|S,X) Given Latent
P(T|S,X) Given Given

Table 2: Probabilistic forms for all Seq2Seq-style mod-
els in comparison. Structures of both side can be one
of three choices. If S is latent, training another model
P(S | X) is necessary to infer S.

Note we only consider the deterministic parsers
instead of the generative ones. The models must
predict at least one variable of the target side, given
at least one variable of the source side. We’ve
noticed several works using generative grammars
(Qiu et al., 2021; Kim, 2021; Shaw et al., 2021)

2Others like length-based and divergence-based splits
(Shaw et al., 2021; Keysers et al., 2020) are not included
for comprehensiveness due to limited computation resources.
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based on the notions of synchronized and quasi-
synchronized CFGs. Due to the prevalence of de-
terministic semantic parsers, we leave generative
models in the future work.

2.3 Selected Structural Models

We briefly list the concrete models for structural
choices in Table 3. The implementations and hyper-
parameters are left in the Appendix. Referring the
original papers is also recommended for details.

S Model
Bidirectional LSTM
Absent  BERT (Devlin et al., 2019)
Electra (Clark et al., 2020)
ON-LSTM (Shen et al., 2019)
Latent DIORA (Drozdov et al., 2019)
ANt pCFGs (Kim et al., 2019a; Yang et al., 2021)
Perturb & Parse (PnP) (Corro and Titov, 2019b)
Given  Berkeley Parser + GCN
T Model
Absent LSTM
Latent ON-LSTM (Shen et al., 2019)
Given  Handcrafted EBNF Grammars + LSTM
Table 3: Models for corresponding S and T choices.

Among the S choices, PnP gives a latent depen-
dency tree, while others including the Berkeley
Parser (Kitaev et al., 2019; Kitaev and Klein, 2018)
produce constituency trees. For the T choices, all
methods are focusing on constituency trees because
formal languages have been defined with CFGs.

Note if T" is given, we manually construct the
grammar for COGS and SMCalFlow-CS, and use
the grammar induced by Oren et al. (2020) for other
datasets’. We use a parser generator to load gram-
mars and follow the grammar-based parsing (Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2018) to
use LSTM to model the production rule sequence.

2.4 Evaluation Method

We use the Exact Match (EM) to measure accura-
cies. For absent and latent 7" choices, the genera-
tion target must be the same tokens as Y. When
the oracle 7' is given, the model must similarly
generate the same rule sequences of that 7.

We have to report the aggregated results be-
cause the experiment number is proportional to
#datasets x #generalization-levels x #S-models

3The CFG grammar of dataset are in the Appendix E to G.



x #T-models x #random-seeds*. The merit of re-
sults aggregation is its robustness. For example,
once we find the ON-LSTM as the decoder useful,
it is expected to generalize and work well under
a variety of settings. Winning or losing on one
setting is not critical.

For analysis, we assign each experiment result
with factor labels, and the results will be aggre-
gated under the perspective of factors. The factors
we considered are representation types, S-choices,
T-choices, and syntactic tree types. For example,
when focusing on T-choices, we can compare ac-
curacies of the 3 labels on a specific dataset and
split. Each number is mean-aggregated over all S
models, like the “GROUP BY” in SQL. The ag-
gregation view will help us focus on what we’re
interested in and not get lost in enormous results.

3 Results Analysis

3.1 Lateral Structural Modeling

We first focus on aggregations for single factors
on compositional generalization (CG). Each factor
label corresponds to aggregated accuracies on 9
datasets, which are plotted as a single box.
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Figure 2: Accuracies viewed in S and T choices. Each
bar is a distribution across all 9 CG datasets.

Figure 2 shows the absent S structure outper-
forms others, followed with given S then the latent.
The constituency trees are also better than depen-
dency trees. On the target side, the latent 7" is on a
par with absent 7', beating the given T by a large
margin. Results on both sides suggest no struc-
tural bias is the best choice. Furthermore, when we
zoom in the aggregation as in Figure 3, it’s clearly
the low performance of the latent S' is caused by
many poor latent models. Incredibly, among the

4Following Oren et al. (2020), we run experiments on SQL
datasets with 5 random seeds because they’re small. Raw
accuracies without aggregation are listed in Appendix D.

41

50.0%

45.0% B LST™

B ONLST™M
[ BERT

40.0%
35.0%
30.0% Electra
[l DIORA
M C-PCFG
M TD-PCFG

M PnP

25.0%
20.0%
15.0%
10.0%

5.0% M Berkeley Parser

0.0%

Figure 3: Accuracies viewed in S models. Each bar is
the distribution of accuracies on 9 CG datasets.

latent S, the ON-LSTM works even as well as the
Electra, and only falls behind BERT perhaps due
to the parameter scales.

Takeaway Structural modeling CAN be useful.
But finding a good discrete structure is not trivial.
While handcrafted grammars of formal languages
can be harmful, supervised parsers for natural lan-
guages are not that bad. Overall, a latent structural
bias like ON-LSTM is the most promising.

3.2 Combinations of Source and Target
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Figure 4: Accuracies viewed in combinations of each S
and T choice, on 9 CG datasets.

We further analyze results of each S and T choice
combination in Figure 4. The accuracy relations
are similar to the S and T choices in Figure 2, with
a few exceptions. First, when T structure is given,
there’s not much difference between the given and
latent S choices. Therefore, the handcrafted gram-
mars (the given T) are proven poor such that no
trivial structural bias for the NL can be found to co-
operate with it. Only with absent .S structures can
the performance be improved at this time. Second,
when S is the latent dependency tree, the latent T
is the worst, contrary to the right boxplot in Fig-



ure 2. This suggests that a latent dependency tree
for S and a latent constituency tree for 1" are not
compatible.

Takeaway Some incompatible combinations of
the source and target choices of structural biases
can lead to a performance below the average of any
choice on its own.

3.3 Latent Source Structures

Section 3.1 shows that there’re big discrepancies
among the latent .S models. We first compare the
PCFGs in Figure 5. The Compound PCFG (Kim
et al., 2019a) and TD-PCFG (Yang et al., 2021) are
chosen as two basic PCFG variants. In addition,
we build a reduced version for each of them by
summing out the non-terminals at each cell in the
parsing chart with a learnt prior, such that the cell
will only store the representation of a span, instead
of the representations of a span of every possible
non-terminal. This trick can reduce the chart size
from O(n?K) to O(n?), where K is the number
of nonterminals. Appendix A lists more details.

R-C-PCFG

20.0%
18.0%
16.0%
14.0%
12.0%
10.0%
8.0%
6.0%
4.0%
2.0%
0.0%

R-TD-PCFG C-PCFG TD-PCFG

BT absent T latent T given

Figure 5: Accuracies for different PCFGs as encoders
against different T choices on the GEO datasets with
compositional generalization.

In general, the full rank C-PCFG performs better
than its counterpart TD-PCFG with decomposed
and less parameters. The reduced PCFGs can also
outperform the basic ones. With latent and given
T' choices the C-PCFG works also well, but is not
as good as the reduced version. This suggests a
less constrained structural bias like the reduced
PCFGs not storing non-terminals in the chart can
be much better than the fully-fledged PCFGs. We
therefore only evaluates the reduced PCFGs on
other datasets because they have higher accuracies
and less memory consumption.

Figure 6 shows only the performance of latent
S models against different T choices. The ON-
LSTM clearly beats other encoders, followed by
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Figure 6: Accuracies for latent .S models with differ-
ent target T choices. Each bar is the distribution of
accuracies on 9 CG datasets.

the DIORA encoder. Altogether with the Figure 5,
we can make some interesting conclusions. First,
by summing out non-terminals, reduced PCFGs
have outperformed the basic models. Then, the
DIORA discards non-terminals in its parameteriza-
tion, and only considers compositions over spans
with a chart-based parsing and an inside-outside al-
gorithm. And it has beaten the PCFGs, Finally, the
ON-LSTM which does not forcing syntactic trees
being of Chomsky Normal Form, has achieved the
best performance.

Takeaway Latent structural biases with less con-
straints would be better choices. Enforcing syn-
tactic categories may not be suitable for neural
semantic parsing.

3.4 Differences between Accuracies

The above findings tell us we have to find the com-
patible structural biases in general. In this section
we compare the structural choices among different
datasets. We focusing on the T choices and do not
aggregate results of datasets and S choices. Specif-
ically, we subtract the number of absent and latent
T accuracies with the number of given T accura-
cies. As long as the differences are positive, the
absent and latent T will be considered outperform-
ing the given T that is constructed from handcrafted
grammars. For the latent T, we only consider the
best 3 models from previous analysis, i.e., the ON-
LSTM, DIORA, and PnP. We consider both the
LLD. and compositional generalizations, as shown
in Figure 7.

The most intuitive result in Figure 7 is that
among various datasets the given 7' is not con-
sistently bad. On the SMCalFlow, the given T is
outperformed by the absent and latent 7', but the
margins are not that large on other datasets in the
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Figure 7: Differences subtracted the given T accuracies
from the latent and absent T, under each dataset and
each S-choice, with L.I.D. (Top) and compositional gen-
eralization (Down). Positive values mean that the latent
or absent T outperforms the given T, while negative
values suggest the given T is better.

L.LD. setting. For the compositional generalization
(the lower subfigure), we can even see the given T’
has not been outperformed on ATIS and GEO, but
is poor on Advising and Scholar. Moreover, on the
same dataset like ATIS and GEO, the handcrafted
grammar is harmful on LI.D. but useful on C.G.
Also, the results on T choices are slightly different
under different S choices, which again supports the
compatibility argument in previous sections.

Takeaway Grammars of the formal languages
can’t be simply classified as useful or not. There
must be an optimal grammar, depending on the
datasets and generalization levels.

3.5 Discussions

After analyzing the structural modeling methods in
different views, we’re trying to answer our basic
research question (RQ) based on the findings to
make the answers and even the question itself much
clearer.

RQ: Is structural modeling of the natural lan-
guage or the formal language useful for neural
semantic parsing? Yes AND no. It depends on
the models. In general we find that models with-
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out structures (BERT) and with latent structures
(ON-LSTM) are better for the natural language,
but other structures are not useful. Specifically,
the ON-LSTM is even better than the finetuned
Electra as the encoder. For the formal languages,
we find the latent structural model (ON-LSTM) is
much better, but the handcrafted grammar-based
decoding is poor (Section 3.1).

Why are the structural models that different?
We hypothesize that the differences are rooted in
the strictness of structural constraints of the models.
For constituency trees, we find the more structural
restrictions required by the model, the worse per-
formance it would be (Section 3.3). Among these
models, ON-LSTM neither differentiates syntactic
categories, nor requires the Chomsky Norm Form
tree, and has outperformed other models.

Since the ON-LSTM is proven effective, can
we use it all the time? No. We’re not recom-
mending ON-LSTM for all situations. Because the
compatibility of structural choices is more impor-
tant. If the encoder is a structural model based
on dependency trees, the ON-LSTM decoder will
not perform well neither. What is really crucial is
the encoder-decoder choices combined as a whole
(Section 3.2).

Shall we use the best combination, the ON-
LSTM for both the encoder and decoder? Not al-
ways. We further find the same structural combina-
tion could be not the same effective on all datasets
and all generalization levels (Section 3.4). On the
GEO with the compositional generalization, ON-
LSTM performs worse than handcrafted grammars.
In fact, the absent 7" can be seen a special struc-
ture, the right-branching tree with autoregressive
decoders like RNNs. For example, an SQL query
sequence is equivalent to the tree like (SELECT
(* (FROM (tableA (WHERE (...))))). Therefore,
the question is in fact asking what kind of trees are
better, for the natural and formal languages, com-
bined as a whole, under a specific dataset and a
generalization level. We’re going to handle this in
Section 4. But, if the datasets and generalizations
are not our concerns, the BERT or ON-LSTM as
the encoder with the ON-LSTM decoder is recom-
mended according to the above findings.

4 Metric for Structural Evaluation

Taking sequences as the right-branching trees, the
models we’ve discussed can all parse an example
(x,y) to its structures (s(x),t(y)). But the gener-



alization performance is not only determined by
some smart structural choices. It also depends on
the dataset and the generalization level. However,
it’s expensive to manually design good structures,
or to optimize a parameterized structural policy.
Because on one hand we have to train and then
evaluate a parser every time we need to confirm
the effectiveness of that policy. On the other hand,
even a parser jointly learning mappings and latent
structures may work poorly according to above
findings.

Inspired by the recent success on large language
models (LLMs) (Sun et al., 2022) such as the
Codex (Chen et al., 2021) which can read and
write programming source codes well, we propose
a learning-free metric for the structures based on
the representations generated by LLMs, such that
it’s correlated with the performance.

Specifically, to evaluate a pair of structural mod-
els (s, t) for a dataset D = (x,y);, we first define
the distance between a parallel sequence (x,y),

€x, ey =LLM (z), LLM(y) (1)
es,er =f(s(r),ex), f(t(y), ey) ()

dst,p =E(zy)eplemd(us, ug, cost(es, er))] (3)

where e, € Rk ey € R™*k are the k-
dimensional representations generated by some
LLM that can understand both natural and formal
languages, s(-), t(-) are the parsers or policies that
output tree structures for z, y, and the f computes
the representation of each tree node. We define
the leaf nodes have the same representations in
ez, €y, and internal nodes get their representations
by mean-pooling of its children nodes. u; € R!
and u; € R" are discrete uniform distributions,
where [, r are node numbers of s(x), t(y) respec-
tively. The emd function returns the Earth Moving
Distance (Peyré et al., 2019) of us, u; under the
cost matrix defined by euclidean distances of e, e;.
ds ¢ p is the minimal transport cost from X to Y’
for the entire dataset . We utilize the POT tool-
box (Flamary et al., 2021) to compute the optimal
transport. Then given the training and testing sets
Dyrain, Diest, the DisStruct metric is defined as

— “E[d&taDtrain] B E[dsytyDtest”
U[ds7t7Dt7'ai7L]a[ds7t7Dtest]

M (s,t) “4)

where the expectation [E and standard deviation o
are implemented by re-running with a few random
seeds. In our evaluation, we sample 50 examples

44

0.8

0.7

» 0.6

acie:

0.5

ccu

<04
0.3

0.2

10
DisStruct Metric

15 20

ChatGLM-6B @ Falcon-7B Baichuan-7B

Linear (ChatGLM-6B) Linear (Falcon-7B) Linear (Baichuan-7B)

Figure 8: Fitting the metrics of different (S, T) choices
to the accuracies on different datasets and generaliza-
tions. We include the absent S and both absent and given
T, showing whether the metric can reflect the differences
between the grammar-based and the sequence-based
structures of the formal languages. Metrics computed
with 3 chosen LLMs are all shown negatively correlated
with the performance.

for the expectation in Eq.(3), and rerun 10 times
for Eq.(4).

Intuitively, given structural choices (s, t), the
DisStruct evaluates the distances of = and y of a
single example, and computes the distance discrep-
ancies between Dy;.q;n, Diest. Therefore, we can
expect higher performance by finding lower metric
values from some (s, t) pair. Figure 8 illustrates the
correlations. Although every (s, t) can yield a met-
ric value, we plot only two kinds of pairs (absent,
absent) and (absent, given) and investigate whether
the metric can tell apart the differences between
the grammar-based and the sequence-based struc-
tures. With three recent LLMs® that we can load
with less than 24GB GPU, the metrics are shown
all negatively correlated with the performance as
expected.

Since each fitted linear model has a low R? value
(i.e., plots far from the fitted line), we examine
the results by datasets. As long as the metric can
indicate performance for datasets, it’ll be possible
to probe or search structural choices for a specific
dataset we’re interested in. For each dataset under
a generalization level, we only have 2 points. We
computed the slope of the line determined by the

’ChatGLM-6B (Du et al., 2022): https://github.
com/THUDM/ChatGLM-6B; Falcon-7B (Almazrouei et al.,
2023): https://huggingface.co/tiiuae/falcon-7b;
Baichuan-7B: https://huggingface.co/baichuan-inc/
baichuan-7B.
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Figure 9: On each dataset and generalization level (to-
tally 13 here), we compute metrics for two pairs, i.e.
(absent, absent) and (absent, given), corresponding to
two points in Figure 8. We plot the histogram for the
slope of each line determined by the two points. The
slopes are negative and are also low when positive, sug-
gesting the metrics are possibly indicative for specific
datasets and generalization level.

two points, and plot the histogram of the slopes
in Figure 9. Hopefully, the slopes are negative at
more than 50% times, and are also relatively small
even it’s positive. We also find the metrics based on
ChatGLM-6B and Falcon-7B are more ideal than
Baichuan-7B.

5 Related Works

Many representations have been used for semantic
parsing. Popular representations include seman-
tic roles, FOL or A-calculus (Zettlemoyer and
Collins, 2005, 2007; Wong and Mooney, 2007),
A-DCS (Liang et al., 2013), FunQL (Kate et al.,
2005; Guo et al., 2020), application-specialized
query graphs (Yih et al., 2015; Chen et al., 2018;
Hu et al., 2018), and programming languages like
SQL (Xu et al., 2018), Java (Iyer et al., 2018; Alon
et al., 2020), and Python (Yin and Neubig, 2017;
Rabinovich et al., 2017). Linguists also design
meaning representations such as AMR (Banarescu
et al., 2013), ERS (Flickinger et al., 2014), and
UMR (Van Gysel et al., 2021). Abend and Rap-
poport (2017) had reviewed many semantic repre-
sentations in a linguistic-centric perspective, and
Li et al. (2022) had proposed a metric to evaluate
different representations. Our discussions are not at
representation level (only the lispress, A-calculus,
and SQL are used), but on structure effects under
maybe a fixed representation.

Classic semantic parsers used to assign cate-
gories to linguistic or semantic fragments, and com-
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pose them in a bottom-up fashion. Some typical im-
plementations are based on CCG (Zettlemoyer and
Collins, 2005), SCFG (Wong and Mooney, 2006),
Hyperedge Replacement Grammar (Chiang et al.,
2013), and AM Algebra (Groschwitz et al., 2017,
2018; WeiBlenhorn et al., 2022). Other parsers do
not define linguistic categories, but use feature en-
gineering or types to guide composing algorithms
(Liang et al., 2013; Pasupat and Liang, 2015).
Neural parsers like Seq2Seq (Xiao et al., 2016)
adopt end-to-end mappings but can make grammar
errors. Seq2Tree (Dong and Lapata, 2016) is then
proposed to generate grammatically valid trees for
untyped A-calculus. Grammar-based decoding (Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2018)
turns to generate rule sequences converted from
the target AST. Some parsers design intermediate
patterns for an easier abstraction over the targets
(Zhang et al., 2017; Dong and Lapata, 2018; Guo
et al., 2019; Ding et al., 2019; Iyer et al., 2019;
Choi et al., 2021; Chen et al., 2020). The abstrac-
tion layer can be seen as handcrafted structures for
the targets. We only consider CFG-based struc-
tures due to their generality. Similarly, graph-based
targets and parsers are also beyond our discussing.
LLMs as semantic parsers (Qiu et al., 2022; Zhuo
et al., 2023) are found not performing well on the
COGS dataset before structural discussions. We
leave some results and discussions in Appendix C.
Recently the compositional generalization has
attracted much focus (Jambor and Bahdanau, 2022;
Liu et al., 2021; Herzig and Berant, 2021). But
they either devise special parsers other than the
encoder-decoder architecture, or handle represen-
tations like FunQL, therefore not direct applicable
to other general parsers. Zheng and Lapata (2022)
reports the entanglement problem where Seq2Seq
models entangle irrelevant semantic factors during
generation. Yin et al. (2021) induces token and
span level alignments. Our structural discussions
are orthogonal to their model improving works.

6 Conclusion

By evaluations on a variety of settings, we find the
structural modeling is not guaranteed to give better
performance. We conclude that structural biases
for sources and targets must be chosen as a whole,
and that choices also depend on the specific dataset
and generalization level. We propose the DisStruct
metric to facilitate structure finding, which is nega-
tively correlated with the performance.



Limitations

We’ve discussed a variety of structural models, but
may lack the tuning of hyperparameters for each
model to work at its best. For example, the number
of nonterminals and preterminals are important for
PCFGs, but we use a small number compared with
the grammar induction task on PTB due to our
small dataset size. Also, it is a reasonable guess
that BERT and ELECTRA as encoders are inferior
than large language models such as TS5, Falcon,
and ChatGPT. We have not conduct experiments
on datasets simply because of limited computation
resources. Also we note that LLMs can be used as
the decoder-only models, and generate targets via
in-context learning or zero-shot prompts. We left
the results in the Appendix C because structural
models or representations we concerning are not
involved in the paradigm.

Furthermore, our study is all English-based
datasets. Considering the large differences be-
tween language families, the structure model of
constituency and dependency trees in our study
may have different effects. Universal structures
such as the Universal Dependencies (de Marneffe
et al., 2021) may be considered for future research.

Finally, DIORA and PCFGs in our study require
approximately 4 times more GPU memories than
other encoders (excluding the BERT and ELEC-
TRA of course). This may be caused by the CKY-
style computation which is O(n3s?) in time where
n is the sentence length and s is the number of
syntactic categories. This will leads to more GPU
consumption to compute the tensor graph. We’re
also wondering if a sample-based learning algo-
rithm could work instead of the inside algorithm.
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A Structure Modeling

We’ll make extensions for Seq2Seq models. In
the classical Seq2Seq, the encoder module is in
charge of encoding source input X = {z;}" ; and
prepares for the attention mechanism a memory
H = {h;}}" of states, where each h; are usu-
ally aligned to each input token x;. The decoder
is obliged to generate tokens Y = {y;}7"; by re-
ferring the memory H for each y;. The last state
h, in memory is usually chosen to initialize au-
toregressive decoders. We will explain how H is
constructed for encoders, and how Y is chosen for
decoders.

A.1 Encoders

If the source structure is Absent, we take the input
X as a plain sequence and choose the BiLSTM as
the encoder. Due to their impressive performance,
we also use the BERT (Devlin et al., 2019) and
ELECTRA (Clark et al., 2020) language models
from the Transformers library (Wolf et al., 2020).
The encoder memory H is then the encoder outputs
of each word in X.

If the source structure is Given, we use Berkeley
Parser to get the constituency tree 17" of X. After
removing the POS tags, T" consists of words x; as
leaf nodes and the syntactic categories as internal
nodes, such as NP, PP, and WHNP. We use two-
layer GCN to encode nodes following the structure,
and collect all the node hidden states as the atten-
tion memory H.

For latent structures, we choose representa-
tive grammar induction methods, namely ONL-
STM (Shen et al., 2019), DIORA (Drozdov et al.,
2019), PCFGs (Kim et al., 2019a; Yang et al.,
2021), and Perturb-and-Parse (Corro and Titov,
2019b) Both constituency and dependency trees are
considered. And most latent structures are learnt in
two ways, by relaxation or sampling (Wu, 2022),
where the former is usually optimized by maximiz-
ing the marginal probability of X as Eq.5, and the
latter is optimized by sampling a structure .S and
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passing to the downstream decoders (Eq.6).

max Pp(X) = ZSjPe(& X) )

max Fy(Y | X) = Esepsix)P(Y' [ S, X) (6)

To wrap these up, the Perturb-and-Parse will give a
sampling-based dependency trees, while others are
the relaxation-based constituency trees.

ONLSTM  Specifically, ONLSTM?® shares the
interface with classical RNNs, and invents the or-
dered neuron that can be interpreted as hierarchical
structures. So we use it just as the replacement for
BiLSTM. The memory H is also the states of se-
quence X, and the optimization only uses gradients
from the decoders.

DIORA DIORA’ aims to learn latent binary
trees following the inside-outside algorithm. Em-
beddings of X are composed bottom-up for filling
the inside chart with inside states. The composi-
tion ¢;;j, of two sub-span states h(z;.;) and h(z;.1)
is parameterized by an MLP f;. Every possible
composition is scored with another MLP f;. As
DIORA falls into the relaxation-based category,
each span state is a summation (Eq. 7) of all possi-
ble compositions with the normalized scores (Eq.
8).

W™ (i) = D s fi, (B (@05), W™ (20)) (7)
J

*k = softmazx (fs (hm(ﬂfz‘:j)a hm(xj:k)))j ®)
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where softmax(-); means the j-th normalized
score after the softmax function. Similarly, the
outside pass will fill the outside chart to given any
span z j.;; an outside state h°“*(z;.;,), which is com-
posed by each possible parent and sibling span and
summed up with the normalized score. The out-
side composer and scorer are different MLPs. The
attention memory H for DIORA encoders is full
of representations of X, where each word is repre-
sented by the concatenation of inside and outside
states as h; = [R"™(xi01); h (2411)], where
the inside state of one-word spans h(z;.11) are
actually the word embeddings. Note that DIORA
comes up with its own training objective, which

6ht’cps: //github.com/yikangshen/
Ordered-Neurons

"We use the original DIORA model from S-DIORA repo.
https://github.com/iesl/s-diora



maximizes the reconstruction probabilities from
each one-word span as Eq.9.

max

Ldiora: log P ihout iod
: > _log Py(il ™ (wiis1))  ©)

(2

PCFGs Two notable modern PCFGs® are C-
PCFG (Kim et al., 2019a) and TD-PCFG (Yang
et al., 2021). Rules are restricted to Chomsky nor-
mal form, including S — A, A — BC,and P —
x, where S is the fixed start token, A is a nontermi-
nal, P generating a single terminal word z is called
a preterminal, and B, C can be either nonterminal
or preterminal. Embeddings and neural networks
are used to parameterize the rule distributions as
TS—A, TP—z, TA—BC-

C-PCFG adopted a novel variational model to
infer a global state z of X, and let the neural nets
predict 7w by concatenation z to each symbol embed-
dings. We use BiLSTM for the variational model.
And TD-PCFG decomposed the large tensor of
T 4— pc nto the sum of products of lower rank ten-
sors, largely extending the number of nonterminals
and preterminals.

To use PCFGs as encoders, we first build up the
PCFG models on the source sequence X. Since
C-PCFG is built with a variational inference model,
the loss involves a reconstruction loss as Eq.5 and
a KL divergence. The former with a summation
can be computed efficiently by the inside algorithm,
and the latter is easy to obtain because the prior of
z is kept Gaussian.

We choose to include all the span representations
h;.;. in the attention memory H. The representa-
tions are computed similar to the bottom-up inside
algorithm. The algorithm fills an inside chart with
probability scores s;z4 = P(z;x | A) for every
span x;.; with each nonterminal A.

>3 wijkase  (10)
B C

an

SikA

WijkABC = TA—BC " SijB * SjkA

Similarly, the span representation h;. is also a
weighted sum (Eq.12) of all /; 1 4 pc, which means
the compositional representation for span z;.; as
the category A, split at the point j, with left and
right sub-spans being categories B and C.

hie = Y higrasc - wijkasc - ws(A) (12)
A7B?C7j

8https://github.com/sustcsonglin/TN—PCFG
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Note that we uses 7g, s € N as a prior to sum over
A, which can be interpreted as treating the span
;.1 as a valid sentence.

To compute compositions of span h;.; and
hj.k, Instead of concatenating embeddings of
A, B,C, hj.j, hj.;, and transforming with an MLP,
we factorize the computation of h;j;4pc with dif-
ferent MLPs to avoid broadcasting to the unrelated
dimensions as Eq.13.

hijkape = fr(A) + fis(B) + frs(C)
+ fl(hi:j) + fr(hj:k)

Note that we can rearrange Eq.12 and Eq.13 jointly
to save up space, by moving items together and
summing out irrelevant dimensions in advance.
And for TD-PCFG which decomposes the tensor
TASBC = ) uf4 . UZB . wlc, the similar form of
Eq.12 and Eq.13 and the efficiency trick can also
be adopted. Formulae related to TD-PCFG are

omitted here to save up space.

(13)

Perturb-and-Parse The model (abbr. PnP) fo-
cuses on sampling trees from the distribution of
dependency structures. Words embeddings e(X) €
R™ 4 of X € R™ are transformed to arc weights as
Eq. 14, from which the Eisner’s algorithm (Eisner,
1996) infers the tree .S. The gumbel-softmax trick
is adopted for differentiable sampling (Eq.15), and
the argmax operation in Eisner’s algorithm is re-
placed with the softmax following Corro and Titov
(2019a). In this way, during training the output of
Eisner’s algorithm is not yet a valid but soft depen-
dency tree, indicating the probabilities that there’s
an arc between two words x; and ;. But we switch
to the default argmax during testing.

W = fhead(e(X)) ’ ftail(e(X))T (14)
Z ~G(0,1) (15)
S = Eisner(W + Z) (16)

After the source tree .S is inferred, we use two GCN
layers to pass messages among nodes following the
structures, where each node is a word in X . We use
all the node representations to build the attention
memory H. The PnP model is simply trained with
the downstream tasks (Corro and Titov, 2019b).

A.2 Decoders

If the target structure is Absent, we simply model it
with an LSTM. And we do not use any pretrained
language model as the decoder. For datasets with
very long targets and slow for training, such as



the ATIS and Advising, we use the Transformer
decoder instead of LSTM.

For latent target structures, we only use ONL-
STM as the source side because it shares the same
interface with RNNs. Other extensive works are
not tested, because the SQLs are usually much
longer than the natural language, and the grammar
induction works are seldom evaluated on such long
sentences (Drozdov et al., 2019). Furthermore, se-
mantic representations are born with well-defined
structures, it’s not intuitive to learn latent structures
from data.

For target structures that are given, we use the
grammar induced by Oren et al. (2020) as discussed
in Section 2. We manually convert the grammar
into ENBF form and use the parser generator Lark
to parse SQLs in the dataset. After that, we follow
the order of left-most derivation to traverse the
AST parses of SQLs as in TranX (Yin and Neubig,
2018), and the rule sequences are modeled by an
LSTM. We denoted this method as Grammar-based
Decoders as Oren et al. (2020).

Although the models above are enough to ful-
fill the taxonomy in Section 2, we’ve also tried
but failed to use C-PCFG and RNNG (Dyer et al.,
2016) as decoders. The generative RNNG is
such expressive that make SQL grammar errors
often, like a WHERE clause followed by another.
URNNG (Kim et al., 2019b) requires an external
(UCB Parser specifically) inference model to con-
strain the expressive power of RNNG. For C-PCFG,
we hypothesize lacking of attention mechanism
is crucial. We hypothesize the execution guided
decoding might be helpful and necessary, but it’s
beyond our discussion in structures.

B Experiment Hyperparameters

We explain the details of models and hyperparame-
ters here. We use the same setting for all datasets,
and keep most parameters the same across models.

For hyperparameters applicable to all models,
we use AdaBelief optimizer (Zhuang et al., 2020),
and set the learning rate to le-3, and betas to 0.9
and 0.999. We do not use weight decays for all
models. We fix the batch size to 16. The learning
rate scheduler is based on NoamLR from the Al-
lenNLP package, with the model size set to 400 and
warmup steps to 50. We use the pretrained GloVe
embeddings of 100 dimensions for the source side.
For BERT hyperparameters, the learning rate is set
le-5 and no LR schedulers.
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Model #examples  Accuracy
ChatGLM-6B 3000 6.27%
text-davinci-003 3000 0.83%
gpt-3.5-turbo 300 31.33%

Table 4: The in-context learning results of LLMs on the
LLD. generalization of COGS. The testing set has the
size 3000. The text-davinci-003 and gpt-3.5-turbo are
evaluate on their May-15 2023 version. We didn’t con-
duct a complete testing due to the accumulated accuracy
and the cost.

We set the encoder hidden size to 300 for most
models, except 150 for Diora and PnP, and 200
for PCFGs and Tree encoders. Sequence encoders
and the inference model of C-PCFG are bidirec-
tional (BILSTM and ONLSTM). All encoders are
1-layer except the 2-layer GCN used for Tree and
PnP encoders. Decoder is fixed to LSTM but Trans-
former for PCFGs/BERT/Electra. LSTM decoder
is 1-layer and the hidden size is 200 for PCFGs
models and 300 for others.The attention scores are
computed by dot products. Transformer decoders
are 2-layers and uses 300 for hidden size, and 10
for attention heads. All encoder dropout is O and
decoder dropout is 0.5.

Training on GEO and Scholar uses 150 epochs
for PCFGs and Tree encoders, 300 for tree en-
coders and 400 for others. All models trained for
ATIS and Advising uses 30 epochs. On COGS and
SMCalFlow-CS datasets, the models are trained
for 15 epoches because of the large size. In prac-
tice, most models are trained in 4 to 12 hours, with
an Xeon E5-2680 CPU and a single GeForce RTX
3090 GPU.

C Few-shot Parsing with LLMs

We just use the LLMs on the I.I.D. generalization
of COGS dataset. We first build an index on the
natural language of the training set, and then search
for the closest 10 examples (z/,y'), with each test-
ing z. The prompt is typically built as “Input: z’.
Output: y'.” for each example (2’,3), appended
by the testing example as “Input: z. Output:”. In
this way we’re trying to utilize the in-context learn-
ing ability of LLMs for semantic parsing. and the
accuracy is evaluated by Exact Match (EM) of the
outputs against the gold targets. However, the per-
formance is not ideal.

The lower two LLMs with the similar scale even
have a pretty much performance difference. Note
a plain Seq2Seq model can generalize well in the



LLD. setting, we find this performance not accept-
able. We have sampled and analyzed the errors of
ChatGLM, and there’re some typical errors, such
as (1) missing declarations of a variable; (2) output
too long sequences which can be over ten times
than the gold target; (3) inventing undefined the
neo-davidsonian predicates; (4) misunderstanding
the passive and active roles. We hypothesize that
LLMs must be finetuned on these unseen repre-
sentations like neo-davidsonian A-calculus. And
at least there’re still much study to do before dis-
cussing the structural biases for LLMs.

D Accuracies for Model Combinations

We list the complete accuracies for each encoder
and decoder combinations in Table 5 and Table 6.
For the encoders, rcpefg and rtdpcfg are the re-
duced version of C-PCFG and TD-PCFG respec-
tively. The pnp is the Perturb-and-Parse model.
The syn-parser is the supervised Berkeley Parser
with a GCN to encode. For the decoders, the seq
denotes an LSTM as the decoder, and the prod
denotes the grammar-based decoding of rule se-
quences modeled by an LSTM. Please refer to Ap-
pendix A and Section 2 for an introduction.

We’ve defined several S and T choices. For en-
coders, the bilstm, bert, and electra are absent
S. The ON-LSTM, DIORA, R-C-PCFG, R-TD-
PCFG, and PnP are latent S. And only the syn-
parser belongs to given S. For decoders, the seq,
ON-LSTM, and prod represent the absent, latent,
and given T, respectively.

E EBNF Grammar for SQL

For grammar-based decoding, AST parses of SQLs
are required. We use the Lark Python package
which is a parser generator like the classical flex
and bison. We use the grammar induced by Oren
et al. (2020) and manually convert it to the Lark for-
mat, which is an implementation of EBNF. Other
grammars from MySQL and SQL.ite are not used
in this work.
The lexer definitions we use are as follows.

SPACES: /[\u@@@B\x09\x0d\x0a\x20]/
SINGLE_LINE_COMMENT: "--"

(/[*\x@d\x0al/)* ("\x@D")? "\x0A"
WS: SINGLE_LINE_COMMENT | SPACES
%ignore WS

scoL: ;"

COMMA: "

STAR: "*"

WHERE: "WHERE"
SELECT: "SELECT”

DISTINCT: "DISTINCT”
LIMIT: "LIMIT"
GROUP: "GROUP"
ORDER: "ORDER"

BY: "BY”
HAVING: "HAVING”
AS: "AS"
AND: "AND"
OR: "OR"
DOT: "."
ASC: "ASC"
DESC: "DESC”
LPAR: " ("
RPAR: ")"
LIKE: "LIKE"
NOT: "“NOT"i
IN: "IN"
BETWEEN: "BETWEEN”
NULL: "NULL"
IS: "IS”
PLUS: "+"
MINUS: "-"
DIV: "/"
EQUAL: "="
NEQ: "<>"
GTE: ">="
LTE: "<="
GT: ">"

LT: "<"

UPPER: "UPPER"
LOWER: "LOWER"
FROM: "FROM"

The parser definitions are as follows.

statement: query SCOL | query
query: select_core groupby_clause
orderby_clause limit
| select_core groupby_clause
orderby_clause
| select_core groupby_clause limit
| select_core orderby_clause limit
| select_core groupby_clause
| select_core orderby_clause
| select_core
select_core: select_with_distinct
select_results from_clause
WHERE where_clause
| select_with_distinct
select_results from_clause
select_with_distinct: SELECT DISTINCT
| SELECT
select_results: select_result COMMA
select_results
| select_result
| function binaryop non_literal_number
select_result: STAR
| TABLE_NAME DOT STAR
col_ref
function AS COL_ALIAS
function
col_ref AS COL_ALIAS
from_clause: FROM source
source: single_source COMMA source
| single_source
single_source: source_table
| source_subq

source_table: "TABLE_PLACEHOLDER" AS TABLE_NAME

source_subq: LPAR query RPAR AS SUBQ_ALIAS
| LPAR query RPAR
limit: LIMIT non_literal_number



encoder  decoder | smcl6 smc32 smc64 smcl28 advising atis cogs geo scholar
seq 28.4 19.8 40.0 52.6 59 15.1 0.0 262 26.1
bilstm onlstm 28.2 26.2 34.7 48.2 52 153 74 229 25.7
prod 14.1 27.6 31.1 26.9 7.8 163 0.0 26.6 21.6
seq 32.1 325 20.2 52.3 6.8 228 62 259 31.0
onlstm onlstm 314 39.7 46.3 48.8 5.0 247 3.1 262 324
prod 9.7 273 32.7 31.3 6.3 222 3.0 308 27.4
seq 29.2 379 422 51.1 9.1 298 26 295 33.1
bert onlstm 27.3 42.0 44.8 55.8 9.8 193 00 358 333
prod 16.2 283 324 423 7.6 3.2 00 31.0 27.8
seq 29.4 37.7 50.0 41.7 4.7 290 00 237 21.0
electra onlstm 27.5 31.8 32.0 533 7.0 186 0.0 185 21.8
prod 13.1 18.2 25.4 36.7 6.0 309 09 255 17.5
seq 26.9 19.3 28.5 333 39 185 273 242 26.1
diora onlstm 28.1 18.2 27.6 479 5.1 179 21.1 251 273
prod 8.5 21.8 22.5 32.1 33 154 82 297 19.6
seq 23.2 21.4 23.7 40.2 2.8 1.0 00 17.6 14.9
rcpefg onlstm 222 18.3 323 26.2 0.0 147 12.9
prod 17.3 16.2 20.2 12.2 1.7 11.8 00 178 15.5
seq 21.5 24.1 19.9 232 0.7 14 00 169 16.1
rtdpefg onlstm 9.4 233 26.6 32.1 00 125 12.9
prod 6.3 17.3 14.5 15.7 1.5 34 00 132 13.2
seq 19.5 20.1 29.6 24.8 6.3 123 0.0 185 229
pnp onlstm 17.1 19.2 20.5 21.9 6.2 171 00 209 20.4
prod 6.8 12.5 18.9 24.5 33 164 0.0 257 19.8
seq 23.8 27.2 28.8 39.2 11.4 164 00 220 30.4
syn-parser  onlstm 243 27.6 37.4 40.9 9.3 160 0.0 213 30.6
prod 6.8 17.1 21.1 31.7 7.8 174 00 237 21.4

Table 5: The accuracies of each datasets on their compositional generalization levels. For the ATIS, GEO, Scholar
and Advising, average results of 5 random seeds are reported.

value NOT LIKE value

value BETWEEN value AND value
value NOT BETWEEN value AND value
value binaryop expr

unaryop expr

col_ref IS NOT NULL

col_ref IS NULL

source_subq

value

in_expr: value NOT IN string_set
value IN string_set

value NOT IN expr

value IN expr

value IN LPAR arg_list RPAR

| LIMIT value |

where_clause: LPAR where_clause RPAR where_conj |

| LPAR where_clause RPAR where_or |
LPAR where_clause RPAR

unaryop where_clause |

|

|

|

|

expr where_or
expr
| source_subq binaryop non_literal_number
where_conj: AND where_clause
where_or: OR where_clause
groupby_clause: GROUP BY group_clause |
HAVING expr |
| GROUP BY group_clause |

|
|
| expr where_conj
|
|

group_clause: expr COMMA group_clause
| expr
orderby_clause: ORDER BY order_clause
order_clause: ordering_term COMMA order_clause
| ordering_term
ordering_term: expr ordering
| expr

string_function: string_fname
LPAR col_ref RPAR
string_fname: LOWER | UPPER
parenval: LPAR expr RPAR
function: fname LPAR DISTINCT
arg_list_or_star RPAR
| fname LPAR arg_list_or_star RPAR

| COL_ALIAS ordering | "YEAR(CURDATE())"
ordering: ASC arg_list_or_star: arg_list
| DESC | STAR

col_ref: SUBQ_ALIAS DOT COLUMN_NAME
| TABLE_NAME DOT COLUMN_NAME

| lI'IIl
arg_list: expr COMMA arg_list

| SUBQ_ALIAS DOT COL_ALIAS | expr
| TABLE_NAME DOT COL_ALIAS non_literal_number: "1"
expr: in_expr | "2"
| value LIKE value | "3"



encoder

decoder | smc128

advising atis cogs geo scholar

seq 57.8 86.2 61.8 943 70.7 67.8

bilstm onlstm 61.5 86.2 609 985 709 67.2
prod 24.1 823 575 564 715 66.0

seq 62.9 82.1 63.6 993 712 66.3

onlstm onlstm 63.2 82.3 619 963 722 65.5
prod 19.8 80.5 589 952 713 61.0

seq 51.8 89.9 67.0 974 758 69.3

bert onlstm 54.9 88.7 62.0 667 758 70.3
prod 25.1 87.1 653 467 5.7 68.5

seq 50.0 90.1 66.7 962 722 71.6

electra onlstm 48.2 87.7 582 926 71.8 69.0
prod 232 86.8 664 830 69.8 65.6

seq 55.6 66.3 52.0 85.1 707 64.4

diora onlstm 54.3 68.2 504 782 68.8 65.0
prod 16.3 61.5 509 565 689 62.7

seq 50.0 81.7 580 962 482 57.1

repefg onlstm 51.2 95.9 60.8 56.8
prod 18.0 80.1 583 883 59.6 52.1

seq 42.1 77.0 55.0 96.7 547 55.0

rtdpcfg onlstm 45.6 945 615 56.2
prod 16.0 59.6 53,5 855 545 50.4

seq 43.9 83.6 56.5 604 67.6 66.7

pnp onlstm 44.2 84.3 535 578 674 66.7
prod 14.9 81.9 532 619 66.2 65.8

seq 15.3 75.2 577 83.0 60.6 57.1

syn-parser  onlstm 494 75.0 5277 922 62.1 56.2
prod 18.5 722 53,5 775 60.2 51.3

Table 6: The accuracies of each datasets with the .I.D. generalization. Similar to the CG level, average results of 5
random seeds are reported for the ATIS, GEO, Scholar, and Advising datasets

string_set:
string_set_vals:

fname:

"COUNT"

"gUM”
"MAX"

|
I
| "MIN
I

"AVG"
I PALL"

boolean:

"true”
"false”

binaryop: PLUS

unaryop:

I
|
I
|
I
|
I
|
I
p
I
I

MINUS
STAR
DIV
EQUAL
NEQ
GTE
LTE
GT
LT
LIKE
PLUS
MINUS
NOT

nman

ngn
ngn
ngn
"100"
tring_set_vals
value COMMA string_set_vals
value

nin

ing Oren et al. (2020). This good enough for our
usage. Note in a formal SQL grammar, the val-
ues for entities, tables, and columns are usually
included in the lexer definition and defined with
regular expressions. We leave the other defini-
tions in our code release because it’s too long (hun-
dreds of lines), including the nonterminals of value,
COL_ALIAS, SUBQ_ALIAS, TABLE_NAME, and
COLUMN_NAME.

F EBNF Grammar for COGS

We list our handcrafted grammar for COGS here.

start: preludes formulas
| formulas
| lambdas formulas
| PROPER_NOUN
lambdas: lambda DOT lambdas?
lambda: LAMBDA var
preludes: prelude SEMICOLON
| prelude SEMICOLON preludes
prelude: ASTERISK? NOUN LPAR var RPAR
var: LETTER
| LETTER UNDERSCORE NUMBER
formulas: formula
| formula AND formulas

We put values in the grammar definition follow-  formula: predicate LPAR params RPAR
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predicate: NOUN
| NOUN DOT NOUN
| NOUN DOT NOUN DOT NOUN

params: param

| param COMMA params
param: var

| PROPER_NOUN
AND: "AND"
NOUN: WORD
LETTER: /[a-z]/
NUMBER: /\d+/
LPAR: " ("
RPAR: ")"
WORD: /[a-z]+/
PROPER_NOUN: /[A-Z][a-z]+/
poT: "."
COMMA: ","
SEMICOLON: ";"
ASTERISK: "="
UNDERSCORE: "_"
LAMBDA: "LAMBDA"

G EBNF Grammar for Lispress

We list our handcrafted grammar for SMCalFlow-
CS, which uses the Lispress language. Although
the Lispress has an official parser in Python, we
still use a handcrafted grammar for consistency

with our work.

VALID_CHAR: /[a-zA-Z\d\"\#\(\)\+/
| /NNNN>\=\N\\]I\~]/

QUOTE: "\""
LPAR: "("
RPAR: ")"
LBRA: "["
RBRA: "]"
COLON: ":"
DOT: "."
LET: "let"
DO: "do"
META: "~"
MACRO: "#"

SYMBOL_CHAR: /[a-zA-Z@-9\+\<\>\=\?\~]/
CAP_CHAR: /[A-Z1/
NONCAP_CHAR: /[a-z@-9\+\<\>\=\?\~]/

CAP_SYMBOL: CAP_CHAR SYMBOL_CHARx*

NONCAP_SYMBOL : NONCAP_CHAR SYMBOL_CHAR*

ANY_SYMBOL: SYMBOL_CHAR+
PLAIN_STRING: /(\\.|[[*\\\"1)+/

COMP_SYMBOL: /\?[* 1+/
REAL_NUMBER: /\d+(\.\d+)/
INT_NUMBER: /\d+/
LONG_NUMBER: /\d+L/
TYPE_CONSTRUCTION: "apply”
STRING_TYPENAME: "String”
NUMBER_TYPENAME : "Number”
BOOLEAN_TYPENAME: "Boolean”

start: s_exp

s_exp: LPAR type_args? fn_call RPAR
| LPAR value RPAR

type_args: META LPAR (NUMBER_TYPENAME
| BOOLEAN_TYPENAME
| STRING_TYPENAME) RPAR
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fn_call: kwarg_fn | arg_fn
kwarg_fn: kwarg_fn_name kwargx
arg_fn: arg_fn_name argx*
kwarg_fn_name: CAP_SYMBOL
| CAP_SYMBOL LBRA ANY_SYMBOL RBRA
arg_fn_name: kw_name
| LET
| DO
| NONCAP_SYMBOL
| type_name DOT attribute
kwarg: kw_name arg
kw_name: COLON ANY_SYMBOL
arg: s_exp
| value
| variable
variable: NONCAP_SYMBOL
value: typed_literal | old_typed_literal
old_typed_literal: MACRO LPAR STRING_TYPENAME
QUOTE string_literal QUOTE RPAR
| MACRO LPAR STRING_TYPENAME QUOTE QUOTE RPAR
| MACRO LPAR NUMBER_TYPENAME number_literal RPAR
| MACRO LPAR BOOLEAN_TYPENAME boolean_literal RPAR
| MACRO LPAR type_name QUOTE string_literal QUOTE RPAR
typed_literal: boolean_literal
| META BOOLEAN_TYPENAME boolean_literal
| QUOTE string_literal QUOTE
| QUOTE QUOTE
| META STRING_TYPENAME QUOTE string_literal QUOTE
| META STRING_TYPENAME QUOTE QUOTE
| number_literal
| META NUMBER_TYPENAME number_literal
| type_name DOT TYPE_CONSTRUCTION
string_literal: PLAIN_STRING
number_literal: REAL_NUMBER | INT_NUMBER | LONG_NUMBER
boolean_literal: "true"” | "false”
type_name: CAP_SYMBOL
attribute: NONCAP_SYMBOL
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Abstract

Language models that are trained on the next-
word prediction task have been shown to accu-
rately model human behavior in word predic-
tion and reading speed. In contrast with these
findings, we present a scenario in which the
performance of humans and LMs diverges. We
collected a dataset of human next-word pre-
dictions for five stimuli that are formed by re-
peating spans of text. Human and GPT-2 LM
predictions are strongly aligned in the first pre-
sentation of a text span, but their performance
quickly diverges when memory (or in-context
learning) begins to play a role. We traced the
cause of this divergence to specific attention
heads in a middle layer. Adding a power-law
recency bias to these attention heads yielded
a model that performs much more similarly to
humans. We hope that this scenario will spur
future work in bringing LMs closer to human
behavior.!

1 Introduction

Transformer-based language models (LMs) are neu-
ral networks that are trained to predict upcoming
words from their preceding context. These models
flexibly retrieve and combine information across
a context that might span thousands of words, en-
abling them to learn from in-context examples (Dai
et al., 2022; Xie et al., 2022; Olsson et al., 2022),
tell coherent stories (Lee et al., 2022), and perform
many other advanced language tasks (Tiedemann
and Thottingal, 2020; Brown et al., 2020).

These abilities far surpass any previous compu-
tational models or linguistic theories (Yang and
Piantadosi, 2022), leading many to use LMs as
models of human cognition. For example, LM
surprisal—a measure of how well it can predict the
next word—has been found to be highly correlated
with both how long humans spend reading each

'Data and code are publicly available at: https://
github.com/HuthLab/lm-repeating-text
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word (Goodkind and Bicknell, 2018; Hao et al.,
2020; Wilcox et al., 2020) and the accuracy of hu-
man next-word predictions (Goldstein et al., 2021;
Jacobs and McCarthy, 2020). These results suggest
that LMs and humans might be using similar mech-
anisms to structure and recall information from
memory. However, these seeming parallels have
not gone unchallenged. Oh and Schuler (2023),
for example, showed that LM surprisal and human
reading time become decorrelated as models grow
in size and power, suggesting a more superficial
relationship than previously thought.

In this work we test whether apparent similari-
ties between LM and human next-word prediction
accuracy reflect true similarities in memory mecha-
nisms. To accomplish this we introduce a new task
that combines memory with next-word prediction
using repeating natural text stimuli. Comparing
human behavioral performance with an LM, we
found that LM surprisal decorrelates from human
predictions in this scenario. While human perfor-
mance improves modestly with each repetition, the
transformer-based LM GPT-2 (Radford et al., 2019)
reaches near-perfect performance after just one pre-
sentation. To better understand this behavior, we
examined the patterns of memory access (via atten-
tion) in the model, revealing how the model solves
this task. We then showed that the model can be
made to perform more like the humans by adjusting
these patterns to mimic human memory (Donkin
and Nosofsky, 2012).

This work demonstrates an important way in
which human and LM memory mechanisms di-
verge, casting doubt on the use of existing LMs as
a model of human cognition. However, the frame-
work we developed for making the model more
human-like also provides a potential way forward.
Directly optimizing LMs for human-like behavior—
including but not limited to memory tasks like that
used here—could lead to much better computa-
tional models of human cognition and memory. It
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is also possible that investigating the relationship
between human and model memory could provide
guidance for developing better, more efficient neu-
ral network models.

2 Related works

Human performance on recall tasks, like the experi-
ment we propose here, is primarily limited by short-
term memory (Baddeley, 1992). In these tasks, hu-
mans show both recency biases (i.e. better recall
for the most recent items) and primacy biases (bet-
ter for the first items) (Tzeng, 1973; Jefferies et al.,
2004). Recall tasks often show repetition effects;
presenting a stimulus multiple times successively
decreases the recall error rate (Kintsch, 1965; Bad-
deley and Ecob, 1973; Amlund et al., 1986). Some
have suggested a link between language deficits
and the number of presentations needed to reach
perfect verbatim sentence recall (Miles et al., 2006).
Many studies have also shown that human memory
decay follows a power law (Donkin and Nosofsky,
2012), where, for example, the number of items
accurately recalled from a list will decrease over
time ¢ proportional to ¢t ~¢ for some constant decay
rate d.

Transformers neural networks, in contrast with
humans, can attend to exact token identities hun-
dreds or thousands of tokens in the past at no ad-
ditional cost, subject only to the context length.
One limitation of the standard attention implemen-
tation is that memory and runtime scale quadrati-
cally with the number of tokens, making longer in-
puts prohibitively expensive. Recently, significant
work has gone into extending the maximum con-
text length for transformers while avoiding these
computational issues. Transformer-XL caches hid-
den states to allow attention to tokens beyond the
immediate input (Dai et al., 2019). FlashAttention
is an optimized attention algorithm that exploits the
hardware architecture to train models with context
lengths up to 64K tokens (Dao et al., 2022). The
ALiBi method (Press et al., 2022) replaces sinu-
soidal positional embeddings with a recency bias
on the attention scores, such that closer query-key
pairs are weighted higher than more distant pairs.
Using ALiBi necessitates retraining a model with
the new attention mechanism, though once trained
it can generalize to longer lengths.
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3 Human behavioral study

We first designed an experiment to evaluate hu-
man memory in a next-word prediction task with
repeated word sequences. We then compared the
humans against an LM on the same stimuli to eval-
uate the LM’s memory.

3.1 Setup for humans

We collected human next-word predictions on re-
peating stimuli from a corpus of spoken story tran-
scripts (LeBel et al., 2023). To construct the stim-
uli, we chose five phrase-aligned spans of between
40 and 100 words (without punctuation) from the
corpus and repeated each span between one and
three times, for a total of between 2 and 4 presen-
tations of the span. One span was repeated once;
three spans were repeated twice; and one span was
repeated three times. The stimuli can be seen in
Section A in the Appendix. Subjects were pre-
sented words one-at-a-time via rapid serial visual
presentation (RSVP; Potter, 1984) at a fixed dura-
tion of 400 ms per word, with 1.5s pauses at the
end of each presentation. At predetermined mo-
ments, subjects were prompted to predict the next
word given the previous 10 words. Prompts ap-
peared roughly every 13 words, giving the subjects
time to process the story naturally between inter-
ruptions. Figure 1 shows the presentation of the
stimuli and an example prompt screen.

To ensure that we could measure memory ef-
fects robustly, 50% of a given subject’s prompts
were at the same position in all presentations of a
stimulus, while the other 50% were only prompted
on a single presentation. Within each presentation,
prompts were selected by taking a weighted ran-
dom sample of the words to provide a balanced se-
lection of low- and high-frequency words. Weights
were calculated as the average of two values: the
complement of the unigram probability and the re-
ciprocal of the unigram probability. Both weights
were normalized to sum over words to 1 before be-
ing averaged. Subjects were told at the beginning
of the experiment that the word sequences will re-
peat, but were not told where. Human performance
Pauman (correct) was calculated as the proportion
of participants whose responses exactly match the
ground-truth next word, ignoring case and leading
or trailing whitespace.

In total, 100 online participants were recruited
through Prolific (www.prolific.co). Subjects
were required to be fluent in English and were given



we're at this farmhouse and it was like a scene out of a big buffet and everything [...]
waiting for the light to change we're at this farmhouse and it was like a scene out of a
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Figure 1: Paradigm for collecting human next-word predictions. A span of text is presented three times without
break. Each presentation of the stimulus is denoted with a different color. Subjects are shown words one-at-a-time
with RSVP. When prompted to predict the next word, subjects are shown the previous 10 words and are given 10
seconds to type their prediction. After submitting a response, presentation of the stimulus resumes. If incorrect, they
are first shown the correct word and must acknowledge before continuing.

performance-based bonus compensation. The on-
line experiment was constructed using the Gorilla
Experiment Builder (www.gorilla.sc). The
experimental protocol was approved by the Insti-
tutional Review Board at The University of Texas
at Austin. Written consent was obtained from all
subjects.

3.2 Setup for language models

We used a pre-trained GPT-2 Small (Radford et al.,
2019) model, which we fine-tuned to change its
tokenization from BPE (Sennrich et al., 2016) to
word-level (i.e., whitespace-delimited) so that its
tokenization scheme would match the experimental
protocol for the human participants. We used non-
repeating story transcripts as training data for fine-
tuning and excluded the stories used to construct
the behavioral stimuli. To get model prediction
probabilities for comparison with the human data,
we fed the entire repeating stimulus into the model
and calculated the top-1 accuracy for each token.

4 Behavioral study results

Figure 2a shows human performance on one text
span; as they are shown more words, human ac-
curacy generally increases. Many stop words are
predicted well even during the first presentation,
while non-stop words improve more linearly with
the number of presentations. Humans consistently
improve as they are shown more presentations of
the same text span, as seen in Figure 2b. While the
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model accuracy is similar to humans on the first
presentation, it quickly jumps to a much higher
level thereafter.

A more detailed view appears in Figure 2c,
where we show accuracy for both model and human
on each probe word. GPT-2 accuracy is strongly
correlated with human accuracy for the initial pre-
sentation of this span ( = 0.87), replicating earlier
findings (Goldstein et al., 2021). However, model
and human accuracies markedly diverge thereafter,
with the correlation dropping to 7 = 0.24 in the
second presentation and = 0.05 in the third.

These results provide a potent counterexample
to previous claims of alignment: Humans and LMs
only seem to behave similarly in the initial presenta-
tion of a stimulus, but produce uncorrelated behav-
ior once short-term memory comes into play. This
suggests that the model and humans are exploiting
very different memory mechanisms to solve this
task. The humans must rely on lossy short-term
memory, while the model can leverage in-context
learning to provide super-human, near-perfect re-
call. While earlier reports suggested that such de-
tailed recall might mimic human working mem-
ory (Armeni et al., 2022), these results suggest that
the models go well beyond human capabilities.

5 Patterns in model attention

Our behavioral results show that human and LM
next-word prediction diverge sharply when short-
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Figure 2: Behavioral and model results. (a) Human next-word prediction accuracy for one stimulus. Prompted
words are split into stop words and non-stop words using the stop word list from NLTK (Bird et al., 2009). Dotted
vertical lines indicate the boundaries between presentations. (b) Human and model performance, averaged within
each presentation, for three different stimuli. Stimuli 1 and 2 were presented three times, while Stimulus 5 was
presented four times. Both model and human accuracy improve over presentations, but model performance improves
much faster and reaches a higher level. (c) Timecourse for human (green) and model (purple) performance for the

stimulus from (a).

term memory is involved, suggesting that the two
systems use substantially different memory mecha-
nisms. To gain insight into the cause of these differ-
ences, we next sought to understand how exactly
the model was able to achieve such high perfor-
mance on this task.

“Memory” in transformer models is imple-
mented by using dot-product attention over pre-
vious words. Each of the 12 layers in this model
contains 12 attention heads, each of which looks for
specific features in the content or location of previ-
ous words. The action of each attention head can be
summarized in an attention matrix, A, which shows
how much attention token i is paying to token j
for all j < 4. Attention weights are normalized
so that each row A; of the attention matrix sums
to 1. The values in the attention matrix can thus
show us how and where the model is “recalling”
past information.

Previous work on simplified transformer models
has identified the emergence of specific attention
heads that recognize patterns in the input and pro-
duce outputs that complete those patterns (Elhage
et al., 2021; Olsson et al., 2022). These induc-
tion heads specifically attend to the token after
the previous presentation of the current (input) to-
ken, essentially allowing the model to read out the

completion from a previous instance of the same
pattern. For inputs that are constructed from repeat-
ing sequences—Ilike those used in our behavioral
experiment—induction heads should thus produce
a highly stereotypical attention matrix: If a stimu-
lus consists of repeating spans of length k, the head
attends to the token k — 1 tokens in the past.

We examined the attention matrices of GPT-2
Small for our stimuli and found multiple heads
across many layers that exhibit induction behav-
ior. Figure 3a depicts example attention matrices
for four heads in layer 6. While attention values
are non-negative and sum to 1 in each row, we
use log-scaled values here to highlight subtle ef-
fects. For this test the stimulus consisted of three
presentations of a 65-word span, so an induction
head should attend to the word appearing 64 posi-
tions ago, which is exactly the word that the model
should output at each point. This should manifest
as strong diagonals in the attention matrix. This is
exactly the pattern that we see for attention heads
1 and 2. Further, when processing tokens in the
third presentation, these heads attend to previous
instances in both of the first two presentations (64
and 129 tokens in the past). To illustrate that this
pattern is not found everywhere in the model, we
also show two other attention heads (3 and 4) from
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Figure 3: Attention patterns. (a) Attention matrices for four heads in layer 6 for Stimulus 1 (65-word span presented
3 times). Plotted is the log-attention. Dotted gray lines indicate boundaries between presentations. Strong diagonals
demonstrating induction from previous presentations are present in heads 1 and 2, but not 3 and 4. (b) Summarized
attention patterns across layers. Probability mass of each category is averaged across all tokens, all heads for the
given layer, and all stimuli. Induction-like attention emerges sharply at layer 6 and is present in each subsequent
layer.

the same layer, which exhibit no induction-like be-  and thus may be the source of the divergence in
havior, but instead attend to recent words. human-LM accuracy. In the next section, we test

To more efficiently find induction-like behavior  this hypothesis by selectively disrupting each layer
in the model, we can summarize how well the atten-  in an attempt to make the model more human-like.
tion matrix for each head matches a few different
patterns. For each layer, we quantified the average
probability mass attributable to the heads attending  Qur previous results showed that human and LM
to: next-word prediction accuracy diverge when short-
term memory comes into play, suggesting that hu-
man and model memory mechanisms behave very
differently. We then showed this divergence might
be caused by the model’s induction heads, which

« the 5 most recent tokens (likely capturing lo- ~ We hypothesized enable it to identify and recall pat-

6 Attention optimization

* the first token in the input, often thought
to represent a sort of ‘“default” attention
state (Olsson et al., 2022),

cal syntactic effects), terns with superhuman accuracy. We next asked if
it is possible to modify the model so that its mem-
* the current token, ory behaves more like the human. Because the LM

is superhuman, such a modification will selectively

* past instances of the current token, hurt the LM’s performance.

* the token after each past instance of the cur- Since memory in this model is .implemented
rent token (induction), and through attention, we approached this problem by
modifying the attention matrices of the model. We

* all other tokens. learn an additive bias Bj, for the attention matrix

of each head h in one layer such that adding this
bias to the pre-softmax attention weights will pro-
duce outputs that are more human-like. Namely,
we modify the attention mechanism in the model
to be

Figure 3b shows the probability mass given to each
attention pattern in each layer, averaged across
all 12 heads. We see that the induction attention
pattern arises sharply and specifically in layer 6
and continues through the output layer (layer 12). T
These results suggest that these layers—and es- Attn(Q, K, V) = softmax (
pecially layer 6—have a causal role in copying Vd
words from previous repetitions of the text span, Each stimulus consists of an S-token span
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Figure 4: Attention bias optimization. (a) An example bias matrix that would give the attention head a recency
bias (ap, = 0.373, B, = 0.0049). (b) Example timecourse that shows human performance (green), original model
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initializations. (e) Change in mass of each attention category. (f) Change in correlation with human predictions and
LM perplexity on unseen text. After optimization, human-model correlation increases after the first presentation of
the stimulus (brown), but slightly decreases in the initial presentation (orange). Perplexity (blue), plotted here as the
ratio of post- and pre-optimization performance, is hurt most in the middle layers.

presented R times, for a total stimulus length
T SR. Human and model top-1 accuracy
for prompted word ¢ is denoted Phyman(correct;)
and Pyogel(correct;), respectively, and N; is the
number of participants that responded to that
prompt. Let B, € RT*T be the additive bias
for head h, and H = 12 be the number of at-
tention heads in each layer of GPT-2. We opti-
mize over {Bj,..., By} to minimize the mean
squared error (MSE) between Ppyman (correct) and
Piodel (correct), weighted by the number of sub-
jects who responded to each prompt (V;). W is the
number of words that were prompted for at least
one subject.

w

. 1
2 7 2 M PG

Pmodel(correcti))2 (2)

What form should By, take? The model is super-
human in its long-distance memory, so we sought
to reduce the impact of long-distance attention by
giving the model a recency bias. Much earlier work
has shown that human memory tends to decay as a
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power law with time (Donkin and Nosofsky, 2012).
A similar form of decay is also seen in mutual
information between words as a function of their
separation (Lin and Tegmark, 2017), and this has
been previously exploited in designing efficient
language models (Mahto et al., 2020). To capture
this type of behavior, we parameterized B, with
ap, By € R:

T-1

By, = Z diagy, (ou - b~ OPPn)
k=0

3

where diag;,(d) constructs a 7' x T matrix that
places the scalar d along the k-th diagonal below
the main diagonal. Figure 4a shows an example
matrix with this form. This form of By, is advanta-
geous because the effect of v, 53, can be evaluated
on stimuli of any form or length, including those
that are non-repeating. We initialize oy, 37, by sam-
pling from a standard normal distribution.

We optimize the attention matrix biases B}, to
match human data from one stimulus over 2000
epochs via gradient descent with the Adam opti-
mizer (Kingma and Ba, 2017), and then evaluated
human-model similarity with the other four stim-



uli. For each training stimulus, we repeated this
procedure with five initializations using different
random seeds. We set the learning rate to 5 x 1073,

6.1 Optimization results

Because the long-range copying behavior seems to
initiate in layer 6 (Figure 3b), we began by only
optimizing the attention bias for that layer.

We first examine the post-optimization time-
course of Ppodel(correct) by averaging the held-out
accuracies for a single stimulus (Figure 4b). While
the model’s predictions are largely unchanged in
the initial presentation, performance significantly
deviates toward human values in later presentations.
This is summarized in Figure 4c, where the model’s
average performance within the later presentations
is closer to humans after optimization. Importantly,
this optimization procedure produces By, that gen-
eralize across stimuli because we do not fit on the
human data for the held-out stimulus.

Additionally, these Bj generalize within the
stimulus. To measure within-stimulus generaliza-
tion, we randomly selected 30% of the prompts
from each presentation of the span and calculated
the MSE on this subset separately from the rest of
the stimulus. Figure 4d shows the training and held-
out (validation) loss curves for the train stimulus,
averaged across all five stimuli and five random
initializations. Training loss decreases on aver-
age 52.9%, while validation loss decreases 40.4%;
most of the improvement for held-out prompts oc-
curs in the first 1000 epochs.

We next examined the effects of the layer 6 in-
tervention on the summarized attention patterns of
each layer, similar to Figure 3b. Figure 4e shows
the log-ratio of post- and pre-optimization probabil-
ity mass for each attention pattern, averaged across
all held-out stimuli. The learned bias increases at-
tention on the current token at the expense of all
other measured patterns in layer 6, including (im-
portantly) the induction pattern that would directly
copy the correct token from a previous presentation.
Even though we only intervened in layer 6, the in-
duction pattern is weaker in all following layers,
and the model is attending more to the current and
recent tokens.

Finally, we repeated the entire optimization pro-
cedure independently on each layer and evaluated
the change in human-LM correlation. We had hy-
pothesized that our intervention should only work
to create human-like behavior when applied to lay-
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ers 6-12, which contained induction heads. How-
ever, the intervention improved model-human cor-
relation on repeated spans regardless of the layer
on which optimization was performed (Figure 4f,
brown line). Effects were strongest for layers 4-9,
but small improvements were seen in every layer.
This might suggest that induction heads are not the
only important memory mechanism for this prob-
lem, or that the same effects can be achieved by
modifying the inputs to induction heads.

Our results show that the recency bias interven-
tion was effective at rescuing the divergence be-
tween human and model performance, but it is
possible that this improvement comes at the cost
of much worse model performance in other ways.
For example, it could reduce the high correlation
between human and model in scenarios lacking
short-term memory, or make the model worse over-
all at next-word prediction. To test for the first
effect, we computed the human-model correlation
for the first presentation of each held-out stimulus
(Figure 4f, orange line). We found that the correla-
tion did fall, but by a much smaller amount than the
correlation on subsequent presentations improved.
For example, in layer 6 human-model correlation
on the first presentation decreased by about 0.03,
but the correlation on later presentations increased
by 0.2.

We also tested whether our intervention in-
creased LM perplexity on an unseen set of non-
repeating text from the story corpus in order to
measure how general LM abilities change due to
the intervention. No stories that were used for fine-
tuning or constructing the repeating stimuli were
used to measure perplexity. We computed the av-
erage perplexity for the modified and un-modified
model, and reported their ratio (Figure 4f, blue
line). We found that perplexity did increase due to
the intervention, meaning that it generally harmed
next-word prediction performance. However, the
degree of increase varied substantially depending
on which layer was modified, with the largest ef-
fect found in layer 6 (a more than 40% increase)
and smaller effects in the earliest and latest layers
(roughly 10% increase). This suggests that at least
part of the model’s general next-word prediction
performance stems from its superhuman recall, and
not its ability to mimic human cognition. Taking
these three results together, we would suggest that
the best layer to modify actually appears to be layer
9, which yields the largest improvement in human-



model correlation with memory, a modest decline
in human-model correlation without memory, and
only a roughly 15% increase in overall model per-
plexity.

7 Conclusions

Despite widely published results showing that hu-
man and LM prediction performance is compara-
ble, we have found a scenario wherein humans and
GPT-2 show a substantial divergence. By examin-
ing the model’s attention maps for non-initial pre-
sentations, we identify specific attention heads and
layers that attend across presentation boundaries to
copy the next token. We finally demonstrate a pro-
cedure that augments these heads’ attention maps
with a recency bias, disrupting their copying behav-
ior. The intervention reliably improves human-LM
similarity across held-out stimuli in later presenta-
tions, at the cost of increased perplexity.

With the behavioral data we collected, we have
used an LM to build an explicit model of human
memory. Our findings here show that human mem-
ory has a stronger recency bias than GPT-2, and
in the future we hope to use this model to learn
more about human memory. Additionally, it sug-
gests that attending over long distances may result
in diminishing returns—an alternate form of atten-
tion may be able to exploit this phenomenon for
increased efficiency.

Further work must be done to describe the
change in model states during repeated presen-
tations of a stimulus. Characterizing this experi-
ment as a test of in-context learning (ICL), we may
be able to exploit recent work (Dai et al., 2022)
that suggests ICL is analogous to finetuning model
weights.
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A Stimuli

Below are the stimuli in their entirety. Bolded
words are those which at least one subject is asked
to predict, given the previous ten words. Presenta-
tion boundaries are marked with //, but this token
is never presented to the subject or LM.

Stimulus 1 (3 presentations of a 65-word span):

Stimulus 3 (3 presentations of a 52-word span):

we start to trade stories about our lives we’re both
from up north we’re both kind of newish to the
neighborhood this is in florida we both went to
college not great colleges but man we graduated
and i’m actually finding myself a little jealous of
her because she has this really cool job washing
dogs she had horses back home and she really loves
/] we start to trade stories about our lives we’re
both from up north we’re both kind of newish to
the neighborhood this is in florida we both went
to college not great colleges but man we graduated
and i’m actually finding myself a little jealous of
her because she has this really cool job washing
dogs she had horses back home and she really loves
// we start to trade stories about our lives we’re
both from up north we’re both kind of newish to
the neighborhood this is in florida we both went
to college not great colleges but man we graduated
and i’m actually finding myself a little jealous of
her because she has this really cool job washing
dogs she had horses back home and she really loves

nine hours i find myself nine hours later back in the
situation room looking through the glass window
at the operations people hoping this works when i
see people start cheering and erupting in cheers
and excited and i hear alice bowman’s voice over
the intercom we are back on the prime // nine
hours i find myself nine hours later back in the
situation room looking through the glass window
at the operations people hoping this works when i
see people start cheering and erupting in cheers
and excited and i hear alice bowman’s voice over
the intercom we are back on the prime // nine
hours i find myself nine hours later back in the
situation room looking through the glass window
at the operations people hoping this works when i
see people start cheering and erupting in cheers
and excited and i hear alice bowman’s voice over
the intercom we are back on the prime

Stimulus 4 (2 presentations of a 107-word span):

Stimulus 2 (3 presentations of a 61-word span):

get out to the hamptons and we’re at this farm-
house and it was like a scene out of christopher
isherwood the berlin stories all these blonde boys
about ten of us running around doing push ups so
that our muscles would swell and in and out of the
pool and a big buffet and everything waiting for
the light to change // get out to the hamptons and
we’re at this farmhouse and it was like a scene
out of christopher isherwood the berlin stories all
these blonde boys about ten of us running around
doing push ups so that our muscles would swell
and in and out of the pool and a big buffet and ev-
erything waiting for the light to change // get out
to the hamptons and we’re at this farmhouse and
it was like a scene out of christopher isherwood
the berlin stories all these blonde boys about ten
of us running around doing push ups so that our
muscles would swell and in and out of the pool
and a big buffet and everything waiting for the
light to change

year during the seventies my four aunts would take
me and my two cousins on their dream vacation a
rented beach house in hyannis on the very cove
sharing beachfront with the kennedy compound
every day for an entire week my aunt pat would
roll up her sisters’ hair my aunts would apply
sunscreen to the back of their necks the backs
of the hands and the tops of their feet and then
they would drag their beach chairs down to the
beach and they would set them up perfectly not
facing the water not into the sun for tanning but
perfectly for spying on the kennedys // year during
the seventies my four aunts would take me and
my two cousins on their dream vacation a rented
beach house in hyannis on the very cove sharing
beachfront with the kennedy compound every day
for an entire week my aunt pat would roll up her
sisters’ hair my aunts would apply sunscreen to
the back of their necks the backs of the hands and
the tops of their feet and then they would drag their
beach chairs down to the beach and they would set
them up perfectly not facing the water not into the
sun for tanning but perfectly for spying on the

kennedys
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Stimulus 5 (4 presentations of a 57-word span):

pastor was this forty something british guy and
he really wanted to attract twenty somethings so
we were a hot commodity we were right in the
demographic and we started to get promoted up
into higher and higher echelons of leadership so
we were invited to the leadership team meeting
and then the core leadership team meeting // pas-
tor was this forty something british guy and he
really wanted to attract twenty somethings so
we were a hot commodity we were right in the
demographic and we started to get promoted up
into higher and higher echelons of leadership so
we were invited to the leadership team meeting
and then the core leadership team meeting // pas-
tor was this forty something british guy and he
really wanted to attract twenty somethings so we
were a hot commodity we were right in the demo-
graphic and we started to get promoted up into
higher and higher echelons of leadership so we
were invited to the leadership team meeting and
then the core leadership team meeting // pastor
was this forty something british guy and he really
wanted to attract twenty somethings so we were a
hot commodity we were right in the demographic
and we started to get promoted up into higher and
higher echelons of leadership so we were invited
to the leadership team meeting and then the core
leadership team meeting

B Additional GPT-2 experiments

Our human-LM comparisons were limited by the
amount of data we could collect from our behav-
ioral experiment, but GPT-2 has no such limitation.
We further tested the LM on 100 random, non-
phrase-aligned spans of text of different lengths
(10 to 570 words, in increments of 40) from the
corpus of annotated spoken narratives (LeBel et al.,
2023). For each text span, we form a stimulus by re-
peating the span 15 times, or until the resulting text
exceeds the maximum input length of the model —
in this case, 1024 tokens for GPT-2.

We feed each stimulus into the model and calcu-
late the perplexity for every token in the input. For
each span length, we average the perplexity across
the 100 random spans, yielding a single perplexity
measure per token position. We finally average the
perplexity within the tokens of each presentation.
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B.1 Results

Figure 5 shows results for the repeated span experi-
ment for GPT-2. GPT-2’s perplexity on the initial
presentation improves with longer spans. After
only a few presentations, however, the perplexity
for GPT-2 quickly plateaus to near-perfect perfor-
mance. The model effectively memorizes the span,
and has learned when to regurgitate the previously
seen tokens. These results confirm the observa-
tions in Figure 2 on a significantly larger set of
stimuli. For smaller spans at higher repeats, though
the mean perplexity across spans remains stable
with more presentations, the standard deviation in-
creases substantially.

These results extend the findings for LMs in
Figure 2 to more presentations.
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Figure 5: Model results for GPT-2. (a) shows the average perplexity for each presentation. (b) changes the x-axis to
show the total number of tokens.

69



Investigating the Nature of Disagreements on Mid-Scale Ratings:
A Case Study on the Abstractness—Concreteness Continuum

Urban Knuple§! and Diego Frassinelli? and Sabine Schulte im Walde'
nstitute for Natural Language Processing, University of Stuttgart
2Department of Linguistics, University of Konstanz
{urban.knuples, schulte}@ims.uni-stuttgart.de
diego.frassinelli@uni-konstanz.de

Abstract

Humans tend to strongly agree on ratings on a
scale for extreme cases (e.g., a CAT is judged
as very concrete), but judgements on mid-scale
words exhibit more disagreement. Yet, col-
lected rating norms are heavily exploited across
disciplines. Our study focuses on concreteness
ratings and (i) implements correlations and su-
pervised classification to identify salient multi-
modal characteristics of mid-scale words, and
(ii) applies a hard clustering to identify patterns
of systematic disagreement across raters. Our
results suggest to either fine-tune or filter mid-
scale target words before utilising them.

1 Motivation

Across disciplines, researchers have collected
and exploited human judgements on semantic
variables such as concreteness, compositional-
ity, emotional valence, and plausibility. Tradi-
tionally, those judgements are collected as a de-
gree on a continuum between extremes. While
humans tend to strongly agree on their ratings
for extremes (e.g., a CAT is typically judged
as extremely concrete; GLORY as extremely ab-
stract; the compound CROCODILE TEARS as ex-
tremely non-compositional; WAR as extremely neg-
ative), we find considerable disagreement regard-
ing human mid-range ratings, i.e., judging about
semi-concreteness, semi-compositionality, semi-
negativity. Presumably, conceptual semi-properties
are not easily graspable, thus generating stronger
disagreement among raters. Nevertheless, the col-
lected norms are heavily exploited in state-of-the-
art computational approaches, where the respective
knowledge represents a crucial task-related compo-
nent (such as concreteness information for figura-
tive language detection, and emotional valence for
sentiment analysis).

The current study provides a series of analyses
on human mid-scale ratings, while focusing on
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the most prominent collection of concreteness rat-
ings for English words (Brysbaert et al., 2014),
henceforth Brysbaert norms. As basis for the Brys-
baert norms, humans were asked to judge the con-
creteness (in contrast to abstractness) of English
words on a 5-point rating scale from 1 (abstract)
to 5 (concrete) regarding how strongly the partici-
pants thought the meanings of the targets can(not)
be experienced directly through their five senses.
Figure 1 illustrates the distribution of the mean
concreteness ratings and standard deviations (SDs)
across 25 raters and for the three word classes of
nouns, verbs, and adjectives. These croissant' plots
for ratings on a scale can exhibit “only a finite num-
ber of possible combinations of means and standard
deviations” (Pollock, 2018): humans tend to agree
on the extremes (— low SD) and to disagree on
intermediate semi-values (— high SD).

In a first set of experiments, we analyse multi-
modal characteristics of the concreteness of target
nouns in the Brysbaert norms (we provide addi-
tional materials for verbs and adjectives in the Ap-
pendix): perception strength for specific senses
(auditory, gustatory, haptic, olfactory, visual), emo-
tional dimensions (valence, affect, dominance), lex-
ical properties (frequency, ambiguity) and associa-
tion types as indicators of meaning diversity. We
start with a holistic perspective via correlations
between targets’ concreteness and their characteris-
tics, and then zoom into differences for words with
mid-scale vs. extremely concrete/abstract mean
concreteness ratings, by applying supervised clas-
sification and feature analyses. In a second set of
experiments, we hypothesise that mid-scale ratings
are due to different combinations of individual hu-
man judgements across the scale. We thus rely on
the original per-participant ratings (i.e., 25 ratings
per target) and apply exploratory cluster analyses
to identify patterns of disagreement between the
individual raters of targets with mid-scale ratings.

'We use this term due to the shape of the distribution plots.
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Figure 1: Croissant plots — Mean concreteness scores and standard deviations of ratings in Brysbaert et al. (2014).

Our contributions in this paper are two-fold.
(i) We identify a range of target word characteristics
that overall correlate with their degrees of concrete-
ness ratings in different directions, and more specif-
ically differ for mid-scale and extremely concrete
or abstract target words. (ii) We identify a range of
systematic disagreement patterns that clearly differ
across target words with mid-scale mean ratings,
thus pointing out fine-grained differences in judge-
ments on semi-perception and suggesting to either
filter or fine-tune mid-scale target words before
utilising them in computational approaches.

In the remainder of this paper, we introduce pre-
vious related work (Section 2) and our concreteness
targets (Section 3); we then report our analyses re-
garding general and mid-scale target characteristics
(Section 4) and mid-scale disagreement patterns
(Section 5).

2 Related Work

Collecting human judgements on a rating scale is
a popular means of constructing concept-specific
datasets across languages, research disciplines
and (computational) linguistics tasks. Prominent
example tasks and collections targeting seman-
tic variables include compositionality ratings for
compound—constituent relatedness (Reddy et al.,
2011; Schulte im Walde et al., 2016; Cordeiro et al.,
2019; Gagné et al., 2019; Giinther et al., 2020,
i.a.), affect ratings such as valence, arousal, dom-
inance, emotion (Kanske and Kotz, 2010; Koper
and Schulte im Walde, 2016a; Mohammad, 2018,
i.a.), plausibility ratings (Wang et al., 2018; Eichel
and Schulte Im Walde, 2023, i.a.), and concrete-
ness ratings (Spreen and Schulz, 1966; Paivio et al.,
1968; Algarabel et al., 1988; Della Rosa et al., 2010;
Brysbaert et al., 2014; Koper and Schulte im Walde,
2016a; Bonin et al., 2018; Muraki et al., 2022, i.a.).
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As a main motivation for collecting general con-
ceptional ratings on a scale, Keuleers and Balota
(2015) state that there is “no reason for words to
be rated for every single experiment”. Still, re-
searchers across disciplines have pointed out prob-
lematic aspects of rating norms, because their re-
liability is unclear, especially when ratings have
been collected via crowdsourcing or extrapolation
(Keuleers and Balota, 2015; Mandera et al., 2015).
Pollock (2018) describes the typical shape of rat-
ings on a scale, pointing out that the mid-range
concepts are the least agreed upon, and that the in-
terpretation of the corresponding ratings conflates
semi-properties and genuine disagreements. A mid-
scale score in concreteness could thus refer to an
average semi-perception (whatever this means), or
to a specific semi-sense, such as vision, haptics,
etc., as well as to disagreement about perceptual
strength, or a combination of the above. Further-
more, many conceptual ratings have been collected
by presenting the word in isolation without refer-
ence to the respective word class and out of context.
For example, the Brysbaert norms rely on isolated
target presentation, and part-of-speech information
was added post-hoc from the SUBTLEX-US cor-
pus (Brysbaert et al., 2012). Muraki et al. (2022)
used the same setup as Brysbaert et al. (2014) but
for multiword expressions, in which case part-of-
speech ambiguity did not arise, but the targets were
also presented out of context.

Despite these problems, ratings on a scale still
remain the major strategy to collect human judge-
ments on degrees of semantic variables, while al-
ternatives such as best-worst scaling are available
(Kiritchenko and Mohammad, 2017; Abdalla et al.,
2023). The resulting norms are heavily exploited
in state-of-the-art computational approaches; e.g.,
emotion and concreteness norms represent a cru-
cial component in systems to detect figurative lan-



guage usage (Turney et al., 2011; Tsvetkov et al.,
2014; Koper and Schulte im Walde, 2016b; Mo-
hammad et al., 2016; Aedmaa et al., 2018; Koper
and Schulte im Walde, 2018; Maudslay et al., 2020).
The current study encourages researchers to distin-
guish between degrees of (dis)agreement of such
norms, and to identify a meaningful way of ex-
ploitation, in particular for mid-scale ratings.

3 Concreteness Targets and Ratings

As materials for our experiments, we utilise the
concreteness norms collected by Brysbaert et al.
(2014), including approximately 40,000 English
target words.? The resource contains individual rat-
ings by 25 participants on a 5-point scale ranging
from 1 (abstract) to 5 (concrete), mean ratings and
standard deviations. No context or part-of-speech
(POS) were given; in a post-processing step, Brys-
baert et al. (2012) added POS and frequency infor-
mation from the SUBTLEX-US corpus.

We followed a further post-processing step sug-
gested by Schulte im Walde and Frassinelli (2022),
who assigned the most frequently occurring POS
tag and frequency information to the target words
using the ENCOW web corpus (Schifer and Bild-
hauer, 2012; Schifer, 2015), and then reduced the
targets to a less ambiguous and less low-frequent
subset by discarding words for which (i) the pre-
dominant POS did not represent at least 95% of
all POS occurrences; (ii) the newly assigned EN-
COW POS tag was not identical to the SUBTLEX-
US POS tag, or (iii) for which the ENCOW target
frequency was lower than 10, 000. Our subset in-
cludes 5, 448 nouns, 1, 280 verbs and 2, 205 adjec-
tives, and is publicly available.?

4 Target Words: Characteristics

In our first set of experiments we analyse multi-
modal characteristics of our concreteness tar-
gets. After introducing these characteristics (Sec-
tion 4.1), we start out with a holistic perspective
by quantifying statistical relationships between de-
grees of concreteness and our selection of target
characteristics (Section 4.2). We then zoom into
differences in characteristics between mid-scale
target words and extremely concrete/abstract tar-
get words, by applying a classifier that determines
separability based on characteristics (Section 4.3).

2We disregard any two-word expressions.
Shttp://www.ims.uni-stuttgart.de/data/
mid-scale
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4.1 Characteristics and Resources

Sense Perception Given that the original con-
creteness ratings in the Brysbaert norms rely on
the raters’ perceptions across senses, the most in-
timately connected set of characteristics explores
the relationships between concreteness ratings and
the five senses that were used in the task definition
by Brysbaert et al. (2014) when collecting judge-
ments for the concreteness norms. While Brysbaert
et al. did not ask for a reference to specific senses
rather than a general strength of sense perception,
Lynott et al. (2020) collected judgements on spe-
cific senses (auditory, gustatory, haptic, olfactory,
and visual) for the same targets as Brysbaert et al.,
using a scale from 0O to 5.

Emotion Dimensions Abstract words are con-
sidered to be more emotionally valenced than
concrete words (Kousta et al., 2011; Vigliocco
et al., 2014; Pollock, 2018). We thus explore emo-
tion dimensions of our target words by using the
NRC VAD Lexicon (Mohammad, 2018)* with rat-
ings on valence, arousal, and dominance for over
20, 000 commonly used English words. The ratings
were obtained by asking participants to judge the
VAD strength of words using a best-worst scaling
method. For each emotion dimension, the scores
range from 0 (lowest VAD) to 1 (highest VAD).

Frequency and Ambiguity Frequency and am-
biguity represent two standard dimensions influenc-
ing language processing and comprehension (Ellis,
2002; Baayen et al., 2016, i.a.). For frequency infor-
mation, we rely on the target frequencies extracted
from the ENCOW web corpus (see Section 3), con-
taining ~10 billion words. In order to distinguish
between degrees of ambiguity of the targets, we
rely on WordNet (Miller and Fellbaum, 1991; Fell-
baum, 1998), a standard lexical semantic taxonomy
for English word senses developed at Princeton
University. WordNet organises words into classes
of synonyms (synsets) connected by lexical and
conceptual semantic relations. We looked up the
number of noun and verb (but not adjective) target
senses in WordNet version 3.0 and then used these
WordNet ambiguity values if in the range [1;6];
targets with more than six senses in WordNet we
assigned to a joint additional category.

*https://saifmohammad.com/WebPages/nrc-vad.
html
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Figure 2: Mean noun ratings and standard deviations overlaid with the respective sense perception scores.

Free Word Associations Previous work sug-

gested that free associations to abstract words differ Al M A

from free associations to concrete words in terms Targets in our subsets 5,448 1,280 2,205

of the number of types, thus pointing towards dif-

ferences in conceptual semantic diversity. At the Sense perception 5440 1,280 2,202

same time, associations to concrete words have Emotion 5,012 1,104 1,987

been found weaker and more sy'mmetrlc than fF)r Frequency 5448 1280 2.205
abstract words (Crutch and Warrington, 2010; Hill Ambieuity’ 5400 1277 B
et al., 2014). The Small World Of Words Project b : .

SWOW (de Deyne et al., 2019)° provides large Diversity: associations 3,501 780 1,255

databases with free word associations across lan-
guages; for English, SWOW-EN includes more Table 1: Coverage of target characteristics.
than 12, 000 cue words with responses from over

90, 000 participants. The associations were gath-  we will refer to supporting evidence or differences

ered from 2011-2018 by asking English speakers  regarding verb and adjective analyses in the text
through crowd-sourcing to produce the first three  and in the Appendix.

response words that came to mind when presented
with a cue word. We rely on SNOW-EN associa- 4.2 Holistic Perspective
tions as indicators of diversity regarding our target
words. Next to using only the first response R1,
we aggregated the first two responses into a set
R12, and all three responses into a set R123 to de-
crease sparsity, while accepting a minor association
chain effect® (McEvoy and Nelson, 1982; Schulte
im Walde and Melinger, 2008). We measured the
diversity of responses by counting the number of
types (i.e., the number of distinct associations that
were produced across participants) in R1, R12,
and R123, and normalised by the respective total
numbers of response tokens.

Figure 2 visualises the relationships between mean
noun concreteness ratings and standard deviations
as introduced in Figure 1, in combination with heat
maps indicating the rating strengths of auditory,
gustatory, haptic, olfactory and visual perception
(left to right).® Targets missing in a resource are
plotted in grey. We can clearly observe an overall
dominance of the visual perception (also see Ta-
ble 5 in Appendix A for perception across senses),
and that the strength of perception varies in differ-
ent ways across the concreteness rating scale.
Table 2 informs us that visual, haptic, and olfac-

Word Classes and Resource Coverage Table 1  tory sense perception (positively), as well as audi-
provides an overview of how many of our targets  tory (negatively), correlate with the noun concrete-
are covered by the various resources across word ~ ness scores. Regarding further target characteris-
classes. Note that from now on the main body of ~ tics, the table reports a negative correlation with

this paper will focus on nouns, and additionally ~ emotion regarding affect and dominance, as well as
— negative correlations with concept diversity regard-
https://smallworldofwords.org/

8 According to the association chain effect, the nth associa- ing association types. The lexical characteristics

tion response is supposedly associated to the (n-1)th associa- ~ do not show any correlations with concreteness.
tion response rather than being associated to the target word; -
this effect might contaminate later association responses. 8Plots for further characteristics are in Appendix B.
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Figure 3: Results of classifications across characteristics and mid-scale/extreme experiments. The dotted and
horizontal line patterns indicate the amount of abstract and concrete nouns correctly classified.

Target characteristics p Classification variants Baseline Accuracy
Auditory -0.28* binaryeztremes 0.50 0.98
. Gustgtory 0.01 binarymid/abstract 0.50 0.75
Sense perception Haptic 0.58* bi 0.50 0.93
Olfactory 0.29* HAYmid/concrete i i
Visual 0.61* ternarymid/ea:tremes 0.33 0.79
Valence -0.01 Table 3: Overall classification results (accuracy).
Emotion Affect -0.28*
Dominance -0.32* )
For this, we created three sets of 500 nouns each:
Lexicon Frquen?y -0.00 the 500 most abstract nouns, the 500 most ex-
Ambiguity  -0.11 treme nouns, and the 500 nouns with mean rat-
R1 -0.33* ings closest to the rating-scale mean of 3 (with
Diversity: associations R12 -0.41* 250 nouns with mean < 3 and 250 nouns with
R123 -0.43* mean > 3).!° We then applied a Random For-

Table 2: Spearman’s rank-order correlation coefficient
p for the statistical relationships between degrees of
concreteness and strengths of target noun characteristics;
significance level is p < 0.001.

We thus conclude that overall the concreteness
ratings of our target nouns’ correlate to different
degrees — and differing in negative vs. positive di-
rections — with specific senses and also with further
characteristics previously attributed to abstract vs.
concrete concepts. This is our starting point for
analysing whether any of these characteristics is
particularly different for mid-scale target words and
might have influenced their concreteness ratings.

4.3 Mid-Scale Peculiarities

We now investigate more specifically genuine char-
acteristics of words that received mid-scale rat-
ings, by zooming into differences in character-
istics of mid-scale in contrast to extremely con-
crete/abstract target words, to maximise contrasts.

°See Tables 67 in Appendix C for verbs and adjectives.
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est classifier and defined the following classifi-
cation variants: a fernary,,iq/ceiremes condition
where the classifier had to distinguish between
the two extreme sets of 500 concrete and abstract
targets from the mid-scale; binary,,iqapstract and
binarym;q/concrete conditions to zoom into the in-
dividual mid-scale vs. extreme differences. As a
control condition providing an upper bound for our
classifiers, we included binaryeyiremes Where we
classify only the extreme target sets with stronger
differences between the two classes, while disre-
garding the mid-scale sets. The respective baselines
are 50% for the binary classifications and 33% for
the ternary classification.

The classifier used as features those target char-
acteristics described and analysed in Section 4.2,
separately and combined, in order to identify the
characteristics that differ for mid-scale words in
contrast to clearly abstract or concrete words. If
a target word lacks a feature for a specific vari-

'We created several variants of mid-scale definitions, but
given that neither modelling results nor insights differ strongly,
we provide the variants in Appendix D.
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Figure 4: SHAP values — Importance of each feature for the output of the binary,,iq/concrete model (on the left)
and the binary,,;q/apstract model (on the right). Extreme nouns are coded as negative, mid-scale nouns as positive.

able, we assigned 0 as the respective feature value.
We applied 10-fold cross-validation and report the
average accuracy score. The classification results
using all the features at the same time are shown in
Table 3. Figure 3 shows the results per feature type.
As expected, the binarye,iremes classifications
show the best results, with auditory, haptic, and
visual sense perception as well as association di-
versity representing the strongest characteristics, in
accordance with their overall correlation strengths
in Section 4.2. The ternary;q/cztremes results
look like a miniature version of the binaryeyiremes
results with regard to accuracy across feature
types, only on a lower scale (given the extra
class). The results for the binary,iq/apstract and
binaryid/concrete conditions are lower than for
binaryeziremes, as predicted, because the contrasts
on the concreteness scale are less strong. Also,
we observe an interesting difference between the
two conditions: targets with mid-scale ratings are
distinguished better from targets with extremely
concrete in comparison to extremely abstract rat-
ings (— higher accuracy); at the same time, feature
contributions in binaryd/concrete are similar to
those in binaryeztremes and 1ernary g /cztremess
while their contributions in binary,q/abstract are
more uniform.

To further understand the differences between
these two conditions, we inspected the contribution
of each feature to the models’ output using Shap-
ley Additive Explanations (SHAP; Lundberg and
Lee, 2017). Figure 4 shows the importance — as the
magnitude of change — of each variable in predict-
ing the concreteness scores of concrete (left plot)
and abstract (right plot) nouns vs. mid-scale nouns.
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The colours of the violin plots indicate the values
of the features. For the binary,;q/concrete model,
the three most important features for the classifica-
tion are haptic, visual, and dominance, in that order.
Conversely, for the binary,,iq/apstract Mmodel, the
most important features are visual, auditory, and
haptic. Notably, visual and haptic features emerge
as the most informative in both cases. Associations,
instead, show a relatively small contribution to the
performance of the classifier when together with
other feature types (as opposed to Figure 3).

An analysis of the colour-coded information (i.e.,
the value of each feature) supports our previous ev-
idence. In the left plot in Figure 4, we can see a
clear distinction between concrete nouns that are
characterised by high (magenta) visual and haptic
values, and mid-concreteness nouns characterised
by low (blue) visual and haptic values. Conversely,
in the right plot in Figure 4 the visual and haptic
nature of abstract versus mid-scale nouns exhibits
less pronounced differences with magenta colour
associated both with mid-scale (positive) and ab-
stract (negative) nouns.

We thus infer from our classification experi-
ments that mid-scale target nouns are more easily
distinguishable from extremely concrete in com-
parison to extremely abstract targets, with regard
to our set of features. In the next section, we will
investigate why this is the case.

5 Mid-Scale Disagreement Patterns

In our final analyses, we zoom into the numeri-
cal characteristics of mid-scale mean ratings. If
there was substantial agreement behind the semi-
perception of a mid-scale target (i.e., if all human
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Figure 5: k-Means clustering (k = 3) of 500 mid-scale nouns based on original individual per-participant rating
distributions. Cluster sizes are 170, 163, and 167. The heatmap shows the rating distributions of the centroid vectors.

raters had provided a rating of 3 or similar on the
scale of 1 to 5), then we would see a standard devia-
tion around O in the croissant plots in Figure 1. We
however observe rather high standard deviations
for targets with mean ratings of ~3, thus indicat-
ing considerable disagreement across raters. The
question we are asking is how these disagreements
were triggered. We hypothesise that raters might
have been influenced differently by their individ-
ual perceptions of target characteristics, and that
we therefore find several patterns of disagreement
across the mid-scale target words.

For this exploration of disagreement patterns,
we make use of the original per-participant ratings
in Brysbaert et al. (2014), and applied a standard
k-means hard clustering approach to automatically
assign the 500 mid-scale nouns to £k = 3 clus-
ters. As representations for the targets, we used
5-dimensional vectors with relative frequencies per
rating categories 1,2, 3,4, 5, based on the origi-
nal individual ratings, e.g., the vector for the noun
discussion is ¥ = (0.15,0.07,0.48,0.15,0.15), be-
cause 15% of the raters provided ratings of 1,4 or
9, while 7% judged it as 2, and 48% judged it as 3.

Figure 5 presents two perspectives on the result-
ing clusters with rather homogeneous cluster sizes
170,163,167. On the left,'! we can see that the
three clusters are clearly separated, with relatively
small overlapping areas, thus indicating that the
underlying cluster features (i.e., the rating distri-
butions) clearly differ. This is confirmed by the
plot on the right, which shows the individual rating
distributions (y-axis) of the three cluster centroids

""'We used UMAP (Uniform Manifold Approximation and
Projection) for down-scaling our distributions to two dimen-
sions (Mclnnes et al., 2018).
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1-3 (z-axis). The heatmap exhibits rather different
patterns: in cluster 1, we find the strongest dis-
agreements among raters, where each of the two
extreme rating scores (1 and 5) were chosen by
26%, the mid-score by 19%, and the remaining
scores are equally distributed over ratings 2 and 4
(14% each); in cluster 2, 32% of the raters judged
the respective target nouns as 3 because they were
completely undecided or they consciously chose a
mid-scale semi-perception score, while the other
raters decided for 1, 2,4, 5 with almost identical
proportions (16—18%); finally, in cluster 3 we find
a more uniform rating distribution, while a score
of 4 was given by most of the raters (26%). Table 4
provides a few example targets for each of the three
clusters, together with their rating distributions.

C ‘ Target ‘ Distribution
definition (0.32,0.11,0.14,0.11,0.32)
1| hero (0.22,0.11, 0.26,0.19, 0.22)
percentage | (0.40,0.03,0.10,0.20,0.27)
coward (0.17,0.20,0.30,0.20,0.13)
2 | discussion | (0.15,0.07,0.48,0.15,0.15)
labor (0.16,0.12,0.40,0.12,0.20)
booster (0.32,0.07,0.14,0.29,0.18)
3 | election (0.20,0.10,0.23,0.27,0.20)
hour (0.23,0.07,0.23,0.30,0.17)

Table 4: Examples of rating distributions for noun target
words across clusters C.

Overall, Figure 5 thus provides very strong evi-
dence in favour of our hypothesis that a mid-scale
mean rating conflates rather different patterns of
disagreements across human ratings. Figures 12



and 13 in Appendix E provide the respective plots
for verbs and adjectives, where we find similar pat-
terns of disagreement.

6 Discussion & Conclusion

We started out with the well-known observation
that humans tend to strongly agree on ratings on
a scale for extreme cases, but that judgements on
mid-scale words exhibit more disagreement. This
observation is well-described by the croissant-like
shape of mean rating scores in relation to their
standard deviations (cf. Figure 1). While individ-
ual studies have pointed out problems with such
ratings on a scale (e.g., Kiritchenko and Moham-
mad (2017); Pollock (2018)) and also provided
alternative settings (e.g., Kiritchenko and Moham-
mad (2017); Abdalla et al. (2023)), the scale-based
norms are heavily exploited across disciplines, in-
cluding state-of-the-art computational approaches.

In the current study, we first asked whether
words with mid-scale concreteness ratings poten-
tially exhibit specific characteristics that genuinely
distinguish them from clearly concrete and clearly
abstract words. The corresponding classification
experiments and feature analyses demonstrated that
mid-scale targets were indeed distinguishable from
extreme targets with regard to a subset of the senses
which were used as criteria for the concreteness—
abstractness distinction (mainly visual and haptic),
and also with regard to emotional dimensions and
meaning diversity (implemented on the basis of
association types). In this first set of experiments
mid-scale targets therefore established themselves
as genuine intermediate concepts. We also saw,
however, that mid-scale nouns are more easily dis-
tinguishable from extremely concrete in compari-
son to extremely abstract nouns, and this asymme-
try flips with regard to verbs and adjectives, pre-
sumably because their underlying rating distribu-
tions exhibit different skews (cf. the croissant plots
in Figure 1 and the different mid-scale ranges in
Figure 9 in Appendix D). So overall, words with
mid-scale mean ratings represent rather genuine in-
termediate concepts regarding our implementations
of features and analyses.

In the second part of our study, we investigated
whether mid-scale ratings are generally agreed
upon across raters, or whether raters disagreed
regarding their semi-perception. Relying on ex-
plorative cluster analyses using the original per-
participant rating distributions, we found clusters
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with obviously very different centroids. From this,
we induce that a mid-scale rating mean of ~3
conflates rather different yet systematic kinds of
disagreements. This observation is in line with
the mathematically-based observations by Pollock
(2018) that “there is only a finite number of pos-
sible combinations of means and standard devia-
tions”, and at the same time it clearly demonstrated
that mid-scale ratings indeed differ regarding their
underlying rating combinations. So, on the one
hand, our cluster analyses confirm a so-far rather
theoretically-driven observation; on the other hand,
we raise the question of whether and how this ob-
servation should influence the utilisation of ratings
on a scale. We suggest two alternative routes: (i) ei-
ther filter the norm targets and only keep those tar-
gets that are clearly attributable to one extreme, or
(i1) fine-tune the mid-scale norm targets with regard
to inherent disagreement patterns, because the set
of mid-scale targets is itself rather inhomogeneous
but nevertheless provides valuable information re-
garding specific differences in human perception.

Last but not least we would like to point out that
inherent disagreements among human annotators
are obviously not restricted to our particular focus
on mid-scale ratings but represent a common is-
sue under discussion across annotation tasks. In
the past decade the field has moved from consider-
ing disagreements as pure noise towards zooming
into disagreements in order to distinguish between
noise and subjectivity, and to effectively exploit the
value of disagreements in language modelling, see
Alm (2011) and Uma et al. (2021) for a prominent
opinion paper and a prominent survey, respectively.
Our analyses and insights should be interpreted in
the same vein: we attribute disagreements on con-
creteness mid-scale ratings to genuine intermediate
concepts (see above) and suggest to take a fine-
grained approach when utilising them in language
modelling tasks and applications.

Limitations

Our study is targeting ratings on a scale but cur-
rently restricted to a selection of target properties
and a specific case study on concreteness. Fu-
ture work will explore additional target properties
that might influence concreteness mid-scale ratings
(such as the mass-count distinction and register) as
well as characteristics of ratings on a scale in fur-
ther collections and other languages than English.
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A Dominance of Perception across Targets

Table 5 shows how many of our target words (nouns, verbs, adjectives, overall) were perceived pre-
dominantly by any of the human senses auditory, gustatory, haptic, olfactory, visual, according to the
analyses by Lynott et al. (2020).

Auditory Gustatory Haptic Olfactory Visual Total

N 610 199 102 38 4,491 5,440
\Y% 269 8 27 4 972 1,280
A 341 31 64 7 1,759 2,202
all 1,220 238 193 49 17,222 8,922

Table 5: Distribution of dominant perceptual modalities of our target words, based on Lynott et al. (2020).
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B Visualisations of Rating Characteristics for Nouns'?

Valence

Arousal

Dominance

standard deviations

1 2 3 4
mean concreteness ratings

5 1 2 3 4 5
mean concreteness ratings

00 02 04 06 08 10
valence/arousal /dominance

2 3 4 5

mean concreteness ratings

Figure 6: Mean noun ratings and standard deviations overlaid with the respective VAD scores.
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Figure 7: Mean noun ratings and standard deviations overlaid with heatmaps of the respective log;-scaled frequency

and ambiguity values.
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Figure 8: Mean noun ratings and standard deviations overlaid with a normalised number of the association types in

the sets R1, R12, and R123.

"2The corresponding visualisations of rating characteristics for verbs and adjectives are publicly available from
http://www.ims.uni-stuttgart.de/data/mid-scale.
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C Correlations between Target Characteristics and Concreteness: Verbs and Adjectives

Target characteristics )

Auditory -0.28*
Gustatory  -0.09*

Sense perception Haptic 0.47*
Olfactory 0.01
Visual 0.47*
Valence -0.11*

Emotion Affect 0.04

Dominance -0.15*

Frequency -0.01

Lexicon Ambiguity  0.13*
R1 -0.30*
Diversity: associations R12 -0.31*
R123 -0.31*

Table 6: Spearman’s rank-order correlation coefficient p for the statistical relationships between degrees of
concreteness and strengths of target verb characteristics; significance level is p < 0.05.

Target characteristics p

Auditory -0.37*
Gustatory -0.01

Sense perception Haptic 0.35%
Olfactory 0.04
Visual 0.39*
Valence -0.03
Emotion Affect -0.07*
Dominance -0.08*
Lexicon Frequency -0.04
R1 -0.28*
Diversity: associations R12 -0.32*
R123 -0.31*

Table 7: Spearman’s rank-order correlation coefficient p for the statistical relationships between degrees of
concreteness and strengths of target adjective characteristics; significance level is p < 0.05.
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D Mid-Scale Definitions, Ranges and Classifications across Word Classes

Intuitively, the interpretation of mid-scale targets refers to somewhere in the middle of the mean con-
creteness ratings plots that we have presented in Figure 1, in contrast to extremely abstract targets on the
left and extremely concrete targets on the right. Accordingly, we suggest three ways of capturing this
intuition, given that the number of targets per part-of-speech (POS) and also the ranges of ratings and
their skewness differ across POS. We created three sets of 500 mid-scale noun targets accordingly, and
also three sets of 200 mid-scale verb and 200 mid-scale adjective targets.

Mid-Scale-Mean The mid-scale score is defined as the mean value on the rating scale, which is 3 in our
scale [1;5]. Mid-scale targets are then defined as those words whose mean ratings are closest to 3.

Mid-Scale-Median Given that the rating distributions differ across POS and with regard to their left vs.
right skews, the mid-scale score is defined as the median, in our case: 3.54 for the nouns, 2.47 for
the verbs, and 2.19 for the adjectives. Mid-scale targets are then defined as those words whose mean
ratings are closest to these medians.

Mid-Scale-Median-SD Incorporating disagreement between raters, we refine the mid-scale-median
taking into account as mid-scale targets only those words whose mean ratings are closest to the
median and whose standard deviations are > 1.4.

In all three cases, we selected an equal number of targets with mean ratings above and below the respective
mid-scale score. Figure 9 provides the mean-rating ranges of our mid-scale targets across these three
mid-scale definitions, based on the respective 500/200/200 mid-scale noun/verb/adjective targets. The
same figure shows the mean-rating ranges of the extremely concrete and extremely abstract targets, relying
again on sets of 500/200/200 targets. We can see that the mid-scale ranges clearly differ across definitions
and POS. Table 8 shows the classification results (accuracy) across these mid-scale definitions, word
classes and target set constellations. Figures 10 and 11 zoom into the classification results of verb/adjective
targets per feature type and for the mid-scale mean definition, as done for nouns in Figure 3.

Nouns Verbs Adjectives
5 ——
T T -

B extremely abstract mean median median-STD HEM extremely concrete

at

concreteness scores
w

Figure 9: Distributions of concreteness scores across mid-scale definitions and POS.
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0.90
0.75
0.60
0.45
0.30
0.15
0.00

accuracy

Mid-Scale Definition

Mean | Median | Median-SD

binaryeztremes 0.98 0.98 0.98

1ernary mid/extremes 0.79 0.82 0.82

founs binary mid/concrete 0.93 0.91 0.91
binaryid/abstract 0.75 0.83 0.82
binaryeztremes 0.90 0.90 0.90

verbs te‘rnarymid extremes 0.63 0.64 0.65
binary,midq)conerete 0.64 0.78 0.78
binary,yid/abstract 0.81 0.65 0.73
binaryeztremes 0.94 0.94 0.94

L 1ernary mid/extremes 0.67 0.67 0.67
A 1Y mmidfeomcrete 0.68 0.86 0.81
binary,ia/apstract 0.84 0.55 0.71

Table 8: Results of the classifications across mid-scale definitions and target set constellations.

blna‘ryeztreme

binarymid/ abstract

bina/rymid /concrete

Feature
I auditory WM frequency
gustatory ambiguity
[ haptic
olfactory
I visual

N R1
N R12
[ R123
valence
I arousal
dominance

ternarymid/ extreme

Figure 10: Results of classifications across characteristics and mid-scale/extreme experiments. The dotted and
horizontal line patterns indicate the amount of abstract and concrete verbs correctly classified.

binaryeztreme

binarymid /abstract

binarymid /concrete

Feature
I auditory
gustatory M frequency
I haptic R1
olfactory
I visual

dominance

. R12

[ R123
valence

I arousal

ternarymiq /extreme

Figure 11: Results of classifications across characteristics and mid-scale/extreme experiments. The dotted and
horizontal line patterns indicate the amount of abstract and concrete adjectives correctly classified.
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E Mid-Scale Disagreement Patterns in Verb and Adjective Rating Distributions

Figures 12 and 13 present the clusters and the heat maps of rating distributions of the cluster centroids for
verbs and adjectives. The clusters are based on the same k-Means clustering setup as those for nouns in

Section 5.
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Figure 12: k-Means clustering (k = 3) of 200 mid-scale verbs based on original individual per-participant rating
distributions. Cluster sizes are 71, 68, and 61. The heatmap shows the rating distributions of the centroid vectors.
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Figure 13: k-Means clustering (k = 3) of 200 mid-scale adjectives based on original individual per-participant
rating distributions. Cluster sizes are 68, 62, and 70. The heatmap shows the rating distributions of the centroid

vectors.
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Abstract

Building multi-modal language models has
been a trend in the recent years, where addi-
tional modalities such as image, video, speech,
etc. are jointly learned along with natural lan-
guages (i.e., textual information). Despite the
success of these multi-modal language mod-
els with different modalities, there is no exist-
ing solution for neural network architectures
and natural languages. Providing neural archi-
tectural information as a new modality allows
us to provide fast architecture-2-text and text-
2-architecture retrieval/generation services on
the cloud with a single inference. Such so-
lution is valuable in terms of helping begin-
ner and intermediate ML users to come up
with better neural architectures or AutoML ap-
proaches with a simple text query. In this
paper, we propose ArchBERT, a bi-modal
model for joint learning and understanding
of neural architectures and natural languages,
which opens up new avenues for research in
this area. We also introduce a pre-training
strategy named Masked Architecture Model-
ing (MAM) for a more generalized joint learn-
ing. Moreover, we introduce and publicly re-
lease two new bi-modal datasets for training
and validating our methods. The ArchBERT’s
performance is verified through a set of nu-
merical experiments on different downstream
tasks such as architecture-oriented reasoning,
question answering, and captioning (summa-
rization). Datasets, codes, and demos are avail-
able as supplementary materials'.

1 Introduction

Existing machine learning models are mostly based
on uni-modal learning, where a single modality is
learned for the desired tasks. Example scenarios
include image classification with image-only data;
or language translation with text-only data (Raffel

1https ://developer.huaweicloud.com/
develop/aigallery/notebook/detail?id=
€6a924c7-735a-4e02-a25b-4416b77b6315
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“Classifier including
skip connections and
non-linear activations”

Architecture Search: ResNet18, ResNeXt

Architectural Reasoning:
The statement on architecture is Correct

Architectural Q&A:
Q: What layer types used in this model?
A: residual layers, nonlinear activations

ArchBERT

Architecture Captioning:
“light-weight image classification model
with residual & convolutional blocks”

Figure 1: Bi-modal understanding of neural architec-
tures and natural languages with sample applications.

et al., 2020; Akbari et al., 2022; Brown et al., 2020).
Despite the success of existing uni-modal learning
methods at traditional single-modal tasks, they are
usually insufficient (BaltruSaitis et al., 2018) to
model the complete aspects of human’s reasoning
and understanding of the environment.

The alternative solution for this problem is to use
multi-modal learning, where a model can jointly
learn from multiple modalities such as text, image,
or video to yield more abstract and generalized rep-
resentations. As a result, a better understanding of
various senses in information can be achieved and
many new challenges that concern multi-modality
can be handled. Such solution also enables the
possibility of supplying a missing modality based
on the observed ones. As an example, in text-
based image generation, we aim to generate photo-
realistic images which are semantically consistent
with some given text description (Bao et al., 2022).

One of the most popular multi-modal solutions
is multi-modal language models (LMs), where an
extra modality (e.g., image or video) is jointly used
and learned along with the natural languages (i.e.,
textual information). Some of the recent multi-
modal LMs include VILBERT for image+text (Lu
et al., 2019), VideoBERT for video+text (Sun et al.,
2019), CodeBERT for code+text (Feng et al., 2020),
and also GPT-4 (OpenAl, 2023).

Although many multi-modal LMs with differ-
ent modalities have been introduced so far, there
is no existing solution for joint learning of neural

Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 87-107
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network architectures and natural languages. Pro-
viding neural architectural information as a new
modality allows us to perform many architecture-
oriented tasks such as Architecture Search (AS),
Architecture Reasoning (AR), Architectural Ques-
tion Answering (AQA), and Architecture Caption-
ing (AC) (Figure 1). The real-world applications of
such solution include fast architecture-2-text and
text-2-architecture retrieval/generation services on
the cloud with a single inference. Such solution is
valuable in terms of helping users to come up with
better neural architectures or AutoML approaches
with a simple text query especially for beginner
and intermediate ML users. For instance, AC can
be used for automatically generating descriptions
or model card information on a model hub (i.e.,
machine learning models repository). Furthermore,
AR is helpful when a model is uploaded to a repos-
itory or cloud along with some textual description
provided by the user, where the relevancy of the
user’s description for the given model can be auto-
matically verified. If not verified, alternative auto-
generated descriptions by a architecture-2-text so-
Iution can be proposed to the user.

In this paper, we propose ArchBERT as a bi-
modal solution for neural architecture and nat-
ural language understanding, where the seman-
tics of both modalities and their relations can be
jointly learned (Figure 1). To this end, we learn
joint embeddings from the graph representations
of architectures and their associated descriptions.
Moreover, a pre-training strategy called Masked
Architecture Modelling (MAM) for a more gen-
eralized and robust learning of architectures is
proposed. We also introduce two new bi-modal
datasets called TVHF and AutoNet for training and
evaluating ArchBERT. To the best of our knowl-
edge, ArchBERT is the first solution for joint learn-
ing of architecture-language modalities. In addi-
tion, ArchBERT can work with any natural lan-
guages and any type of neural network architec-
tures designed for different machine learning tasks.
The main contributions of this paper are as follows:

* A novel bi-modal model for joint learning of
neural architectures and natural languages

* Two new bi-modal benchmark datasets for
architecture-language learning and evaluation

* A new pre-training technique called MAM

¢ Introducing and benchmarking 6 architecture-
language-related downstream applications
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2 Related Works

Multi-modal models are used in many sub-fields
in machine learning. For example, Michelsanti
et al. (2021) and Schoneveld et al. (2021) intro-
duced the audio-visual models trained on input
acoustic speech signal and video frames of the
speaker for speech enhancement, speech separa-
tion, and emotion recognition. Multi-modal models
used in biomedical (Venugopalan et al., 2021; Vale-
Silva and Rohr, 2021), remote-sensing (Hong et al.,
2020; Maimaitijiang et al., 2020), and autonomous
driving (Xiao et al., 2020) applications have also
proven to provide more accurate prediction and
detection than the unimodal models.

Among different types of multi-modal LMs in
the literature, transformer-based ones have shown
significant performance, especially for vision-and-
language tasks like visual question answering, im-
age captioning, and visual reasoning. In Visual-
BERT (Li et al., 2019), a stack of transformers
is used to align the elements of text and image
pairs. VILBERT (Lu et al., 2019) extended BERT
to a multi-modal double-stream model based on co-
attentional transformer layers. In LXMERT (Tan
and Bansal, 2019), three encoders including lan-
guage, object relation, and cross modality encoders
are used. A single-stream vision-language model
was introduced in VL-BEIT (Bao et al., 2022),
where unpaired and paired image-text modalities
were used for pre-training.

Video is another modality that is used with lan-
guage in multi-modal models. VideoBERT (Sun
et al., 2019) is a single-stream video-language
model, which learns a joint visual-linguistic rep-
resentation from input video-text pairs. VIOLET
(Fu et al., 2021) is another example that employs
a video transformer to model the temporal dynam-
ics of videos, and achieves SOTA results on video
question answering and text-to-video retrieval. Pro-
gramming language is also an emerging modality
that has been used along with language. For ex-
ample, CodeBERT (Feng et al., 2020) is a multi-
stream model, which uses LMs in each stream,
where the input code is regarded as a sequence of
tokens. On the other hand, GraphCodeBERT (Guo
etal., 2021) proposes a structure-aware pre-training
technique to consider the inherent structure of the
code by mapping it to a data flow graph.

There are several prior works that combine more
than two modalities. In Multimodal Transformer
(MulT) (Tsai et al., 2019), cross-modal attention
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modules are added to the transformers to learn rep-
resentations from unaligned multi-modal streams,
including the language, the facial gestures, and the
acoustic behaviors. VATT (Akbari et al., 2021)
also used video, audio, and text transformers along
with a self-supervised learning strategy to obtain
multi-modal representations from unlabeled data.

It is worth mentioning that ChatGPT (OpenAl,
2022) can be used for information retrieval, ques-
tion answering, and also summarization over the
textual descriptions of well-known neural architec-
tures such AlexNet (Krizhevsky et al., 2017) or
Faster-RCNN (Ren et al., 2015). However, unlike
ArchBERT, it does not have a bi-modal understand-
ing of both neural architectures (i.e., graphs) and
natural languages, especially for newly proposed
architectures and models.

3 Proposed Method: ArchBERT

The overall ArchBERT framework is shown in Fig-
ure 2. The major components of ArchBERT in-
clude a text encoder, an architecture encoder, a
cross encoder, and a pooling module.

First, the input text represented by a sequence
of n words W = {w;|i € [1,n]} is tokenized to a
sequence of n tokens 7' = {¢;|i € [1,n]}. Then,
the text encoder F is utilized to map them to some
word/token embeddings denoted by M; € R(xd)
with the embedding size of d: M; = Ey(T).

On the other hand, the architecture encoder is re-
sponsible for encoding the input neural architecture.
In this procedure, the computational graph of the
input architecture is first extracted and represented
with a directed acyclic graph G = {V, A, S} where
V = {v]i € [1,m]} denotes a sequence of m
nodes representing the operations and layers (e.g.,
convolutions, fully-connected layers, summations,
etc.) and A € {0,1}"*™ denotes a binary adja-
cency matrix describing the edges and the connec-
tivity between the nodes. In addition to the nodes
and edges, we also extract the shape of the param-

Node Embedder

+
@ Shape Embedder

Architecture Encoder

Figure 2: Overall framework of ArchBERT.
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eters associated with each node (i.e., input/output
channel dimensions and kernel sizes), denoted by
S = {(s; e NY)|i e [1,m]}.

The nodes and the shapes are separately encoded
using the node and shape embedders E, and Ej,
respectively. The adjacency matrix along with the
summation of the resulting nodes and shapes em-
beddings are then given to a Graph Attention Net-
work (GAT) (Velickovi¢ et al., 2018) for computing
the final architecture (graph) embeddings denoted
by M, € R(™*4) with the embedding size of d:

MQ = GAT(EU(V) + ES(S)7 A) (1)

In general, GAT is designed to operate on graph-
structured data in which a set of graph features
(node+shape embeddings in our case) is trans-
formed into higher-level features. Given the adja-
cency matrix, the GAT model also allows all nodes
to attend over their neighborhoods’ features based
on a self-attention strategy.

For joint learning of textual and architectural
embeddings and share learning signals between
both modalities, a cross transformer encoder, FE.., is
used to process both embeddings in parallel. These
embeddings are then average-pooled to fixed-size
1D representations .J; € RU*) and .J, e RU*9):

(i Jg} = Ec({My, My}) (2)

As in S-BERT (Reimers and Gurevych, 2019),
we use the cosine similarity loss as a regression ob-
jective function to learn the similarity/dissimilarity
between architectures and language embeddings.
First, the cosine similarity between J; and J, are
computed. Given a target soft score y € [0, 1]
(i.e., 0: dissimilar, 1: similar), the following mean
squared-error (MSE) loss is then employed:

Ji.Jyg
maz (|| Ji|2-[ Jgll2, €)

Lsiv = |ly — l2,  (3)

which minimizes the cosine distance between J;
and J, pairs labeled as similar, while maximizes
the distance for the dissimilar ones.



3.1 Masked Architecture Modeling (MAM)

In the literature, a well-known pre-training objec-
tive function called Masked Language Modeling
(MLM) is widely used by BERT-based models for
learning language representations (Devlin et al.,
2019). Inspired by MLM, we introduce a new
objective called Masked Architecture Modeling
(MAM) to provide more generalized learning and
understanding of the graph embeddings correspond-
ing to the neural architectures by ArchBERT.

Inspired by BERT (Devlin et al., 2019), we ran-
domly mask 15% of the nodes with a special mask
token and re-produce the masked nodes under the
condition of the known ones. The MAM objective
function is then defined as:

4

where V is the masked version of V. In other
words, V includes the contextual unmasked tokens
surrounding the masked token V;. In practice, the
corresponding probability distribution is obtained
by the MAM head Hj;. The MAM head defines
the distribution by performing the softmax func-
tion on the logits F},, € R(™* 1£1) mapped from the
graph embeddings J, as follows: F,,, = Hy(Jg),
where £ is the entire vocabulary of nodes (or nodes
corpus) set. Given Lgras and Lz ans, the follow-
ing weighted loss is then used for optimizing and
pre-training the ArchBERT model:

Laranr = —Eyy log p(Vi|V),

&)

3.2 Architectural Question Answering (AQA)

The pre-trained ArchBERT can be utilized for the
AQA task that is defined as the procedure of an-
swering natural language questions about neural ar-
chitectures. In other words, we can enable the Arch-
BERT model to predict the answers to architecture-
related questions when the architecture and the
question are matched.

For this task, we can fine-tune ArchBERT as a
fusion encoder to jointly encode the input neural
architecture and the question. To this end, the ques-
tion and the architecture are first encoded using the
text and architecture encoders, respectively. Both
embeddings are then cross-encoded and pooled in
order to calculate the final joint embeddings J; and
Jy. The element-wise product is then computed to
interactively catch similarity/dissimilarity and dis-
crepancies between the embeddings. The resulting
product is fed into AQA head for mapping to the
logits F,, € RI4! corresponding to |.A| answers:

L =Lgsivm +alyam.
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(6)

As in (Anderson et al., 2018), the AQA in our
work is formulated as a multi-label classification
task, which assigns a soft target score to each an-
swer based on its relevancy to |A| answers. A
binary cross-entropy loss (denoted by Lag4) on
the target scores is then used as objective function.

Fy = Hy(Jp.Jy)

3.3 Language Decoder

We can empower the pre-trained ArchBERT to
learn from and then benefiting for neural architec-
ture captioning (or summarization) task by attach-
ing a transformer decoder (Lewis et al., 2020) to
generate textual tokens one by one. In this regard,
an auto-regressive decoding procedure is employed
with the following loss function:

Lpgc = —Eg,~1 log p(Ti|T=;, T),  (7)

where 7 is the masked version of the ground truth
text 7', and 7Tj is the ¢-th token to be predicted. T;
denotes the set of all the tokens decoded before 7.
Similar to MAM, the probability distribution over
the whole vocabulary is practically obtained by
applying softmax on the decoded feature (or logits)
F; € RU™*ICD) that is calculated by providing the
graph embeddings J, to the decoder: Fy = Dy(J,),
where C denotes the entire vocabulary set.

4 Datasets

For pre-training the ArchBERT model, a dataset
of neural architectures labeled with some relevant
descriptions is required. To the best of our knowl-
edge, there is no such bi-modal dataset in the lit-
erature. In this paper, we introduce two datasets
called TVHF and AutoNet for bi-modal learning
of neural architectures and natural languages. The
numerical and the statistical details of TVHF and
AutoNet datasets are summarized in Table 1.

Note that all the labels and descriptions in the
proposed datasets have been manually checked
and refined by human. There may be some mi-
nor noise in the dataset (i.e., an inevitable nature of
any dataset, especially the very first versions), but
in overall, the datasets are of sufficient quality for
our proof-of-concept experiments.

4.1 TVHF

In order to create this dataset, we collected 538
unique neural architectures form TorchVision (TV)
(Marcel and Rodriguez, 2010) and HuggingFace
(HF) (Wolf et al., 2019) frameworks. The descrip-
tions relevant to the architectures were extracted



Table 1: Statistical details of TVHF and AutoNet datasets (*: AQA, p: mean, o: standard deviation, M : median).
Architecture Text
Dataset | Split | #Samples | #Unique | #Unique #Nodes #Edges #Unique #Tokens Sequence Length
Archs Nodes m o M m o M Tokens o o M m o M
TVHF Train 24069 538 50 1146.61 | 1162.38 | 705 | 1281 | 1302.90 | 753 3507 16.16 | 11.22 | 14 | 97.60 | 77.76 | 81
Val 6018 538 50 1146.61 | 1162.38 | 705 | 1281 | 1302.90 | 753 2965 1621 | 11.59 | 14 | 97.88 | 80.33 | 81
AutoNet Train 103306 10000 28 371.50 | 312.61 | 266 | 401 322.99 241 769 43.81 | 8.62 | 45 | 333.67 | 74.80 | 345
Val 10338 1000 28 384.48 | 343.31 | 266 | 419 | 368.20 | 293.5 652 43.92 | 8.66 | 45 | 334.01 | 74.92 | 345
AutoNet* Train | 350000 10000 28 373.33 | 313.90 | 270 | 404 | 32545 297 86 10.78 | 1.89 | 11 | 62.76 | 12.48 | 62
Val 35000 1000 28 358.3 301.98 | 261 | 390 | 324.31 | 2855 86 10.79 | 1.89 | 11 | 62.76 | 1245 | 62
from TV and HF frameworks as well as other on- |« & o' £
line resources such as papers and web pages (with * * r@%/ oo
the vocabulary size |C|=31,764). To increase the |4 & Pk :4* " 4 2
dataset size, the descriptions were split into indi-  |s.»s s e i A A e o L
vidual sentences each assigned to the related ar- "2 ™ "% ' P e
chitecture, which provided a collection of 2,224 S o»*‘w kg ¥ 4
positive samples, i.e., pairs of architecture with > f@ Qkﬁm« rfj
their relevant descriptions (details in the appendix). I'*“'O%”E ook L "%

To assure the model learns both similarities and
dissimilarities, we also generated negative samples
by assigning irrelevant descriptions to the architec-
tures (resulting in a total of 27,863 negative sam-
ples). We randomly split the dataset (in total 30,087
samples) into 80% for train and 20% for validation.

For fine-tuning and evaluating ArchBERT on Ar-
chitecture Clone Detection (ACD), we establish an-
other dataset including pairs of architectures man-
vally hard-labeled with a dissimilarity/similarity
score (0 or 1). To this end, all combinations of two
architectures from TVHF were collected (in total
82.8K samples) and split into train/val sets (80%
and 20%). Details are provided in the appendix.

4.2 AutoNet

As described before, TVHF includes realistic
human-designed architectures, which are manu-
ally labeled with real descriptions. On the other
hand, we introduce the AutoNet dataset, which in-
cludes automatically generated architectures and
descriptions. AutoNet is basically the modified
and extended version of DeepNetlM (Knyazev
et al., 2021), which is a standardized benchmark
and dataset of randomly generated architectures for
the parameter prediction tasks.

In AutoNet, we extend the set of operations (lay-
ers) from 15 types (in DeepNet1M) to 85, which
include most of the recent operations used in com-
puter vision and natural language models. We fol-
lowed the same procedure in DeepNet1M and ran-

Figure 3: Sample graphs generated for ResNet18 (left)
and a random architecture from AutoNet (right).

domly generated 10K and 1K architectures for train
and validation sets, respectively.

For automatic generation of textual descriptions
related to each architecture, we created an extensive
set of sentence templates, which were filled based
on the information extracted from the structure,
modules, and existing layers of the corresponding
architecture. The same process was applied for
generating negative samples, but with the textual
information of the non-existing modules and layers
in the architecture. For each architecture, 10-11
textual descriptions were created, which resulted in
103,306 and 10,338 architecture and text pairs for
the train and validation sets (with the vocabulary
size |C|=30,980), respectively. The details of this
procedure are given in the appendix.

4.2.1 AutoNet-AQA

For fine-tuning and evaluating ArchBERT on AQA,
another dataset including triplets of architectures,
questions, and answers is needed. As in AutoNet, a
set of question/answer templates were used to auto-
matically generate the questions and answers. The
same procedure of generating neural architectures
as in AutoNet was employed. 10K and 1K archi-
tectures were respectively created for the train and
validation sets. For each architecture, 35 unique
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questions were generated, and the answers were
chosen from a list of |A| = 51 unique answers.
In total, the train and validation sets respectively
include 350K and 35K samples.

The visualization of two sample graphs gener-
ated for ResNet18 from TVHF and a random archi-
tecture from AutoNet is shown in Figure 3. More
sample data along with the quality analysis of the
datasets are given in the appendix.

5 Experimental Results

In this section, the performance of ArchBERT on
the following downstream tasks is evaluated and
numerically analyzed.

¢ Architectural Reasoning (AR): it is the task of
determining if a statement regarding an architec-
ture is correct or not.

¢ Architecture Clone Detection (ACD): it in-
cludes the process of checking if two architec-
tures are semantically/structurally similar or not.

¢ Architectural Question Answering (AQA): as
given in Section 3, it is the process of providing
an answer to a question over a given architecture.

* Architecture Captioning (AC): it is the task of
generating descriptions for a given architecture.

Since there is no related prior works, we com-
pare our method with some uni-modal baselines for
each of the above tasks. An ablation study over dif-
ferent components of ArchBERT is also presented.

In this work, we employ the BERT-Base model
(with 12 heads) as our ArchBERT’s cross encoder.
We pre-trained ArchBERT on both TVHF and Au-
toNet datasets with a batch size of 80, embedding
size of d=768, and the Adam optimizer with learn-
ing rate of 2e-5 for 6 hours. The training on TVHF
and AutoNet was respectively done for 20 and 10
epochs. Since there is a large scale difference be-
tween the Lgyps and Ljsaps loss values in the
weighted loss in Equation 5, where L ans>» Lsras,
we set a=5e-2 to balance the total loss value (ob-
tained experimentally). A batch size of 80 is used
for all the tests with the pre-trained ArchBERT.

5.1 Uni-Modal Baselines

For the AR baseline, we compare the architecture
name with an input statement, which is considered
as "correct” if the architecture name appears in the
statement, otherwise it is "incorrect". Note that
unlike this baseline, ArchBERT does not need the
architecture name to infer about the statements.
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For the ACD uni-modal baseline (Figure 4-left),
the architecture encoder is first used to separately
map both input architectures, denoted by {G', G?},
into the graph embeddings {M;, M2} (Equation
1). The cross encoder and pooling module are then
applied to obtain the fixed-size joint representations
{J gl, J g2} (Equation 2). The cosine similarity loss in
Equation 3 is finally performed on {.J, J7} pairs
along with a provided hard-label. For this baseline,
we trained ArchBERT with architecture-only pairs

(without text encoder) from TVHF-ACD train set.

For the AQA uni-modal baseline (Figure 4-
middle), we train a text-only ArchBERT (with-
out architecture encoder), where the context is ob-
tained from the textual information and summary
of the input architecture, e.g., layer names (i.e.,
using Pytorch model summary function). The ex-
tracted information is considered as the input con-
text on which the question answering procedure
is performed. The tokenized input question and
context, denoted by {79, T}, are mapped into to-
ken embeddings { M, M¢}, which are then cross-
encoded and average-pooled to obtain the joint em-
beddings {J{, Jf} (Equation 2). As in Equation 6,
the element-wise product of {J{, J} is given to
the AQA head to obtain the logits required for the
binary cross-entropy loss described in Section 3.2.

For the AC uni-modal baseline (Figure 4-right),
we trained ArchBERT (without text encoder) fol-
lowed by the decoder from scratch (no bi-modal
pre-training of ArchBERT). The detailed AC pro-
cedure is described in Section 3.3.

5.2 Architectural Reasoning (AR)

For this task, the input text and the architecture
are given to ArchBERT to create the pooled em-
beddings. The cosine similarity score between
these embeddings is then computed. If the score
is greater than some threshold 7 (i.e., 0.5), the
statement on the architecture is determined as “cor-
rect”, otherwise “incorrect”. We evaluate the per-
formance of the pre-trained ArchBERT on this task
over the TVHF validation set. As summarized in
Table 2, an accuracy and F1 score of 96.13% and
71.86% were respectively achieved. F1 scores are
reported to deal with the class imbalance.

As reported in Table 2, a F1 score of 55.93% is
achieved by the AR baseline, which is about 16%
lower than ArchBERT.
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Figure 4: Uni-Modal Baselines (left: ACD, middle: AQA, right: AC).

5.3 Architecture Clone Detection (ACD)

To perform this task, both input architectures are
given to ArchBERT’s architecture encoder fol-
lowed by the cross-encoder and pooling module
to obtain the pooled embeddings. The cosine simi-
larity of the embeddings is then computed. If the
similarity score is greater than a threshold (i.e.,
0.5), the two architectures are considered similar,
otherwise dissimilar.

We first evaluate the pre-trained ArchBERT’s
performance on the TVHF-ACD validation set. Al-
though the pre-trained model has not specifically
learned to detect similar/dissimilar architectures, it
still achieves a good accuracy of 86.20% and F1
score 60.10% (Table 2). However, by fine-tuning
the pre-trained ArchBERT with TVHF-ACD train
set, significantly improved accuracy and F1 score
of 96.78% and 85.98% are achieved.

Two baselines including Jaccard similarity (San-
tisteban and Tejada-Carcamo, 2015) and a uni-
modal version of ArchBERT are used to compare
with our bi-modal ArchBERT on ACD task. For
Jaccard, the similarity of the architecture pairs is
computed by taking the average ratio of intersec-
tion over union of the nodes and edges (V' and A).
The pairs are considered as "similar" if the similar-
ity score is greater than 0.5, otherwise “dissimilar”.
As shown in Table 2, the pre-trained and fine-tuned
ArchBERT models respectively outperform this
baseline with 14% and 40% higher F1 scores. The
ACD uni-modal baseline also achieves F1 score of
84%, i.e., 2% lower than fine-tuned ArchBERT.

5.4 Architectural Question Answering (AQA)

For this, ArchBERT along with the attached AQA
head (composed of a two layer MLP) is fine-tuned
with the AutoNet-AQA dataset using a batch size
of 140 over 10 epochs (for about 10 hours). We use
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Table 2: The performance of ArchBERT and its com-
ponents on different tasks and datasets (AR: Architec-
tural Reasoning, ACD: Architecture Clone Detection,
AQA: Architectural Question Answering, CR: Cross
Encoder, MAM: Masked Architecture Modeling).

Task Dataset Model Acc(%) F1(%)
ArchBERT 96.13 71.86
-w/o Shape 9544 69.16
-w/o Edge 95.52 6898
AR TVHE o Edge+Shape  95.12  65.80
-w/o MAM 95.18 64.27
-w/o CR 94.42 57.03
Baseline 89.03 5593
ArchBERT 86.20 60.10
-w/o Shape 8544  60.20
-w/o Edge 76.70  47.96
-w/o Edge+Shape 82.90 56.45
ACD TVHF -w/o MAM 78.80  49.59
-w/o CR 69.89 42.35
Jaccard 80.22 4596
ArchBERT-ft 96.78 85.98
Baseline (uni) 96.24 84.01
ArchBERT 7273 73.51
-w/o MAM 66.08 66.16
AQA  AutoNet 0 cR 6032 6333
Baseline (uni) 55.82 61.84

the Adam optimizer with an initial learning rate
of 2e-5. At the inference time, we simply take a
sigmoid over the AQA head’s logits (with the same
batch size of 140). As given in Table 2, ArchBERT
achieves an accuracy of 72.73% and F1 score of
and 73.51% over the AutoNet-AQA validation set.
For the AQA baseline, an F1 score of 61.84%
was obtained on AutoNet-AQA, which is ~12%
lower than the proposed bi-modal ArchBERT.

5.5 Architecture Captioning (AC)

To analyze ArchBERT’s performance on AC, the
pre-trained ArchBERT (without text encoder) at-
tached with a language decoder is fine-tuned on
both TVHF and AutoNet with a batch size of 30 for



Table 3: ArchBERT’s performance on Architecture
Captioning (AC) (CR: Cross Encoder, MAM: Masked
Architecture Modeling, R1: Rougel-Fmeasure, R2:
Rouge2-Fmeasure, RL: Rouge-Lsum-Fmeasure).

Dataset Model R1 R2 RL
ArchBERT 0.18 0.05 0.17

TVHF -w/o MAM 0.17 0.05 0.15
Baseline (uni) 0.18 0.07 0.17
ArchBERT 0.48 0.36 0.46

AutoNet -w/o MAM 0.45 0.34 0.43
Baseline (uni) 0.40 0.30 0.38

10 epochs. The fine-tuning process for TVHF and
AutoNet respectively took about 0.5 and 6 hours.
Adam optimizer with an initial learning rate of 2e-5
was used. For the language decoder, a single-layer
transformer decoder (with 12 heads and hidden size
of d=768) followed by 2 linear layers is used.

At the inference, the beam search (with the size
of 10) was employed to auto-regressively gener-
ate the output tokens, which were then decoded
back to their corresponding words. The same batch
size of 30 was used for the evaluation. The re-
sults over the TVHF and AutoNet validation sets
are summarized in Table 3, where Rouge-Lsum-
Fmeasure (RL) (Lin, 2004) scores of 0.17 and
0.46 were respectively achieved. Unlike AutoNet,
TVHF dataset includes more complicated neural
architectures along with high-level human-written
textual descriptions, which makes the architecture
captioning more challenging. As a result, lower
performance is achieved.

The uni-modal AC baseline achieves an RL of
0.38 on AutoNet, which is 8% lower than the pro-
posed bi-modal ArchBERT (i.e., pre-trained on
both architectures and text, and fine-tuned for AC).

5.6 Architecture Search (AS)

ArchBERT is also applicable to Architecture
Search (AS) downstream task. The task is to de-
sign a semantic search engine to receive a textual
query from the user, search over a database of nu-
merous neural architectures (or models), and return
the best matching ones. As for any semantic search
engine, an indexed database of all searched archi-
tecture embeddings is needed, within which the
architecture search is performed. For the search
procedure over such database using ArchBERT,
the text query is encoded by the text encoder, and
then is cross-encoded to make sure the previously-
learned architectural knowledge is also utilized for
computing final text embeddings. The pooled text
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Table 4: Qualitative results on various tasks (v': Cor-
rect/Similar, X: Incorrect/Dissimilar, *: wrong preds).

Architecture Text AR | ACD
ResNet 8 image classifier with v
residual layers
Fasterrcnn text classifier using X X
(ResNet50) bert-based models
Bert-base object detection X
for photos
RoBERT text classifier using v v
(small) bert-based models
Vit b_16 bert—lhlke image X*
classification X
Fasterrcnn object detection for v
(mobilenet) photos
ConvNext a very large convnext %
. . v
(tiny) architecture
language model with X
Bert-mini . v
attention layers
AC: "this model separable convolution
. . which divides a single convolution into
Figure 3’s right S
architecture two convolutions
AQA: What type of pooling is used
(AutoNet) . . .
in this architecture?
Prediction: "MaxPool2d’, AvgPool2d’

embeddings are then compared with all the architec-
ture embeddings stored in the database to find the
best matching (most similar) architectures. We did
not report any numerical analysis for AS due to the
lack of related validation set. However, qualitative
demo is available in the supplementary materials.

5.7

In Table 4, ArchBERT’s predictions on AR and
ACD tasks over some samples from TVHF vali-
dation set are given. In addition, we present the
predictions on AC and AQA tasks over the right ar-
chitecture in Figure 3 (i.e., a sample from AutoNet
validation set). Sample cases for which ArchBERT
makes wrong predictions are also given in the table
(marked with *), e.g., AR’s prediction for Vit_b_16
and ConvNext-tiny architectures.

5.8 Ablation Study

We conduct ablation study to analyze the effect
of ArchBERT’s different modules such as MAM,
Cross Encoder, and graph elements on the perfor-
mance of AR, ACD, AQA, and AC tasks. The
results are summarized in Tables 2 and 3.

First, we remove the MAM head and its loss
from the pre-training and fine-tuning stages. The
performance of the pre-trained model without
MAM is evaluated on AR and ACD with the TVHF
dataset. As seen in Table 2, excluding MAM in pre-
training results in a significant F1 drops by 7.59%

Qualitative Results
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Figure 5: Visualization of example relevant architecture and text embeddings in a 2D space (projected via PCA).

and 10.51% on AR and ACD tasks, respectively.
The effect of MAM on finetuend ArchBERT for
AQA and AC downstream tasks is also evaluated
and reported in in Tables 2 and 3. It is shown that
using MAM provides F1 score improvements of
7.35% and 0.03% on AQA and AC, respectively.

We also study the ArchBERT’s performance
when the Transformer cross encoder is not used for
encoding the architectures. In this case, the embed-
dings obtained from the architecture encoder are
directly used for training and evaluating the model
by bypassing the cross encoder. The corresponding
results on AR, ACD, and AQA tasks are given in
Table 2. From the results, when the cross encoder
is removed, the performance of both the pre-trained
and fine-tuned models decreases. This reveals the
importance of the cross encoder in joint encoding
and learning of the text and architecture. As seen
in the table, the F1 scores on AR, ACD, and AQA
tasks are substantially reduced by 14.83%, 17.75%,
and 10.18%, respectively, if the cross encoder is
not utilized for architecture encoding.

We also ran a set of ablations over different
graph items. For AR, F1 scores of 71.86% (Arch-
BERT), 69.16% (w/o shape), 68.98% (w/o edge),
and 65.80% (w/o shape+edge) are achieved. For
ACD, F1 scores of 60.10% (ArchBERT), 60.20%
(w/o shape), 47.96% (w/o edge), and 56.45% (w/o
shape+edge) are obtained. It is seen that using all
graph items provides the best results. For ACD, the
shape has no effect on F1 score, but excluding it
gives ~1% lower accuracy.

The ArchBERT’s performance on out-of-
distribution data will be presented in the appendix.

5.9 Embeddings Visualization

As discussed before, ArchBERT learns to minimize
the cosine distance between relevant text and archi-
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tecture embeddings, while maximizing the distance
for the irrelevant ones. To convey this concept, we
visualize the joint embeddings of example relevant
texts and architectures (i.e., J; and J; in Equation
2) form TVHF dataset in Figure 5. The points in
the figure are obtained by projecting the embed-
dings to a 2D space via PCA (Jolliffe, 2005). As
shown in Figure 5, the text embeddings are mapped
to the points near by their relevant architectures.
This implies that ArchBERT has learned to mini-
mize the distance between the related pairs of texts
and architectures (i.e., positive samples) and obtain
similar embeddings for them. On the other hand,
the points for the irrelevant descriptions and archi-
tectures are projected far from each other, which
shows the success of ArchBERT in maximizing the
distance between unrelated pairs.

6 Conclusion

In this paper, we proposed ArchBERT, a bi-modal
solution for joint learning of neural architectures
and natural languages. We also introduced a new
pre-training technique called Masked Architecture
Modeling (MAM) for a better generalization of
ArchBERT. In addition, two new bi-modal bench-
mark datasets called TVHF and AutoNet were pre-
sented on which the proposed model was trained
and evaluated for different downstream tasks. Five
architecture-language-related tasks and applica-
tions were introduced in this work to verify the per-
formance of ArchBERT. This work has opened up
new avenues for research in the area of architecture-
language joint understanding, particularly the pro-
posed benchmarks. Potential research directions
to this work include text-based neural architecture
generation and bi-modal learning of languages and
other graph-structured modalities such as knowl-
edge graphs and social network graphs.
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A Appendix

A.1 Code, Dataset, and Demo

In order for the results to be reproducible, we share
our test code (plus the pre-trained model files) with
detailed instructions in the supplementary materi-
als. The code also includes the scripts for generat-
ing both TVHF and AutoNet datasets.

We also uploaded 6 video files demonstrating
the performance of ArchBERT on the following
downstream tasks: architecture search (AS), archi-
tectural reasoning (AR), architecture clone detec-
tion (ACD), bi-modal architecture clone detection
(BACD), architectural question answering (AQA),
and architecture captioning (AC).

All the code and demo files are also available
here?.

BACD task is similar to ACD, except that a sup-
porting text, which is considered as an extra criteria
to refine the results, is also provided along with the
two given architectures. The average similarity
of the architectures’ embeddings with the help of
the text embeddings is evaluated to check if the
architectures are similar or not.

The video recordings were taken from a web
application we built to demonstrate the real-world
application of our method. Example screenshots of
the AR and BACD demos are shown in Figure 6.

A.2 ArchBERT’s Performance on OOD Data

In order to study the behaviour of ArchBERT on
out-of-distribution (OOD) data, we establish an-
other set of experiments on individual TV and HF
datasets that have different distributions. In this
regard, we pre-train ArchBERT on each of TVHF,

2https ://developer.huaweicloud.com/
develop/aigallery/notebook/detail?id=
e6a924c7-735a-4e02-a25b-4416b77b6315

Input statement:

image classifier with residual layer 1

Input architecture:

aaB4T71ad-62e8-4ad2-b234-ffe9add34bb9___resnetl8

Dataset: TVHF

#Samples: 100000

The statement is: Correct.

TV-only, and HF-only datasets, and evaluate their
performance on each other. The corresponding
experimental results are summarized in Table 5.

As observed in the table, the models trained on
TV and HF subsets do not generalize to each other
due to the difference in their data distributions,
which results in poor performance. The distribution
plots for TV and HF subsets are shown in Figure
8. As given in Table 5, the highest scores on each
of TV and HF subsets are obtained by the model
trained with the entire TVHF training dataset. In
order to improve the performance of our model on
OOD, some techniques such as zero-shot or few-
shot learning can be employed, which is a potential
research direction for this work.

A.3 Embeddings Visualization

In Figure 5, an embedding visualization of some
architecture-text pairs was illustrated. In Figure
7, the visualizations for two different architectures
from TVHF dataset are individually presented. The
points on the figures are obtained by projecting the
final ArchBERT’s embeddings onto a 2D space via
PCA. As shown in the plots, unlike the relevant
text embeddings (marked with +), the irrelevant
ones (marked with x) are projected far from the
corresponding architecture embedddings.

A.4 Data Generation

The procedure of creating TVHF dataset along with
negative samples are given in Algorithm 1. To
generate the negative data samples, a pre-trained
S-BERT model (Reimers and Gurevych, 2019) is
used to calculate the similarity score between all
possible pairs of unique descriptions. If the max-
imum similarity score between each unique sen-
tence and all other sentences of each unique neural
architecture is smaller than a threshold 0.5, that sen-

Query:

model for object detection]

1

Input architecture 1:
86bac9ef-9591-4874-be1a-919f65410724___detection.ssd300_vggl6

Input architecture 2:

676af582-2358-4d40-9b62-fc7088a72910___detection.fasterrcnn_resnet50_fpn

Dataset: TVHF

#Samples: 100000

The architectures are: Similar.

Figure 6: Screenshots from the demos. Left: Architectural Reasoning (AR); Right: Bi-Modal Architecture Clone

Detection (BACD).
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The key building block is an Inception Module
EfficientNet-B7 only has 66 million parameters
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Architecture : convnext-tiny

in this section we use the 1.6

The number of channels in outer 1x1

ConvNeXT is a pure convolutional model (ConvNet),

The required minimum input size of the model is 17x17

This can be thought of as a

in this section we use the 800

They stack residual blocks ontop of each

Training Techniques are Weight Decay, SGD with Momentum

217 multiply adds 5400000 parameters and top accuracy is 75.6
Constructs a RegNetY_3.2GF architecture

Constructs a ShuffleNetV2 with 0.5x output channels

ConvNext is similar to any other ConvNet

Each layer from the FPN is passed

#¢  1x1 Convolution, Average Pooling, Convolution, Dense Connections,
convnext_tiny is used for image classification

(b)

Figure 7: Visualization of example pairs of (ir)relevant
architecture and text embeddings in a 2D space (pro-
jected via PCA).

RNRRL+

F1 on Validation set

Train set Task TV HF TVHF
v AR 85.05 3.82 28.78
ACD 58.88 22.85 23.30
HF AR 9.19 64.26 42.43
ACD 15.42 59.98 54.57
AR 85.32 64.39 71.86
TVHF ACD 62.77 60.01 60.10

Table 5: ArchBERT’s performance on OOD data.

tence is chosen as an irrelevant description for that
specific neural architecture. Note that 93% of the fi-
nal TVHF train set contains negative samples. The
above-mentioned procedure of generating many
negative candidates per each positive sample was
inspired by the multiple negatives sampling idea
described by Henderson et al. (2017). Having mul-
tiple negatives was proved to be effective when
used with dot-product and cosine similarity loss
function (Equation 3 in the main paper).

For TVHF-ACD dataset, all possible pairs of
neural architectures were compared based on their
structures. A hard score of 1 or 0 is then assigned
to a similar or dissimilar pair of architectures, re-
spectively. For TorchVision architectures with the
same architectural base (e.g., ResNet family), a
hard score of 1 is assigned to the pair. For Hugging-
Face models, the configuration files were compared
and in case of having similar specifications, a hard
score of 1 has been assigned to those architectures.
In overall, the TVHF-ACD dataset includes 11%
of similar pairs of architectures.

For AutoNet dataset, all unique layers of each ar-
chitecture are first extracted. To do so, an algorithm
is developed to take an architecture as input and
recursively extracts all unique modules and their
class path within that architecture. These unique
layers are then used along with a list of various
pre-defined templates to randomly generate mean-
ingful descriptions with different words and sen-
tence structures. The algorithm is then used with
modules that are not included in the architecture to
generate irrelevant descriptions that are considered
as negative data samples. Each architecture has
about 10-11 different descriptions about 30% of
which are the positive ones. The same extracted
layers and procedures are also used for automati-
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Figure 8: Distribution plots of TV and HF train and validation sub-datasets compared with each other.

cally generating the question and answer pairs, but
with a different set of templates for questions.

Algorithm 1 TVHF dataset generator

Input: Threshold S,
pos_samples TP
Output: list of architectures plus their positive
and negative descriptions
for each unique neural architecture G; € G do
for each unique description 7! € T?(G;) do
if max(SBERT(T?, T?,)) < (3 then
Add T; to T"(G) (list of neg_samples
for jth architecture)
end if
end for
end for
return {G, (17, 1T")}

architectures G,

A.5 Distribution Plots for TVHF and
AutoNet

Figure 9 shows the distribution plots of the TVHEF,
AutoNet, and AutoNet-AQA datasets. For each
dataset, the plots of the training and validation dis-
tributions of the number of nodes, the number of
edges, the number of textual tokens, and the se-
quence length of the descriptions are illustrated.

A.6 Sample Data from TVHF and AutoNet

In Table 6, example positive architecture-
description pairs (for both computer vision and
natural language processing problems) from TVHF
dataset are given.

Some sample pairs of architectures (with their
corresponding "similar" or "dissimilar" ground

truth labels) from TVHF-ACD dataset are also pre-
sented in Table 7.

In Table 9, we also provide data samples for
the BACD task, which includes quartets of two
architectures, supporting description, and the sim-
ilarity label. Note that the numerical analysis of
ArchBERT over BACD is not provided because our
BACD validation dataset is not finalized to be used
for this matter.

Table 8 also presents a few data samples from
AutoNet dataset used for fine-tuning and evaluating
ArchBERT on AC task. In Table 10, sample data
from AutoNet-AQA including the automatically
generated questions and ground truth answers for
AQA downstream task are given.

In Figures 10 and 11, the visualization of all
graphs generated for the neural architectures listed
in Tables 4, 8, and 10 are illustrated.

A.7 Dataset Quality Analysis

We provide dataset quality analysis based on four
criteria: reliability and completeness, label/feature
noise, feature representation, and minimizing skew
(Google, 2022).

A.7.1 Reliability and Completeness

The reliability of data refers to how trustable the
data is, whether it has duplicated values and if it
covers both positive and negative samples. As for
dataset completeness, it refers to how much of the
relevant information is included in the dataset for
dealing with the desired problem.

In our TVHF dataset, we have collected models
and their relevant descriptions as related bi-modal
data types for the ArchBERT model to learn neu-
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Figure 9: Distribution plots of TVHF, AutoNet, and AutoNet-AQA train/validation datasets.

As discussed in Section 4, some of the descrip-
tions in TVHF dataset did not include relevant tech-

ral architectures along with their corresponding
natural language descriptions. We considered the

reliability and completeness of our dataset by col-
lecting various models with different architectures
designed for different tasks such as image and text
classification, object detection, text summarization,
etc. Also, the descriptions that have been assigned
to each model were collected through blog posts,
articles, papers, and documentations containing
both high/low-level information related to that spe-
cific model. Due to the limited number of human-
designed models, to make our dataset large enough
for training purposes, we used each architecture
more than once, and each time we assigned a dif-
ferent unique description to it to avoid having du-
plicate architecture-description pairs in our dataset.
Moreover, we generated negative samples by as-
signing irrelevant descriptions to the architectures,
so that the model could learn both similarities and
dissimilarities.

nical information to the corresponding models. We
manually reviewed the descriptions and removed
such samples. We will further enhance the descrip-
tions associated with each model within the release
of the next version of our dataset.

A.7.2 Label/Feature Noise

Label noise refers to an imperfect annotation of
data that confounds the assessment of model per-
formance when training machine learning models.
Feature noise can be defined as the noise got into
the dataset through various factors such as incorrect
collection by humans or instruments. Inconsisten-
cies in data formats, missing values, and outliers
are examples of noise created by this process.

If noise in a dataset is defined as a wrong descrip-
tion for a model, our dataset is a noise-free dataset
because we annotated the samples manually.
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Since the description of building blocks in the
AutoNet models are converted to textual descrip-
tions and question samples automatically, all the
generated samples are relevant and noise-free.

For our ACD dataset, we manually hard-labeled
the models based on their similarity with each an-
other. Therefore, there is no missed or wrongly
labeled example in the entire dataset.

A.7.3 Feature Representation

Mapping data to useful features while presenting
them to the model is defined as feature representa-
tion. In this case, we consider how data is presented
to the model and whether the numeric values need
to be normalized.

To show our data to the ArchBERT model, we
have been consistent in the following way. For ar-
chitectures, based on their computational graphs,
we extracted nodes, shapes, and edges, which the
major and sufficient items to represent an architec-
ture in our work. We then normalized these items
and passed them to the model. As for descriptions,
we represented each textual description with to-
kens, normalized them, and used them as inputs to
the model.

A.7.4 Minimizing Skew

One of the reasons that may cause getting different
results for computed metrics at training vs. valida-
tion stages is training/validation skew. It usually
happens when different features are presented to
the model in training and validation stages.

We have collected our data and presented them
to the model in the way that both training and vali-
dation stages receive the exact same set of features
coming from the same distribution. This guaran-
tees that our data is not skewed towards training or
validation stages.
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Table 6: Positive data samples from the TVHF dataset (TV: TorchVision, HF: HuggingFace).

Architecture

Description

Source

vit_b_16

adopted from BERT

TV

segmentation.deeplabv3_resnet101

Improved version of DeepLab v2, with optimi-
zation of ASPP layer hyper parameters and

without a Dense CRF layer, for faster operation.

TV

resnet101

Residual Networks, or ResNets, learn
residual functions with reference to the

layer inputs , instead of learning unreferenced
functions.

TV

densenet121

A DenseNet is a type of convolutional

neural network that utilises dense connections
between layers, through Dense Blocks,

where we connect all layers (with matching
feature-map sizes) directly with each other

TV

resnext50_32x4d

ResNeXt is a homogeneous neural network
which reduces the number of hyper parameters
required by conventional ResNet.

vV

detection.keypointrenn_resnet50_fpn

12 Million Parameters, 2 Billion FLOPs and
File Size is 47.08 MB.

TV

DemangeJeremy/4-sentiments-with-flaubert

This model is a fine-tuned version of
google/fnet-base on the GLUE WNLI dataset

HF

ctoraman/RoBERTa-TR-medium-char

Model architecture is similar to bert-medium
(8 layers, 8 heads, and 512 hidden size)

HF

google/t5-efficient-base-dm1000

T5-Efficient-BASE-DM1000 is a variation of
Google’s original T5 following the TS model
architecture.

HF

microsoft/unihanlm-base

a self-supervised Chinese-Japanese pre-trained
masked language model (MLM) with a novel
two-stage coarse-to-fine training approach.

HF

facebook/wmt21-dense-24-wide-en-x

WMT 21 En-X is a 4.7B multilingual
encoder-decoder (seq-to-seq) model trained
for one-to-many multilingual translation.

HF

Table 7: Positive and negative data samples from TVHF-ACD validation set (TV: TorchVision, HF: HuggingFace,

0: dissimilar, 1: similar).

Architecture 1 Architecture 2 Label | Source
vgegll vggl9_bn 1 TV
mnasnet0_5 mnasnet0_75 1 TV
inception_v3 efficientnet_b3 0 vV
efficientnet_bl regnet_x_800mf 0 TV
google/t5-efficient-large-kv128 | google/t5-efficient-small-kv16 1 HF
jweb/japanese-soseki-gpt2-1b | tartuNLP/gpt-4-est-large 1 HF
hakurei/gpt-j-random-tinier minimaxir/magic-the-gathering 0 HF
mwesner/bart-mlm tartuNLP/gpt-4-est-base 0 HF
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Table 8: Positive and negative data samples from AutoNet (Architecture: list of unique layers, 0: negative sample,

1: positive sample).

Architecture Description Label
This architecture contains 2d max pooling layer which is a pooling
, , operation that calculates the maximum value, and Gaussian Error Linear
Conv2d’, . . . .. . 1
s R Units (gelu) activation function which is a smoother version of RELU.
PosEnc’, . .
‘ReLU’ It also has 2D Adaptive Average pooling layer.
, o, This neural network has Layer normalization over input across the features
BatchNorm2d’, . . . . . . .
Linear instead of batch dimension, and linear module which applies a linear 1
, 5 transformation to the incoming data. It also contains Dropout layer that is
Dropout’, . . . ..
, , used to drastically reduce the chance of overfitting during training.
LayerNorm’, - - - - -
'GELU" This classification neural network includes 2D average pooling layer used
T~ - for calculating the average for each patch of the feature map and has
Dil_conv2d’, oL . .
Zero’ about 1.18 Million parameters. In Totall, this neural network architecture has |
’MaxPool’Z & 432 layers, and, it has 95 Conv2d, 1 PosEnc, 80 ReL.U, 79 BatchNorm2d,
s AvePool2 d” 62 Linear, 46 Dropout, 30 LayerNorm, 15 GELU, 15 Dil_conv2d, 4 Zero,
'Ad tig AveP. ’12 & 2 MaxPool2d, 2 AvgPool2d, and 1 AdaptiveAvgPool2d layer.
ApHVeAvEroo This neural architecture has 2D frozen batch normalization module in which
the batch statistics and the affine parameters are fixed, and Anchor
Generator module which is a standard for 2D anchor-based detectors. 0
Additionally, this architecture contains stochastic depth layer which aims to
shrink the depth of a network during training.
This classifier includes 2D transposed convolution layer that applies convolution 0
with a fractional stride.
This classification neural architecture has Separable Convolution which
divides a single convolution into two or more convolutions to reduce the
number of parameters while producing the same output, and Hard Swish
’Conv2d’, activation function that replaces the computationally expensive sigmoid 1
"Hardswish’, with a piecewise linear analogue. This classifier also includes 2D average
’GeLU’, pooling layer used for calculating the average for each patch of the feature
’AvgPool2d’, map.
’Sep_conv2d’,”’ This network includes Dropout layer that is used to drastically reduce
AdaptiveAvgPool2d’, | the chance of overfitting during training, and 2D Adaptive Average pooling 1
"Dropout’ layer. This neural architecture has about 0.38 Million parameters.
This classification architecture includes generalized rcnn transform
module which performs input transformation before feeding the data
to a GeneralizedRCNN model, and Quantize stub module that is a 0
place holder for quantize operation. Another part of this neural network
is ReLU6 activation function which is a modification of the rectified linear
unit (relu) where the activation is limited to a maximum size of 6.
This architecture contains Layer normalization over input across the features
instead of batch dimension, and dequantization module which converts tensors 0

from quantized to floating point.
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Table 9: Positive and negative data samples for BACD task (TV: TorchVision, HF: HuggingFace, 0: dissimilar, 1:
similar).

Architecture 1 Architecture 2 Supporting text Label | Source

resnet18 segmentation.fcn_resnet101 A rpodel contam‘mg 1 TV
residual connection

mnasnet0_5 vggl9 {\n archltec?ure f.0r 1 vV
image classification

. . An architecture for

wide_resnet101_2 segmentation.deeplabv3_resnet50 | . . . 0 TV
image classification
A model containing

resnet34 alexnet . . 0 TV
residual connection

ctoraman/ ctoraman/ Model architecture is I HF

RoBERTa-TR-medium-char RoBERTa-TR-medium-wp-66k similar to bert-medium
containing ELECTRA

dbmdz/ skplanet/ for self-supervised | HF

electra-base-turkish-cased-discriminator | dialog-koelectra-small-generator | language representation
learning

rmihaylov/ . . TristanBehrens/js-fakes-4bars A mode! for. 0 HF

pegasus-base-cnn-dailymail-bg summarization

facebook/ A pre-trained model

m2m100-12B-avg-10-ckpt google/t5-11b-ssm-nqo for Question Answering 0 HF

Table 10: Data samples from AutoNet-AQA (Architecture: list of unique layers).

Architecture Question Ground Truth Answer
what type of pooling module has been used in AvgPool2d,
Conv2d, . . .
this neural architecture? AdaptiveAvgPool2d
BatchNorm?2d, - - -
ReLU what 2d average pooling layer performs in calculating the average for each
. ’ this neural network? patch of the feature map
Dil_conv2d, - - - . - - -
Sep conv2d what 2d Dilated Convolution module does in creating a wider kernel by inserting
P ’ this network? spaces between the kernel elements
AvgPool2d, - - - -
. what 2d max pool kernel size has been used in This model does not include
AdaptiveAvgPool2d, .
. this network? MaxPool2d
Linear : : —
in general what kernel size are used in this
5%5,1%1,3*%3
neural network model?
, , what 2d max pooling module calculates in calculating the maximum value
Conv2d’, .
'GELU’ this neural network? for each patch of the feature map
, S what type of normalization layer is used after
MaxPool2d’, L. . . LayerNorm
, , convolution in this neural network architecture?
LayerNorm’, what type of activation layer has been used in
Linear’, nat typ yer s GELU, Hardswish
, . this neural network model?
Hardswish This model does not include
’Dil_conv2d’, what hard sigmoid module performs in this model? . .
‘LaverNorm’ Hardsigmoid
Y . . o ’Conv2d’, ’GELU’, "MaxPool2d’,
overall what kind of layers are included in this , D , .,
neural network architecture? LayerNorm’, "Linear’, "Hardswish
’ ’Dil_conv2d’, ’LayerNorm’
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Figure 10: Graphs generated for the architectures listed in Table 4
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Figure 11: Graphs generated for the architectures listed in Tables 8 and 10.
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Abstract

There is growing interest in incorporating eye-
tracking data and other implicit measures of hu-
man language processing into natural language
processing (NLP) pipelines. The data from
human language processing contain unique in-
sight into human linguistic understanding that
could be exploited by language models. How-
ever, many unanswered questions remain about
the nature of this data and how it can best be
utilized in downstream NLP tasks. In this pa-
per, we present eyeStyliency, an eye-tracking
dataset for human processing of stylistic text
(e.g., politeness). We develop a variety of meth-
ods to derive style saliency scores over text us-
ing the collected eye dataset. We further inves-
tigate how this saliency data compares to both
human annotation methods and model-based
interpretability metrics. We find that while eye-
tracking data is unique, it also intersects with
both human annotations and model-based im-
portance scores, providing a possible bridge
between human- and machine-based perspec-
tives. We propose utilizing this type of data
to evaluate the cognitive plausibility of models
that interpret style. Our eye-tracking data and
processing code are publicly available.!

1 Introduction

Human perception and understanding of text is crit-
ical in NLP. Typically, this understanding is lever-
aged in the form of ground-truth human annotations
in supervised learning pipelines, or in the form of
human evaluations of generated text. However,
human language understanding is complex; mul-
tiple cognitive processes work together to enable
reading, many of which occur automatically and
unconsciously (DeVito, 1970).

Because of the complexity, disciplines con-
cerned with understanding and modeling how hu-
mans read — e.g., psycholinguistics and cognitive
science — heavily utilize implicit measures of the

"https://github.com/minnesotanlp/eyeStyliency

Dongyeop Kang
University of Minnesota
dongyeop@umn.edu

@ BERT:
[°°) @Delta. Are you kidding? Delayed from 7:30pm to
°—°] 11:00 - only to cancel it because the pilot is overtime.

Annotation:
@Delta. Are you kidding? Delayed from 7:30pm to
L 11:00 - only to cancel it because the pilot is overtime. )

Eye Tracking:
@Delta. Are you kidding? Delayed from 7:30pm to
11:00 - only to cancel it because the pilot is overtime.

Figure 1: Salient words for impoliteness from three different
perspectives. We find that eye tracking data contains some
overlap between machine and human-annotated salience.

human reading experience that capture signals from
these automatic processes in real time. Examples
of implicit measures include event-related poten-
tial, reaction times, and eye movements. In con-
trast, explicit measures include surveys and other
methods that directly ask people to report their per-
ceptions and experiences. We posit that traditional
NLP pipelines, which have widely used explicit
measures of human understanding, can also benefit
from implicit measures. In this paper, we focus
specifically on the use of eye movements as an im-
plicit measure of textual saliency.

Recent research in NLP has demonstrated the
feasibility of incorporating various types of eye
movement data into NLP models in order to im-
prove performance on a number of tasks (see Ta-
ble 2 for an overview). However, this is still an
underexplored area: best practices remain unclear,
and it’s not obvious whether there are tasks that
are unsuitable for eye movement data, or how eye
movement data should be balanced with traditional
annotation data. In this work, we address two main
research questions: RQ1: Does eye-tracking-based
saliency meaningfully differ from simply gather-
ing word-level human annotations, or from model-
based word importance measures? RQ2: How can
we measure eye movements specific to a high-level
textual feature like style, and which eye tracking
metrics and data processing methods are best suited
to capturing textual saliency?
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To address these questions, we conduct an eye
tracking case study in which participants read texts
the HummingBird dataset (Hayati et al., 2021).
We choose this dataset because it contains lexical-
level human annotations indicating which words
contribute to the text’s style and because its do-
main (textual styles) has not to our knowledge been
widely explored for eye tracking applications — al-
though prior work investigates eye tracking and
sentiment analysis, it does not extend to other lin-
guistic styles such as politeness.

We collect style-specific eye movements through
a carefully designed experiment (see Section 3 for
details), and we use these eye movements to de-
rive saliency scores over the text. We compare this
eye-based saliency to human annotations as well
as two large language model (LLM)-derived im-
portance scores: integrated gradient scores from
a BERT model fine-tuned on style datasets (Hay-
ati et al., 2021), and word-surprisal scores from
GPT-2 (Radford et al., 2019) (see Figure 1 for an
example). Our findings indicate that eye-tracking-
based saliency highlights some unique areas of the
text, but it also intersects with both saliency from
model-based metrics and saliency from human an-
notations, making a bridge of sorts between the
human- and machine-based perspectives. We dis-
cuss some implications of these findings for NLP
research.

Specifically, our contributions are:

* An experimental paradigm for obtaining eye
tracking-based signals for specific features of
text (in our case, textual style).

* A first-of-its-kind eye movement dataset on
style saliency, collected from 20 participants
and consisting of both control readings and
style-focused readings for polite, impolite, pos-
itive, and negative textual styles.

* An illustration of the distinction between this
dataset’s explicit human annotations and im-
plicit human eye data through a unique com-
parison between salient text obtained via an-
notation and via eye tracking.

2 Related Work

Eye tracking has been a staple of psycholinguis-
tic investigations of reading for decades (Rayner,
1978; Just and Carpenter, 1980). Eye movement
data is compelling because it provides realtime in-
formation about how people process language in a
natural, ecologically valid setting (i.e., there is no

NLPArea H M learning
from eye
data
Textual
Ours Style a4 X

Kuribayashi et al. (2021) Perplexity v X
Malmaud et al. (2020) QA
Bolotova et al. (2020) QA
Sood et al. (2020b) QA

Sood et al. (2020a)

X

X X Joint learning

X v X

X v X
Paraphrasing X X Joint learning

X

X

X

v

Sentiment

Hollenstein et al. (2019) CIf. NER X Joint learning

X HMM
X X
Summarization X X

Parsing X X X

Barrett et al. (2018)
Tokunaga et al. (2017)
Klerke et al. (2015)
Green (2014)

PoS tagging

NER

Table 1: A summary of prior work applying eye tracking meth-
ods to NLP. The H column indicates whether traditional hu-
man annotations are considered in relation to the eye tracking
data, and the M indicates whether model attention is consid-
ered. Most prior research has focused on either (a) comparing
and contrasting eye movements with various models’ atten-
tion mechanisms, or (b) using eye movements for multi-task
learning, where NLP task performance can be improved by a
model that jointly learns to predict eye movements in addition
to the relevant NLP task. To our knowledge, there have not
been three-way comparisons between attention mechanisms
from eye tracking, large language models, and manual human
annotations.

explicit experimental task, such as question answer-
ing, for participants to complete) (Kaiser, 2013).
Eye data provides insight into cognitive processes
through the eye-mind assumption, which posits
that (1) our eyes fixate on whatever our brains are
currently processing, and (2) as cognitive effort
to process an item increases, the amount of time
that the eyes fixate on that item also increases (Just
and Carpenter, 1980). Analysis of eye data under
this framework has led to important insights into
many unconscious phenomena in human language
comprehension, e.g. the mechanisms involved in
ambiguity resolution during reading (Traxler and
Frazier, 2008).

Eye Tracking in NLP. Due to the eye-mind
assumption, eye-tracking data is particularly well-
suited to inferring patterns of reader attention, or
saliency, over text. This saliency information has
so far shown promising results when integrated into
NLP models for question answering (e.g. Malkin
et al. (2022); Sood et al. (2020a); Malmaud et al.
(2020)). However, this is still a developing research
area: there is limited available data, and there is
little consensus regarding how to effectively collect
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data and incorporate it into NLP pipelines. To our
knowledge there is no previous research that inves-
tigates saliency for style via eye tracking, nor any
previous research that compares saliency from eye
tracking to human annotations (Table 1 compares
our work with the prior work).

Outside of textual saliency, eye-tracking data has
been leveraged for a variety of NLP tasks. Mishra
et al. (2013) quantify the difficulty of sentences
in machine translation tasks using eye movement
data; Mishra et al. (2016) determine whether a
reader understands sarcasm in text, and Sggaard
(2016) evaluate the quality of word embeddings
and text generations, respectively. Other work uses
existing datasets, sometimes augmenting the data
with a learned gaze predictor model, and uses this
eye movement data as an additional signal when
training models for various NLP tasks, includ-
ing named entity recognition (Hollenstein et al.,
2019; Tokunaga et al., 2017), paraphrasing (Sood
et al., 2020b), part-of-speech tagging (Barrett et al.,
2018), and sentiment analysis (see also Mathias
et al. (2020) for a review).

Saliency in Linguistic Styles. People apply
styles to language in order to express attitudes, re-
flect interpersonal intentions or goals, or convey so-
cial standings of the speaker or listener. (Note that
while many sociolinguistics theories distinguish
between textual style and textual attributes, in this
work, we follow the common convention in recent
NLP papers of broadly using ‘style’ to encompass
both of these ideas (Jin et al., 2022).) The meaning
expressed by textual styles can be significant; in
fact, there is strong evidence that effective commu-
nication requires an understanding of both style and
literal semantic meaning (Hovy, 1987). Although
BERT (Devlin et al., 2018) based fine-tuned mod-
els show strong performance on style classification,
there are notable differences between how BERT
perceives style at the lexical level and how humans
perceive it, and that using data about these differ-
ences during training improves model performance
(Hayati et al., 2023).

3 eyeStyliency: A Dataset of Eye
Movement for Textual Saliency

We describe the data collection procedure for eye-
Styliency dataset from 20 participants and methods
for computing saliency scores over text.

3.1 Data Setups

Our dataset consists of items from the Humming-
bird dataset (Hayati et al., 2021) in the following
stylistic categories: polite, impolite, positive sen-
timent, and negative sentiment.> We chose this
subset because of the small correlation between
categories (other categories, e.g. anger, disgust,
and negative sentiment are all highly correlated).

In this study, we limit participants’ total time
commitment to one hour. To achieve this, the
dataset size is 90 items across the four style cate-
gories. (The average word count per item in the
dataset is 21.6 overall; for the impolite, polite, neg-
ative, and positive styles average word count is
21.3,22.8, 21.4, and 20.8, respectively.) Most par-
ticipants finished the experiment in 40-60 minutes,
depending on both the individual’s reading speed
and the time needed to calibrate the individual to
the eye tracker.

3.2 Eye-Tracking Measures

Monocular eye movement data is collected with an
EyeLink 1000 Plus® at a rate of 1000Hz. We look
at the following eye-tracking metrics:

¢ First Fixation Duration (FFD): The duration
of the first fixation in an interest area.

¢ First Run Dwell Time (FRD): The time in-
terval beginning with the first fixation in the
interest area and ending when the eye exits an
interest area (whether to the right or left).

* Go Past Time (GP): The time interval begin-
ning with the first fixation in an interest area
and ending when the eye exits the interest area
to the left (i.e., to reread).

e Dwell Time (DT): The total fixation duration
for all fixations in an interest area. Also known
as gaze duration.

¢ Reread Time (RR): The total fixation duration
for all fixations in an interest area after the area
has already been entered and exited once.

* Pupil Size (PS): The average pupil size over
all fixations in an interest area.

(Note that First Run Dwell Time + Reread
Time = Dwell Time.)
These measures can broadly be categorized into
early measures (first fixation duration, pupil size)
that reflect more low-level reading processes and

ZPoliteness and sentiment datasets in Hummingbird are
originally sourced from Danescu-Niculescu-Mizil et al. (2013)
and Socher et al. (2013).

*Made by SR Research, Ontario, Canada; https://
www.sr-research.com/eyelink-1000-plus/
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Applications N | FFD | FC | FRD | DT | RR | RC | PL
eyeStyliency (Ours) Textual Style | 20| v | x| v | vV | V| X |V
Kuribayashi et al. (2021) Language model perplexity | X | x | x| X | v | ¥ | X | X
Malmaud et al. (2020) Question Answering | 269 | X | x| X | /| X | X | X
Bolotova et al. (2020) Question Answering | 20 | x | V| X | vV | V| X | X
Sood et al. (2020b) Paraphrasing | X | x | v | X | x| X | X | X
Sood et al. (2020a) Question Answering \ 23 \ X \ X \ X \ v \ X \ X \ X
Hollenstein et al. (2019) NER, Sentiment/Relation Classification | X | v | v | v | vV | V | V | V/
Barrett et al. (2018) PoS tagging | X | v | x| X | v | /| /| X
Tokunaga et al. (2017) Named entity recognition (NER) | X | x | x| X | /| X | X | X
Mishra et al. (2016) Sarcasm detection | 7 | x | x| X | v/ | X | X | X
Klerke et al. (2015) NLG evaluation |24 | x | Vv | X | Vv | v/ | V|V
Green (2014) Phrase-structure parsing | 40 | X | x| X | X | /| X | X

Table 2: A comparison of prior works with respect to the eye tracking metrics studied, data processing techniques, and number
of participants whose eye tracking data is collected. FFD = first fixation duration, FC = fixation count, RC = regression count,
RR =reread time, PL = pupil size, N = number of participants if new eye data collected.

late measures (go past time, dwell time, reread
time) that reflect higher-level processing and mean-
ing integration (Conklin et al., 2021). Previous
eye tracking applications for NLP have commonly
used dwell time, but a variety of measures have
been examined (see Table 2). In this study, we aim
to compare a wide variety of measures in order
to estimate which may be best-suited to capturing
textual saliency. Note that to avoid redundancy, we
chose to omit fixation counts from our analysis af-
ter finding high correlations between this measure
and dwell time (pearson’s r 0.93, p < 0.01).
We also chose to omit regression counts from our
analysis after finding that regression counts were
extremely sparse — specifically, 1.8% of the dataset
had a non-zero regression count.

3.3 Experimental Procedure

The experiment follows a between-subjects,
blocked design. The key part of our experiment
is the technique to isolate eye movements that are
specifically relevant to the text’s style. In order to
do this, we inform participants at the beginning of
each block that the block will contain only stim-
uli that share a style (polite, impolite, positive, or
negative) and source (Twitter, IMdB, or Stack Ex-
change/Wikipedia forums) — but in fact, we will
occasionally present an incongruent style in the
block (e.g., present an impolite Tweet during the
polite Tweet block). We expect that incongruency
to cause readers to pay more attention to style-
specific aspects of the text, as they are unexpected.
We are interested in comparing the eye movements
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of participants who read a stimulus in the congruent
condition with those of participants who read that
stimulus in the incongruent condition. Note that the
experiment has a between-subjects design, i.e. the
same participant does not see the same text in both
conditions. The congruent reading of the text pro-
vides a control. Figure 2 shows a concrete example
of these two conditions, while Figure 3 shows a
visualization of these contrasted eye movements.

Figure 4 shows a procedure of our experiments.
The experimental procedure is as follows (more
details in Appendix A). Participants complete nine
blocks. At the beginning of block, the participant
is informed of the style and source, and asked to
pay attention to the style of the following texts.
Each block contains 10 items, eight of which are
congruent with the target style. The remaining
two items are incongruent with the target style.
Incongruent items are counterbalanced across par-
ticipants. Blocks are presented in a random order,
and items within the blocks are pseudorandom-
ized to ensure adequate spacing between congruent
and incongruent trials (Egner, 2007) (there is also
a context-free text as an added control). Partici-
pants are asked True/False comprehension ques-
tions pseudorandomly after 30% of the items in
order to maintain motivation to read carefully. Af-
ter the experiment concludes, participants complete
the Perceived Awareness of Research Hypothesis
Scale (PARH) (Rubin, 2016) to evaluate whether
demand characterstics (Nichols and Maner, 2008)
of the experiment may have influenced reading be-
havior. The study procedure was approved by the



Incongruent , Congruent
Setup : Setup
% . Vo [
O ! The following movie reviews were The following movie reviews were
S written by critics who disliked the film. written by critics who liked the film.
O u \ r1
. . . !
Watchlng its rot_e_ plot polnt_s connect ' |An entertaining, colorful, action-filled
is about as exciting as gazingatan |, | . N -
N . | | crime story with an intimate heart.
egg timer for 93 minutes. '
TT | TT
The movie, directed by Mick Jackson, : .
; 1 | The mesmerizing performances of
leaves no cliche unturned, from the ' -
N | | the leads keep the film grounded and
predictable plot to the characters R N
N N ' | keep the audience riveted.
straight out of central casting. !
IT [T
P
S | A densely constructed, highly referential film, and an audacious return to
.g form that can comfortably sit among Jean-Luc Godard's finest work.
0
.. highly .. highly .. highly
referential | s = | referential
film, and .. film, and .. film, and ..
incongruent congruent gaze Eye_based
gaze (control) .
saliency

Figure 2: Illustrative example of congruent vs incongruent
presentation of the same stimulus. We rely on expectation
effects to induce participants to attend to the unexpected style
(in this case, positive sentiment); in other words, we assume
that the surprise regarding the style will result in longer gaze
durations for words that contribute to the perception of that
style — in this case, words relating to positive sentiment.

institutional review board (IRB).

Participants We collect data from 20 partici-
pants (12 male, 7 female, 1 non-binary; median age
23 years) recruited from the University community
and word-of-mouth. An additional 6 participants
were recruited but unable to complete the study due
to problems with eye calibration. Participants were
compensated with a $15 Amazon gift card.

Apparatus Monocular eye movement data is col-
lected with an EyeLink 1000 Pro, using the desktop
mount, at a rate of 1000Hz. Participants use a chin-
rest while reading in order to stabilize the head.
We use the Experiment Builder software to present
stimuli to participants in a 16pt serif font with 1.5
line spacing, on our display monitor with a 508mm
display area and a 1680x1050 resolution. Partic-
ipants are seated with their eyes 50-60cm away
from the display monitor.

Study Design Rationale Based on the well-
documented phenomenon of expectancy effects in
cognition (see Schwarz et al. (2016) for further
discussion), we assume that the incongruent texts
that subvert the stylistic expectation will lead to
participants reacting with surprise and increased
processing difficulty in response to parts of the text
associated with the unexpected style.

Alternative designs that explicitly ask partici-
pants to classify an item’s style were strongly con-
sidered, but were rejected for two reasons: first, we
are interested in observing a relatively natural read-

I will understand ifyou deeline, but would very much like

you to accept. May I nominate you?

I will understand if you decline, but would very much like

you to accept. May | nominate you? Human BERT Both

Figure 3: Exemplary eye-tracking data showing saliency for
polite style, with comparison to human word-level style im-
portance highlighting. The eye-tracking data is visualized as a
heat map showing gaze data from the incongruent style con-
dition, with the gaze data from the congruent style (control)

condition subtracted.
ﬂRepeal 9 times
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Figure 4: Experimental procedure.

ing process and introducing a classification task
runs counter to that goal; second, the style clas-
sification task could increase the saliency of not
only the target style but also its opposing style, as
both can be relevant to the decision (e.g., the pres-
ence of an impolite word is relevant to the decision
of whether a statement is polite). We also consid-
ered designs in which congruency is established
via explicit text labels rather than implicit expecta-
tions, but decided to instead choose an experimen-
tal paradigm that adheres as closely as possible to
an ecologically valid reading task.

3.4 Pre-processing Eye Tracking Data

Eye data was delineated into fixations and saccades
using the DataViewer software with EyeLink’s stan-
dard algorithm and default velocity and accelera-
tion thresholds. We further cleaned the data by
removing trials with significant track loss (i.e. tri-
als with track loss in over 50% of the text area);
1.5% of trials were removed due to track loss. An
outlier analysis showed that 0.5% of fixations were
outliers and were removed in our analysis.

3.5 Calculating Saliency Scores

We divide the text into interest areas (IAs) and
calculate saliency scores for each IA. We do not
segment the IAs such that each IA contains a single
word, because in a single fixation people can read
a span of about 21 surrounding characters (Rayner,
1978), meaning that many short words are not fix-
ated on, leading to difficulties with our desired

112




analyses. Instead, we use the natural language pro-
cessing toolkit (NLTK)’s stopwords list (Bird et al.,
2009) to define each IA such that stopwords share
an IA with the closest non-stopword. Specifically,
each stopword is combined with the closest non-
stopword, with non-stopwords to the right being
preferred in the case of a tie. We also ensure that
no IA contains a line break.

We utilize two techniques for calculating each
eye tracking-based metric for each IA;. Note that
these techniques are applied across all eye track-
ing measures x € {DT, FRD, GP, DT, RR, PS} as
defined in Section 3.2.

* z-score: For each participant py, denote the
eye tracking measurement in IA; as xy;. We
calculate the participant-specific z-score of eye
tracking measurement from IA; as zj(IA;) =
I’“&%“’“, where u, and oy, are the participant-
specific arithmetic mean and standard devia-
tion, respectively. Then, the saliency score for
IA; is given by 722’:0;’“ 1Ay,

* raw: We aggregate the raw values of the eye

tracking measurements from each IA. The

ZZ:() Lk

saliency score for [A; is given by =

4 Experimental Results

4.1 Comparison with Other Saliency Metrics

We investigate how eye tracking metrics compare
with other existing measures for lexical-level sig-
nificance — namely, human annotations, integrated
gradient scores, and large language model surprisal
scores (see Figure 5 for a visualization of these
scores):

* Surprisal scores: For the text in the i
interest area, denoted IA;, the surprisal is
P(IAZ ‘IA(), 1A, ...IAi_1>. We obtain this
probability estimate from the pre-trained GPT-
2 model (Radford et al., 2019). # In the event
that an IA includes multiple tokens, we sum
the surprisal of those tokens.

* Model gradient scores: The integrated gra-
dient method (Sundararajan et al., 2017) is
often used to obtain scores over the input to-
kens to a deep neural network, where a token’s
score reflects how much that token influenced
the network’s final output. We obtain these
scores with the Captum codebase (Kokhlikyan
et al., 2020), using the fine-tuned BERT model

*We include word-surprisal scores from GPT-2 as they
have previously been found to correlate with human reading
times (Wilcox et al., 2020).

from Hayati et al. (2021). For IA;, the in-
tegrated gradient score is the average of the
individual tokens within IA;.

* Human annotations: Human annotations
come from the Hummingbird dataset (Hayati
et al., 2021). Three annotators per item were
asked to highlight words that contribute to the
text’s style. We averaged these binary high-
lighting scores over each annotator to arrive at
a saliency score for each interest area.

Throughout the comparison, we answer the fol-
lowing two questions: How much do the salient [As
derived from each measure overlap and how much
does each measure agree on the saliency strength
of each [A?

To find the overlap between salient interest ar-
eas derived from different measures, we compute
a binary saliency map over the dataset for each
measure. We then compute the pairwise Jaccard
similarity coefficient for each possible pairing of
salient text sets (Fig 6), where the Jaccard simi-
larity coefficient is their intersection over union.
We use the median saliency score as the threshold
that determines whether the IA is labeled “salient”
so that each measure results in the same number
of salient words, allowing a more straightforward
comparison between measures.

We find that the intersection over union of salient
interest areas from eye tracking methods and both
integrated gradient scores and human annotations
falls between 0.26 and 0.31. Critically, the three-
way intersection over union between salient text
from integrated gradients, human annotations, and
eye tracking metrics falls between 0.05 and 0.06,
indicating that each metric captures a relatively
unique set of text within the dataset (see Fig 7).

We also investigate what types of words are se-
lected as salient by each method by performing
part-of-speech (POS) tagging on the salient interest
areas for each measure, finding that while distri-
butions of parts of speech are similar, humans se-
lect proportionally more adjectives while eye track-
ing metrics select proportionally more verbs and
adverbs (Figure 9). This discrepancy may be ex-
plained by human annotators focusing more on sin-
gle words with high stand-alone style (oftentimes
these are adjectives such as happy, gracious), while
people’s eyes attend to the context surrounding that
word (oftentimes this context includes verbs and
adverbs). For example, in the polite phrase “Thank
you for removing...,” human annotators highlight
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(c) Saliency scores for negative sentiment. (d) Saliency scores for positive sentiment.
Figure 5: A comparison of saliency scores from various methods: manual human annotations, language model introspection, and

eye tracking. Darker highlights indicate stronger saliency scores.
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Figure 6: Confusion matrix of the Jaccard similarity score for salient text derived from each metric. (See Appendix for the
correlation coefficient for saliency scores derived from each metric.)

only “thank you” whereas eye gaze also focuseson 4.2 Qualitative Results

the gerund verb “removing.” o L .
g & For a qualitative visualization of saliency over the

politeness style, see Figure 8. In general, human an-
notations have a tendency to focus on segments of

To measure agreement between different mea-
sures with respect to saliency strength, we compute
a saliency score for each IA in the dataset derived
from each measure. We then compute the pair-
wise Pearson’s r correlation coefficient, finding
most coefficients are near 0 (see Appendix). In
other words, while there is some agreement across
human-, machine-, and eye-based methods with
respect to which IAs are above median saliency,
there is little correlation with respect to the saliency
scores themselves.

text with clear style markers. For instance, phrases
such as “please” are consistently highlighted by
human annotators. Our eye tracking data indicates
that these phrases do not reliably draw the reader’s
gaze during the realtime reading process. We no-
tice that the eyes often focus on the object of the
politness marker rather than the politeness marker
itself: For instance, the polite text “Thank you for
your kind comment,” human annotators highlight
only “thank you” whereas gaze data focuses on
“your kind comment.”
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Figure 7: Venn diagram illustrating the intersection of sets
of salient interest areas derived from Dwell Time (blue), inte-

grated gradients (green), and human annotations (red).

please
Anniversary
Birthday
Please
Happy
Human Integrat.ed
. Gradients
Annotation you wish Hi -
to fix it @Colin
Could you Hey, |
sorry for the pseudo
trouble @pinknumjoo
Hey Sai -
Thanks, \ feed%ack on
Thank you at1:10
chance you I am really important than
possible for they work @discoverdelicio
let me know at around

I'should much like
itself, but Oops,
understand
Dwell Time love to

picturing it

Figure 8: Venn diagram showing interest areas salient to the
polite style. For each section of the Venn diagram, the interest
areas with the top five highest saliency scores are shown.

We also observe that eye data, and in particular
dwell time, shows high attention to certain nouns
— i.e., names, usernames, and movie titles. This
cannot be explained by word frequency effects, as
participants in the control condition did not spend
as long attending to these nouns.

4.3 “Eye-in-the-loop” few-shot learning

We utilize “eye-in-the-loop” few-shot learning in
order to roughly probe the cognitive plausibility of
GPT-3 (Brown et al., 2020). Our prompts present
a classification task and include zero to four ex-
amples from our dataset, including an “important
words” section that contains the salient text as de-
fined by each eye-tracking measure, human anno-
tations, and integrated gradient scores (see Sec-
tion 3.5 for details). As a baseline, we omit the
“important words.” We expect that if GPT-3 has a
particularly strong cognitive understanding of style

- IN ) NN RB VB mmm other
Human Annotations 51% 5%
Integrated Gradients 51% 7%
Dwell Time 50% 5%
Reread Time 53% 4%
Go Past Time 50% 6%
First Run Dwell 49% 6%
First Fixation Duration 54% 5%
Pupil Size 54% 4%

Figure 9: Top 5 most common parts of speech for each mea-
sure’s salient IA set. IN: prepositions and subordinating con-
junctions, JJ: adjectives, NN: nouns, RB: adverbs, VB: verbs.

100.0

97.5

95.0
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Hybrid Score

First Fixation Duration

Reread Time

Dwell Time

mm Integrated Gradients
Human Annotations

]
|

Accuracy (%)

87.51

85.01

82.51

8.0 0 1 : 4

N Shots

Figure 10: Few-shot learning classification experiment accu-
racy scores, averaged over 5 rounds with randomly selected
demonstrations. Error bars indicate 95% confidence interval.

processing, “important words” from eye movement
data may improve its task performance (in these
experiments, we use the text-davinci-002 model).
Results are relatively inconsistent across each of
the four shots, but in most cases, it seems that in-
cluding salient words has little effect on the model
accuracy on the style classification task. A subset
of the results are shown in Figure 10; see Appendix
for full results and prompt details.

5 Key Findings and Discussion

Here we discuss the relationship between our re-
sults and our research questions:

RQI: Does eye tracking data for saliency mean-
ingfully differ from simply gathering word-level
human annotations, or from model-based word
importance measures? Our data show a substan-
tial difference between eye-tracking-based saliency,
model-based saliency, and human annotations. It
is perhaps unintuitive that reading behavior would
differ from self-reports after reading, but this is
consistent with findings in psycholinguistics that
establish strong distinctions between explicit mea-
sures (i.e., human annotations) and implicit mea-
sures (i.e., eye tracking) of human language pro-
cessing. Interestingly, there is some intersection
between eye tracking-based saliency and model-
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based saliency that is not shared with human anno-
tators. This suggests that some automatic aspects
of human language processing, accessible through
eye tracking but not necessarily survey methods,
may be shared with large language models.

RQ2: How can we measure eye movements
specific to a high-level textual feature like style,
and which eye tracking metrics and data process-
ing methods are best suited to capturing textual
saliency? The results from our experiment indi-
cate that our experimental paradigm exploiting con-
gruency effects may be effective in finding eye
movements specific to certain text features. In a
linear mixed effect model analyzing the data, we
find significant effects of the congruency condi-
tion on dwell time and pupil size (see Appendix
A.2). This suggests that the congruency effect does
impact reading patterns — whether this impact is
directly linked to the textual style is difficult to
definitively answer, but given the overlap between
eye-tracking-based style saliency and other style
saliency measures, it seems reasonable to believe
that the experimental manipulation resulted in an
implicit measure of style perception. Experiments
based on congruency effects may be a promising
route for capturing eye movements related to other
high-level textual features such as sarcasm and
metaphor. We find that dwell time appears to be
the strongest eye-tracking metrics for capturing
textual saliency, as it has both the highest overlap
with human- and machine-based saliency and most
strongly responded to the experimental manipula-
tion. Using the same criteria, we also find that
using participant-level z-scores to represent the eye
movement data yields the best results.

6 Limitations

In this exploratory study, our dataset and sample
size are both small, limiting the possibilities for
a more thorough evaluation of the data e.g. by
fine-tuning a language model. We also note that
by design, our experiment presents incongruent
items rarely, and consequently we have consider-
ably more congruent datapoints than incongruent
datapoints — an inherent limitation of the proposed
experimental paradigm. In light of our results,
which suggest that eye-tracking data contains use-
ful and unique information, we plan to develop
methods for collecting this kind of real-time human
reading data at scale — i.e., without the constraints
of costly in-person eye tracking — in future work.

Finally, eye tracking analysis in general is lim-
ited by the eye-mind assumption, which holds that
the eye fixates on what the mind is currently pro-
cessing. While there is strong evidence supporting
the eye-mind assumption during reading, there is a
notable exception: retrieval processes (i.e. access-
ing memory) are not reflected in eye movements
(Anderson et al., 2004).
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A Appendix

A.1 Experimental Materials

The following materials were presented to partici-
pants during the experiment. Informed consent was
obtained from each participant before the experi-
ment began. Instructions were displayed as shown
in Figure 11.

The practice items, which participants completed
after reading the instructions and before beginning
the experiment, were as follows:

Text: What does this have to do with programming
? Are you trying to solve this problem
with a program?

Question: None

this is source code... what is the
question? Do you really think that throwing
code at us will solve your problem?!
Question: Do you agree or disagree with the
following statement: The writer of the post
seems upset.

Text:

See also Figure 11 for screenshots of the dis-
play shown to participants at various points in the
experiment.

A.2 Mixed Effect Modeling

We fit linear mixed effect models to predict our
eye tracking measures, using the R packages Ime4
and lmetest. Our fixed effects are the number of
characters in the interest area, the HAL frequency
of the interest area, whether the previous interest
area was viewed, and whether the interest area is
in the congruent or incongruent condition. Our
random effect is the participant ID. All variables
are normalized prior to analysis.
model = lmer (EYE_TRACKING_MEASURE ~ 1 +
congruent + previous_viewed+ LENGTH +
HAL_FREQ + (1 | RECORDING_SESSION_LABEL))

The Dwell Time and Pupil Size eye tracking
measure showed significance for the the fixed con-
gruency effect. The other eye tracking measures
— First Run Dwell Time, First Fixation Duration,
Reread Time, and Go Past Time — result in a singu-
lar fit, likely because they are considerably more
sparse (i.e., many interest areas have a null values
for these metrics).

tvalue Pr(>|t|) Sig. VIF
(Intercept)  -19.114 <0.001 ***
frequency -18.238 <0.001 xxx 2.53
length 31.858 <0.001 **xx 253
congruency 2.449 < 0.05 * 1.00
previous IA  26.662 <0.001 * 1.00

Table 3: Fixed Effects: predicting dwell time

tvalue Pr(>|t|) Sig. VIF
(Intercept) -4.098 <0.001 =%
frequency 1.865 0.06 . 228
length 3.056 <0.01 sk 2.27
congruency -8.382 <0.001 *xxx 1.00
previous IA 9915 <0.001 %% 1.00

Table 4: Fixed Effects: predicting pupil size

We tested variables for collinearity using the
variance inflation factor (VIF) (Zuur et al., 2010)
(none exceeded the recommended threshold of 3).

A.3 Additional Saliency Comparisons

A.3.1 Saliency Scores

Figure 12 shows the Pearson’s r value for saliency
score over interest areas derived from each method.
We also include more example items from the
dataset with associated saliency scores in Fig-
ure 5b.

A.4 Few-Shot Learning Experiment Details
and Results

The full few-shot learning results can be found
in Table 5. The experiment was conducted with
the OpenAl API° completion endpoint and the fol-
lowing parameters: the text-davinci-002 model, a
temperature of 0, and a top_p of 1.

We generated in-context learning prompts over
our dataset by including important words as fol-
lows:

Decide whether the following text is Polite or
Impolite.
Thank you for your kind comment. Do you have a
suggestion where the portals should be placed?
Important words: thank you, suggestion
Polite or Impolite:

Text:

Shttps://openai.com/api, accessed in accordance with Ope-
nAI’s terms of use
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Important
We are studying how people convey their emotions and
attitudes in text. In this experiment, you will read short texts The following tweets were written by people who were
extracted from Twitter, online forums, and movie reviews. feelin: g bad in some way The writers were feelin: g
The texts have been organized into eight different sections. dissatisfied, discouraged, or otherwise negative; they

At the beginning of each section, you will see a description of tried to express that feeling through their tweets.
(a) what kind of author wrote the texts in the section, and (b)
what kind of emotions or attitudes the authors are trying to
convey.

Press any key to continue
Sometimes you will be asked a question about the text after
you finish reading.

Press any key to continue.

(a) Experiment instructions screen. (b) One of the “context” screens shown at the be-
ginning of each block. This information makes
participants aware of what type of text to expect in
the following screens.

Ginoceno Great prediction bro! Nice optimism #FAKEFAN Do you agree or disagree with the following statement?
p D! you agr gr g
The writer of the post seems upset.
(c) One of the screens displaying an item from the (d) One of the comprehension question screens.

dataset.
Figure 11: Screenshots from the experiment program.

annotations

model grads- 0.17
surprisal- 0.058 0.038
dwell time-0.0055-0.013 0.064
reread time--0.019 -0.042 0.04 0.19
go past time--0.027 -0.034 0.041 0.23
first run dwell--0.056 0.015 0.038 0.22 -0.012 0.14

first fixation duration--0.037 -0.035 0.065 0.076 0.01 0.046 0.28
pupil size--0.019 -0.053 -0.066 -0.072 -0.021 -0.023 -0.031 -0.013

annotations
model grads
surprisal
dwell time
reread time
go past time
first run dwell
pupil size

first fixation duration

Figure 12: Correlations (Pearson’s r) between the saliency scores derived from each method.
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Metric for Saliency Data aggregation (eye-tracking only) | Experimental Conditions | 0-shot | 1-shot 2-shot 4-shot

Baseline NA NA 95.18 | 93.98 (2.46) | 90.36 (0.96) | 95.18 (0.96)
Human Annotations NA NA 93.98 | 91.57 (2.89) | 90.36 (3.27) | 93.98 (1.80)
Integrated Gradients NA NA 93.98 | 93.98 (1.93) | 92.77 (2.46) | 96.39 (0.96)
GPT2 Surprisal NA NA 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
Dwell Time Z score All 93.98 | 92.77 (1.80) | 93.98 (0.96) | 96.39 (2.89)
Dwell Time z score Incongruent - Congruent | 93.98 | 93.98 (1.93) | 91.57 (1.93) | 95.18 (2.36)
Dwell Time LME All 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
Dwell Time LME Incongruent - Congruent | 93.98 | 92.77 (1.18) | 91.57 (1.93) | 95.18 (2.36)
Dwell Time raw All 93.98 | 93.98 (1.18) | 95.18 (1.93) | 96.39 (1.80)
Dwell Time raw Incongruent - Congruent | 93.98 | 92.77 (1.80) | 89.16 (2.89) | 95.18 (2.46)
Reread Time Z score All 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
Reread Time Z score Incongruent - Congruent | 93.98 | 93.98 (2.36) | 90.36 (2.36) | 97.59 (2.16)
Reread Time raw All 93.98 | 92.77 (1.18) | 91.57 (2.46) | 93.98 (2.81)
Reread Time raw Incongruent - Congruent | 92.77 | 92.77 (2.46) | 86.75 (2.81) | 96.39 (1.80)
Go Past Time Z score All 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
Go Past Time Z score Incongruent - Congruent | 93.98 | 91.57 (2.89) | 87.95(3.86) | 92.77 (2.46)
Go Past Time raw All 92.77 | 92.77 (0.96) | 91.57 (2.46) | 96.39 (1.18)
Go Past Time raw Incongruent - Congruent | 93.98 | 92.77 (3.27) | 90.36 (3.20) | 93.98 (2.46)
First Run Dwell Time Z score All 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
First Run Dwell Time Z score Incongruent - Congruent | 93.98 | 92.77 (2.46) | 92.77 (1.18) | 92.77 (2.46)
First Run Dwell Time raw All 93.98 | 92.77 (1.18) | 92.77 (2.46) | 96.39 (2.36)
First Run Dwell Time raw Incongruent - Congruent | 93.98 | 92.77 (1.80) | 89.16 (3.54) | 93.98 (2.46)
First Run Dwell Time LME All 93.98 | 92.77 (1.93) | 92.77 (2.36) | 95.18 (2.46)
First Run Dwell Time LME Incongruent - Congruent | 93.98 | 92.77 (2.46) | 89.16 (3.54) | 93.98 (2.46)
First Fixation Duration Z score All 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
First Fixation Duration Z score Incongruent - Congruent | 93.98 | 92.77 (2.46) | 90.36 (0.96) | 95.18 (2.46)
First Fixation Duration raw All 93.98 | 93.98 (2.64) | 89.16 (1.80) | 96.39 (0.96)
First Fixation Duration raw Incongruent - Congruent | 93.98 | 92.77 (2.81) | 90.36 (3.27) | 95.18 (1.93)
Pupil Size Z score All 93.98 | 92.77 (0.96) | 92.77 (0.96) | 97.59 (1.18)
Pupil Size Z score Incongruent - Congruent | 92.77 | 93.98 (2.46) | 86.75 (4.31) | 93.98 (1.80)
Pupil Size raw All 93.98 | 92.77 (1.18) | 92.77 (1.80) | 95.18 (2.81)
Pupil Size raw Incongruent - Congruent | 93.98 | 91.57 (1.93) | 86.75 (4.03) | 96.39 (2.46)
Pupil Size LME All 93.98 | 91.57 (2.46) | 95.18 (2.36) | 92.77 (1.18)
Pupil Size LME Incongruent - Congruent | 93.98 | 92.77 (2.16) | 86.75 (4.03) | 96.39 (2.46)
Hybrid (Human + Dwell Time) | z score All 95.18 | 93.98 (1.18) | 93.98 (2.46) | 96.39 (1.52)
Hybrid (Human + Dwell Time) | z score Incongruent - Congruent | 93.98 | 92.77 (4.15) | 93.98 (3.05) | 96.39 (1.18)

Table 5: Accuracy results on few-shot learning experiments over dataset. For 1-, 2-, and 4-shot learning, five different randomly
selected prompts were chosen and the average accuracy is reported (the 95% confidence interval is reported in parentheses after
the accuracy score).
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Abstract

What makes a presupposition of an utterance—
information taken for granted by its speaker—
different from other pragmatic inferences such
as an entailment is projectivity (e.g., the neg-
ative sentence the boy did not stop shedding
tears presupposes the boy had shed tears be-
fore). The projectivity may vary depending on
the combination of presupposition triggers and
environments. However, prior natural language
understanding studies fail to take it into account
as they either use no human baseline or include
only negation as an entailment-canceling envi-
ronment to evaluate models’ performance. The
current study attempts to reconcile these issues.
We introduce a new dataset, projectivity of pre-
supposition (PROPRES), which includes 12k
premise—hypothesis pairs crossing six triggers
involving some lexical variety with five envi-
ronments. Our human evaluation reveals that
humans exhibit variable projectivity in some
cases. However, the model evaluation shows
that the best-performed model, DeBERTa, does
not fully capture it. Our findings suggest that
probing studies on pragmatic inferences should
take extra care of the human judgment variabil-
ity and the combination of linguistic items.

1 Introduction

It is an open question as to whether language mod-
els can learn a human-like pragmatic inference
(Pavlick, 2022). A speaker does not always ex-
plicitly say everything in an utterance, but a hearer
can infer what is implicit in it. One notable case
concerns a presupposition that refers to information
taken for granted by a speaker of an utterance (Stal-
naker, 1974; Beaver, 1997). Presuppositions are
prevalent in our everyday communication; hence,
a comprehensive investigation of whether models
can understand them in the same way as humans
can contribute to the development of a better lan-
guage understanding system.

Presupposition triggers introduce presupposi-
tions (e.g., again in Figure 1 (a)). A presuppo-

Saku Sugawara
National Institute of Informatics
saku@nii.ac.jp
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(a) The doctor cut the tree again.
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(b) The doctor did not cut the tree again. n.
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(c) Did the doctor cut the tree again? =m (f) The doctor had cut the tree before.
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(d) If the doctor had cut the tree again,... |® *

*
[ _ ] *
*
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(e) The doctor might cut the tree again. *

Figure 1: Projectivity of presupposition. A presuppo-
sition can project out of entailment-canceling environ-
ments. The dashed arrows indicate that the projectivity
varies depending on the combination of triggers and
environments.

sition of (a) is the doctor had cut the tree before
(f). What makes the presupposition different from
an entailment (in this case, the doctor cut the tree
one more time) is projectivity: the presupposition
projects out of entailment-canceling environments
(e.g., negative (b), interrogative (c), conditional (d),
and modal (e) sentences) while the entailment does
not.! In other words, the presupposition (f) holds
in the environments (b—e), but the entailment (the
doctor cut the tree one more time) does not.
Crucially, linguistic studies suggest that the pro-
jectivity can vary depending on many factors (Kart-
tunen, 1971; Simons, 2001; Sevegnani et al., 2021;
Tonhauser et al., 2018, 2019; Degen and Tonhauser,
2021b). Previous probing studies in natural lan-
guage processing examine models’ performance
on presuppositions in the natural language infer-
ence (NLI) task (Jeretic et al., 2020; Parrish et al.,
2021). However, they do not fully take into ac-
count the variable aspect of the projectivity. For
instance, Jeretic et al. (2020) obtain no human base-
line, which makes models’ performance hard to

"Formal semantic and pragmatic literature generally uses
the term, operators, rather than environments but we use the
latter for the sake of readability.
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Trigger Type

Example Triggers

Example Premise

Iterative
Aspectual verb
Manner adverb

again
stop, quit, finish
quietly, slowly, angrily

Factive verb remember, regret, forget
better than, earlier than

before, after, while

Comparative
Temporal adverb

The assistant split the log again.
The assistant stopped splitting the log.
The assistant split the log quietly.
The assistant remembered splitting the log.

The assistant split the log better than the girl.
The assistant split the log before bursting into the room.

Table 1: Presupposition triggers with an affirmative (unembedded) premise in PROPRES.

Environment Premise Hypothesis (target and control) Label (target/control)
Unembedded The doctor shed tears again. E(C)/E(C)
Negation The doctor did not shed tears again. Target: The doctor had (not) shed tears before. E(C)/C(E)
Interrogative Did the doctor shed tears again? E(C)/N(N)
Conditional  If the doctor had shed tears again, ... Control: The doctor (did not) shed tears again. E(C)/C(E)
Modal The doctor might shed tears again. E(C)/N(N)

Table 2: Environments used in PROPRES. E = Entailment, C = Contradiction, and N = Neutral. The labels in the

target conditions are defined based on projectivity.

interpret. Parrish et al. (2021) collect human data
but use only one entailment-canceling environment,
negation. Hence, it remains unclear about the pro-
jectivity out of other environments.

This study attempts to reconcile these issues.
We first evaluate recent pretrained language mod-
els against a presupposition portion of IMPPRES
(Jeretic et al., 2020). Specifically, we conduct a
human evaluation on its subset (900 pairs), each
of which ends up receiving 9.4 labels on average,
and then evaluate RoOBERTa (Liu et al., 2019) and
DeBERTa (He et al., 2020). We find that humans
exhibit relatively weak projectivity in some exam-
ples but the best-performed model, DeBERTa, does
not perform in a human-like way.

IMPPRES is imperfect in terms of comprehen-
siveness: the nine triggers that it uses are not ex-
haustive (cf. Levinson (1983) and Potts (2015)
list a total of 27 triggers) and are lexically limited.
Thus, using six new triggers with some lexical va-
riety (Table 1) and five environments (Table 2), we
construct an extensive evaluation dataset: projec-
tivity of presupposition (PROPRES), which con-
sists of 12,000 sentence pairs. We evaluate four
models (bag-of-words, InferSent (Conneau et al.,
2017), RoBERTa, and DeBERTa) with PROPRES
against human judgments on its subset (600 pairs)
Each pair has more than 50 human labels on av-
erage. This second evaluation reveals that human
data exhibit variable projectivity not only in pre-
viously attested cases such as manner adverbs in
interrogative and negative environments (Stevens

et al., 2017; Tonhauser et al., 2018) but also in
unattested cases such as those in conditional and
modal environments. Additionally, we find some
within-trigger-type variation. However, the best-
performed model, DeBERTa, shows poor perfor-
mance on controls and does not fully capture the
variable projectivity patterns, indicating that it does
not learn the pragmatic knowledge necessary to un-
derstand presuppositions. These findings suggest
that the combination of the various linguistic items
in PROPRES and the human evaluation allow us to
probe the model’s behavior more adequately.

The results from our two evaluations suggest
that studies evaluating language understanding sys-
tems and creating datasets targeting pragmatic in-
ferences should take extra care of the human judg-
ment variability and the combination of linguistic
items. In conclusion, this study makes the follow-
ing contributions:?

* We introduce PROPRES using six novel presup-
position triggers embedded under five environ-
ments, which enables a comprehensive investi-
gation of the projectivity of presupposition.

* Our human evaluation provides evidence for the
variable projectivity depending on the combina-
tion of triggers and environments.

* Our model evaluation against human results re-

2Qur dataset with the human labels and codes used to gen-
erate it are availableathttps://github.com/nii-cl/
projectivity-of-presupposition.

123



veals that the models and humans behave differ-
ently in the understanding of presuppositions.

2 Background

2.1 Presupposition in Linguistics

Linguistic items or constructions introducing a
presupposition are referred to as presupposition
triggers (e.g., again in Figure 1; Stalnaker, 1974;
Beaver, 1997). One property that makes presup-
positions distinct from other pragmatic inferences
such as an entailment is projectivity: presupposi-
tions survive in entailment-canceling environments
such as negation (Karttunen, 1973; Heim, 1983).
For instance, a presupposition of the affirmative
sentence with the presupposition trigger again ((f)
given (a)) holds when embedded under negation
(b). In contrast, the same environment cancels an
entailment (here, the doctor cut the tree one more
time).

Importantly, previous linguistic studies show that
the projectivity of presupposition can vary depend-
ing on factors such as context, lexical items, prior
beliefs, a speaker’s social identity, and prosodic fo-
cus (Karttunen, 1971; Simons, 2001; Stevens et al.,
2017; Tonhauser et al., 2018, 2019; Degen and
Tonhauser, 2021b). This variability is in line with
the observation that humans make unsystematic
judgments about projectivity on both natural (Ross
and Pavlick, 2019; de Marneffe et al., 2019) and
controlled (White and Rawlins, 2018) sentences.
One remaining question here is whether the vari-
able projectivity has to do with the interaction of
triggers and environments (e.g., is a presupposition
triggered by again more likely to project over the
negation (b) than the conditional (d)?). To tackle
this question comprehensively, this study collects
human judgments on presuppositions using a wide
range of triggers and environments.

2.2 Presupposition in NLI

Previous studies introduce NLI datasets to evalu-
ate model performance on presuppositions (Jeretic
et al., 2020; Parrish et al., 2021). One example is
a template-based dataset: IMPPRES (Jeretic et al.,
2020). Using this dataset, Jeretic et al. (2020) con-
clude that models (e.g., BERT (Devlin et al., 2019))
learn the projectivity of presuppositions triggered
by only, cleft existence, possessive existence, and
question. However, there is one problem with them,
that is, no human evaluation. As discussed in Sec-
tion 2.1, it is possible that projectivity varies de-

pending on the combination of triggers and envi-
ronments. Thus, it is unknown whether the results
of the model evaluation reported by Jeretic et al.
(2020) align with human data. To solve this issue,
following Parrish et al. (2021), we conduct human
evaluation on a subset of IMPPRES as well as our
dataset, PROPRES.

Another dataset relevant to our study is NOPE
(Parrish et al., 2021), which consists of naturally-
occurring sentences with presupposition triggers.
With this dataset, Parrish et al. (2021) evaluate
transformer-based models against human perfor-
mance, finding that models behave similarly to
humans. One limitation of NOPE is that it in-
cludes only negation as an entailment-canceling
environment. As a result, the generalizability of
the findings by Parrish et al. (2021) is unclear be-
yond negation. To draw a more general conclu-
sion, it is necessary to include various types of
environments. Following Jeretic et al. (2020), the
entailment-canceling environments in PROPRES,
include not only negation but also an interrogative,
conditional, and modal.

3 Experiment 1: Reevaluating IMPPRES

One limitation in Jeretic et al. (2020) is no human
evaluation, which leaves it open whether models
capture any variable projectivity exhibited by hu-
mans. To overcome it, we collect human labels on
a subset of IMPPRES, testing the performance of
the two models, ROBERTa and DeBERTa, against
the human results.

3.1 Setup

Human Evaluation Our human evaluation tar-
gets a subset of IMPPRES, which uses nine trig-
gers (all N, both, change of state verbs (CoS), cleft
existence, only, possessive definites, possessive
uniqueness, and question). Specifically, we focus
on conditions where triggers occur in one of the
five environments (the affirmative sentence (unem-
bedded), negative sentence (negation), conditional
antecedent (conditional), modal sentence (modal),
and interrogative)® and where a hypothesis is either
an affirmative or negative sentence. We randomly
extract ten items from each condition (a total of
900 sentences).

Using Amazon Mechanical Turk,* we conduct

3Examples of triggers and environments in IMPPRES ap-
pear in Appendix D.
*https://www.mturk.com
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Figure 2: Results on the unembedded triggers in IMP-
PRES. The dashed lines indicate chance performance
(33.3%).

Instruction: Select the response based on how likely you think the second
statement is to be true, using the information in the first statement and your
background knowledge about how the world works. If you think that the
second statement is true, click Entailment. If you think that it is false, select
Contradiction. If you are not sure, select Neutral.

1. The singer put the book on the shelf earlier than the teacher.

2. The teacher did not put the book on the shelf.

M

Figure 3: An example prompt in the human evaluation.

the human evaluation run on PCIbex.> Figure 3
shows an example prompt that we use in the human
evaluation. We adopt and modify the instruction
for the human evaluation from Parrish et al. (2021).
As a result of the human evaluation, each of the
extracted items receives 9.4 labels on average.®

Model Evaluation We evaluate Huggingface’s
(Wolf et al., 2020) pretrained RoBERTa-base (Liu
et al., 2019) and DeBERTa-v3-large (He et al.,
2020) fine-tuned on MNLI (Williams et al., 2018).
We do not evaluate a bag-of-words (BOW) model
and an InferSent model (Conneau et al., 2017) be-
cause Jeretic et al. (2020) show that their accuracy
for control conditions is below chance (33.3%).

3.2 Results and Discussion

Unembedded Triggers We use accuracy for the
unembedded triggers as criteria to exclude triggers
from the analysis of entailment-canceling environ-
ments. When a trigger occurs in an affirmative
sentence (unembedded), a presupposition equals

Shttps://farm.pcibex.net
8 Appendix C reports more details of the human evaluation
(e.g., crowdsourcing qualification and exclusion criteria).

an entailment (e.g., Bob only ran presupposes and
entails Bob ran) (Jeretic et al., 2020). If humans
show low accuracy for any unembedded triggers,
we manually analyze the relevant triggers to iden-
tify their cause. We interpret models’ low accuracy
as lack of knowledge of relevant triggers if humans
show high accuracy for the same triggers.

The results of the human evaluation (Figure 2)
show lower accuracy for CoS (66.3%), cleft unique-
ness (74.1%), and possessed uniqueness (71.9%),
examples of which are provided below, compared
to the other triggers (acc. > 87.3%).’

(1) CoS: Omar is hiding Ben.
— Ben was out in the open.

(2) Cleft uniqueness: It is that doctor who left.
- More than one person left.

(3) Possessive uniqueness: Tom’s car that
broke bored this committee.
— Tom has exactly one car that broke.

We reason that the low accuracy for CoS is due
to lexical ambiguity. For instance, people might
label the pair (1) as neutral or contradiction be-
cause Ben was not necessarily exposed before be-
ing hidden. Regarding the other two conditions,
we do not understand the exact source of the low
accuracy at this point. In linguistics, results from
human judgment experiments sometimes contra-
dict generalizations made by theoreticians (Gibson
and Fedorenko, 2013). Additionally, NLI research
reports disagreements in human labels (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020; Zhang and
de Marneffe, 2021; Jiang and de Marneffe, 2022).
Thus, the current results suggest that judgments on
presuppositions of cleft and possessive uniqueness
are not as robust as Jeretic et al. (2020) might as-
sume. Consequently, we remove CoS, cleft unique-
ness, and possessed uniqueness from the following
analysis as they might confound the results.

The results of the model evaluation reveal that
both RoBERTa and DeBERTa achieve high accu-
racy for most triggers (acc. > 89.5%). Two excep-
tions are all N and both. RoBERTa shows lower
accuracy for all N (71.0%) than DeBERTa (89.5%)
(e.g., all four men that departed telephoned — ex-
actly four men departed). With respect to both
(e.g., both guys who ran jumped — exactly two

"Throughout the paper, the examples from the dataset are
slightly simplified (e.g., changing Thomas to Tom) for the
space reason.
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Figure 4: Results on entailment-canceling environments in IMPPRES. DeBERTa’s results on both are not presented.

guys ran), neither DeBERTa nor RoBERTa per-
forms well (39.0% and 49.0%, respectively). Oth-
erwise, the two models are roughly comparable in
performance. Thus, we analyze only DeBERTa.

Based on the human and model results, our anal-
ysis of entailment-canceling environments includes
the five triggers: all N, cleft existence, only, pos-
sessive existence, and question.®

Entailment-Canceling Environments To ana-
lyze results on entailment-canceling environments,
we use the term, projectivity, instead of accuracy.
Since human judgments on projectivity can vary,
as discussed in Section 2.1, we should not define
gold labels for sentence pairs involving presuppo-
sition. We calculate projectivity based on whether
presupposition holds when embedded under an
entailment-canceling environment. For instance,
if one classifies the pair, did Tom only terrify Ken?
and Tom terrified Ken, as entailment, we consider
it as projective. Taking another example, if one
judges the hypothesis Tom did not terrify Ken as
contradiction given the same premise, it counts as
projective. Otherwise, we take these two examples
as non-projective.

Figure 4 presents results on the four environ-
ments: negation, conditional, interrogative, and
modal. Overall, DeBERTa and humans behave
similarly. For instance, they show relatively low
projectivity in only in conditional (e.g., if Mary
only testifies, ... — Mary testifies) and modal (e.g.,
Mary might only testify — Mary testifies) (61.8%
and 69.8% for humans and 41.5% and 72.0% for
DeBERTa, respectively).

A closer look at the results reveals that DeBERTa
takes some conditions less projective than humans.
Humans take cleft existence in negation (e.g., if
isn’t that guest who complained — someone com-
plained) as projective (89.7%) while DeBERTa pre-

8We report all results including excluded triggers in Ap-
pendix E.

dicts it as less projective (65.0%). In addition, hu-
mans judge all N in conditional (e.g., if all nine
actors that left slept, ... — exactly nine actors left)
and in interrogative (e.g., did all nine actors that
left sleep? — exactly nine actors left) as projec-
tive (91.8% and 82.6%, respectively) but DeBERTa
takes them as less projective (45.0% and 49.5%,
respectively). These results indicate DeBERTa’s
lack of knowledge of cleft existence in negation
and all N in conditional and interrogative.

In summary, humans take most presupposition
cases as projective except only embedded under
conditional and modal. This finding adds to the
previous research on variable projectivity in other
cases (Stevens-Guille et al., 2020; Tonhauser et al.,
2018, 2019; Degen and Tonhauser, 2021a,b). Ad-
ditionally, DeBERTa and humans show not only
similarities but also differences in projectivity.

4 Experiment 2: PROPRES

An investigation of the projectivity of presuppo-
sition with IMPPRES is far from comprehensive
because we can find more triggers in the litera-
ture (e.g., 27 triggers in Levinson (1983) and Potts
(2015) in total) and none of the six triggers which
we analyze in IMPPRES has lexical variation. Us-
ing six additional triggers with some lexical variety,
we create a new dataset, PROPRES, which allows us
to investigate the variable projectivity and models’
behavior more comprehensively.

4.1 Data Generation

Triggers and Environments PROPRES has six
types of presupposition triggers: (1) the iterative
again, (2) aspectual verbs, (3) manner adverbs, (4)
factive verbs, (5) comparatives, and (6) temporal
adverbs, as presented in Table 1. We select these
triggers from Levinson (1983) and Potts (2015) be-
cause they are not included in IMPPRES and can be
easily incorporated into templates. Crucially, these
triggers allow us to use different lexical items (e.g.,
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we use seven verbs and nine adverbs for aspectual
verbs and manner adverbs, respectively). One ex-
ception is again, but it is a standard presupposition
trigger investigated by theoretical linguistic (von
Stechow, 1995; Bale, 2007) and natural language
processing (Cianflone et al., 2018) research. Thus,
it is worth including this trigger in the dataset.

PROPRES uses five environments: (1) affirma-
tive sentences (unembedded), (2) negative sen-
tences (negation), (3) polar questions (interroga-
tive), (4) counterfactual conditional antecedents
(conditional), and (5) modal sentences (modal),
as exemplified in Table 2. We include the unem-
bedded environment to test whether humans and
models can identify presupposition as entailment
when triggers occur in affirmative sentences. The
counterfactual conditional antecedent is not a typ-
ical entailment-canceling environment, but we in-
clude it to ensure that conditional controls have
clear gold labels (entailment or contradiction) as
we discuss in the following paragraph. We gener-
ate affirmative and negative hypotheses for each
premise sentence. Combining six trigger types,
five environment types, and two hypothesis polar-
ity types results in 60 conditions. Generating 100
premise—hypothesis pairs for each condition yields
6,000 pairs.”

We make a control condition corresponding to
each target condition where a hypothesis is either
an affirmative or negative version of its premise, as
shown in Table 2. The control conditions serve as a
sanity check in a human evaluation. They are also
important to test whether the models rely on lexical
overlap (McCoy et al., 2019) or negation (Gururan-
gan et al., 2018) heuristics. For instance, models
should label the affirmative hypothesis in Table 2
as entailment if they rely on the lexical overlap
heuristic because of the high lexical overlap be-
tween the premise and hypothesis. Additionally,
they should label the negative hypothesis with not
as contradiction if they use the negation heuristic.
Only if models predict correctly in the control con-
ditions, we can say that their predictions about the
corresponding target conditions indicate projectiv-
ity rather than heuristics. Creating 100 pairs for
each control condition results in 6,000 pairs. In
total, PROPRES comprises 12,000 sentence pairs.

Templates We make templates and generate sen-
tences with them using the codebase developed by

"We provide examples for each condition in Appendix B.

Yanaka and Mineshima (2021).1° Following are
examples of templates and sentences.'!

(4) The N did not VP again.
(The girl did not hurt others again.)
— () The N had (not) VP before.
(The girl had (not) hurt others before.)

In VP, we use verbs having the same form in past
tense and past participle forms (e.g., hurt) to make
the morphological difference between a premise
and hypothesis as small as possible. This is crucial
to check whether models rely on the lexical overlap
heuristic in the control conditions.

The use of templates has three advantages. First,
it allows us to systematically test whether models
rely on the lexical overlap (McCoy et al., 2019) and
negation (Gururangan et al., 2018) heuristics. In
addition, it enables us to conduct a targeted evalu-
ation with a large number of sentences including
presupposition triggers embedded under particular
environments. Preparing the same number of data
might be impossible if we use corpora. Finally,
we can rule out the effect of plausibility. Previous
linguistic work shows that the projectivity of pre-
supposition varies depending on its content (Kart-
tunen, 1971; Simons, 2001; Tonhauser et al., 2018).
For instance, the sentence John didn’t stop going
to the restaurant leads to the inference John had
been going to the restaurant before. In contrast, the
sentence John didn’t stop going to the moon is less
likely to yield the inference John had been going
to the moon before. This difference might stem
from our world knowledge: it is more plausible for
one to go to a restaurant than the moon. As the
plausibility effect is not the focus of this study, we
use templates to control it.

4.2 Setup

Human Evaluation We randomly select ten out
of 100 pairs from each target condition and two
pairs from each control condition, extracting 600
and 120 pairs in total, respectively. The human eval-
uation procedure is identical to the one reported
in Section 3.1: using Amazon Mechanical Turk,
we conduct the evaluation run on PClIbex. As a
result, each of the extracted pairs has 56.7 labels on
average. Due to some revision of PROPRES during
the dataset creation, we collect judgments on the

Yhttps://github.com/verypluming/JaNLI
"' A full list of the templates and their example sentences
appears in Appendix B.
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modal environment and comparative trigger in Ex-
periment 1 (200 pairs in total). As a consequence,
they receive 9.4 labels on average.

Model Evaluation We evaluate four models:
BOW, InferSent (Conneau et al., 2017), RoBERTa-
base (Liu et al., 2019), and DeBERTa-v3-large (He
et al., 2020). For the first two models, we fol-
low Parrish et al. (2021)’s implementation'? and
use MNLI (Williams et al., 2018) to fine-tune the
parameters. We use the GloVe embeddings for
the word-level representations (Pennington et al.,
2014). For the two transformer-based models, we
use RoBERTa-base and DeBERTa-v3-large fine-
tuned on MNLI as in Experiment 1.

4.3 Results and Discussion

Control Conditions Figure 5 shows results on
control conditions in which a hypothesis is either an
affirmative or negative version of its premise. The
performance of InferSent and BOW models is poor,
which makes their performance on target condi-
tions hard to analyze. Thus, we exclude them from
our analysis below. Similar to humans, RoBERTa
and DeBERTa perform well on the unembedded,
negation, and conditional (e.g., P;—Ps in (5)), indi-
cating that they do not rely on the lexical overlap
heuristic or negation heuristic in these cases.

(5) Pi: The boy cut the tree again.
P5: The boy did not cut the tree again.
Pj: If the boy had cut the tree again, ...
P,: Did the boy cut the tree again?

Phttps://github.com/nyu-mll/nope

Ps5: The boy might cut the tree again.
Hy(3): The boy (did not) cut the tree again.

RoBERTa, DeBERTa, and humans perform
poorly on the interrogative and modal (e.g., P4 and
P5 in (5)) in which the correct label is supposed
to be neutral (Jeretic et al., 2020) (31.8%, 50.0%,
and 51.1% for interrogative and 3.5%, 16.7%, and
48.1% for modal, respectively). Distributions of
labels in these conditions (Figure 6) show that the
majority of labels in humans are neutral, which is
congsistent with the view that a yes/no question does
not have a truth value and thus one cannot decide
whether its affirmative or negative version is true
or not (Groenendijk and Stokhof, 1984; Roberts,
2012). One exception is the interrogative with an
affirmative hypothesis (e.g., P, and H; in (5)): dis-
tributions of entailment and neutral are comparable
(46.5% and 52.4%, respectively). We suspect that
some people interpret this condition as a confirma-
tion question in which the affirmative counterpart
of the interrogative (in this case, H) is presup-
posed, resulting in a high percentage of entailment.

In the same condition, the label distributions of
DeBERTa and RoBERTa do not mirror those of
humans. RoBERTa shows a relatively high percent-
age of contradiction (57.5%) whereas DeBERTa
shows a very high percentage of neutral (97.1%).
In the interrogative with the negative hypothesis
(e.g., Py and Hs), RoBERTa and DeBERTa assign
contradiction to the hypothesis the majority of the
time (93.7% and 97.1%, respectively), indicating
the negation heuristic: models are likely to label a
given hypothesis as contradiction if it includes not
(Gururangan et al., 2018).

The two models do not mirror humans in perfor-
mance on the modal, either. Their majority labels in
the modal with affirmative and negative hypotheses
(e.g., Ps with H; and Hy) are entailment and con-
tradiction, respectively. These results suggest that
in the modal, they rely on the lexical overlap heuris-
tic if a hypothesis is affirmative but they adopt a
negation heuristic if it is negative, overriding the
lexical overlap heuristic. Specifically, they label a
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counterparts.
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Figure 8: Results on the unembedded condition in PRO-
PRES for DeBERTa and humans.

hypothesis as entailment if it is affirmative whereas
if not is present in it, they label it as contradiction.

These variable results for DeBERTa and
RoBERTa are inconsistent with Jeretic et al. (2020),
who find that BERT achieves high accuracy for the
interrogative and modal controls by correctly as-
signing them the neutral label. The discrepancy
between our results and Jeretic et al. (2020)’s indi-
cates that the combination of the two environments
with new triggers in PROPRES makes a more thor-
ough model evaluation possible.

Overall, the performance of ROBERTa and De-
BERTa is interpretable regarding the three envi-
ronments: unembedded, negation, and conditional;
hence, we omit model results on the interrogative
and modal below.'®> Additionally, since the two
models are comparable in accuracy, we only report
DeBERTa’s performance in what follows.

Unembedded Triggers Figure 8 shows results
on the unembedded triggers. Overall, DeBERTa
and humans achieve high accuracy for all triggers.
One exception is DeBERTa’s poor performance
on the comparative (e.g., the girl read the letter
better than the boy — the boy read the letter)
(14.5%), indicating its limited knowledge of this
trigger. Hence, we exclude DeBERTa’s predictions
about the comparative when we report results on

3We report all results including excluded conditions in
Appendix E.

entailment-canceling environments.

Entailment-Canceling Environments Figure 7
shows results on the entailment-canceling environ-
ments. Our human results provide evidence for
variable projectivity (range 55.1-99.8%).

First, the human results indicate that the iterative
again weakly projects over the negation (75.8%)
compared to the other three environments (86.3%
on average). We provide the example sentence
pairs for again embedded under negation below.

(6) P: The man did not shed tears again.
H(3): The man had (not) shed tears be-
fore.

We reason that this apparent low projectivity is
attributable to the fact that the negative sentence
with again is ambiguous as to whether again takes
scope over the proposition with negation or with-
out negation (Bale, 2007). In the first reading, the
presupposition is that the man had shed tears be-
fore; in the second reading, it is that the man had
not shed tears before. If humans infer the second
presupposition, they should label the hypotheses
such as H; and Hy as entailment and contradic-
tion, respectively, giving rise to the seemingly low
projectivity rates. Since this ambiguity itself has
nothing to do with the projectivity, we leave it open
whether the observed rate (75.8%) truly reflects
the projectivity or not. Contrary to humans, the
DeBERTa judges the same condition as projective
(95%), indicating that it virtually always predicts
the second presupposition (e.g., the man had shed
tears before).

Next, manner adverbs exhibit relatively weak
projectivity over the negation (e.g., P; in (7)) and
interrogative (e.g., P») (58.3% and 66.6%, respec-
tively).

(7)  P1: The man did not hurt others seriously.
P5: Did the man hurt others seriously?
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Pj: If the man had hurt others seriously, ...
P4: The man might hurt others seriously.
Hj(): The man (did not) hurt others.

According to Stevens et al. (2017) and Tonhauser
et al. (2019), a focalized element in the utterance
affects the projectivity of the presupposition in-
troduced by manner adverbs in interrogatives and
negation. For instance, the presupposition (H7)
is more likely to project when the focus falls into
the manner adverb (did the man hurt others SERI-
OUSLY?) than when it falls into the subject (did
the MAN hurt others seriously?). Since our human
evaluation provides no prosodic information sig-
naling focus, humans might find these conditions
ambiguous, yielding weak projectivity. Further-
more, our item-by-item analysis with human data
reveals that in the manner adverbs embedded under
negation, the projectivity ranges between 43.3%
(for angrily) and 66.6% (for easily), indicating the
within-trigger-type variability.

Adding to Stevens et al. (2017) and Tonhauser
et al. (2019), we find that the manner adverbs are
weakly projective in the conditional (e.g., P3) and
modal (e.g., Py) (62.0% and 55.1%, respectively).
This suggests that information structural cues such
as prosodic focus play a role in the projectivity of
presupposition introduced by the manner adverbs
embedded under the conditional and modal.

Third, in the modal, temporal adverbs (e.g., P1
in (8)) and comparatives (e.g., P») have weaker
projectivity (54.7% and 57.4%, respectively) than
the other three triggers excluding the manner ad-
verbs (92.5% on average). These two triggers are
projective in the other three environments (79.7%
and 93.4% on average for the temporal adverbs
and comparatives, respectively). This indicates that
the projectivity of presuppositions of these triggers
varies depending on the environment.

(8) P1: Tom might sing after reading.
P5: The lady might sing better than Tom.
Hj,): Tom (did not) read.

DeBERTa’s performance does not mirror hu-
mans’ in some cases. It predicts that the manner
adverbs in the negation and conditional (P} and P;3
in (7), respectively) are not projective (8.5% and
14%, respectively), contrary to humans (58.3% and
62.0%, respectively). This indicates that either De-
BERTa lacks the knowledge of these two cases or
processes them as if the subject is focalized (e.g.,
did the MAN hurt others seriously?).

In summary, the human evaluation in Experi-
ment 2 shows variable projectivity in six out of
the 24 new conditions, contrary to the first one, in
which we observe it in two out of 24 conditions.
This contrast highlights that the combination of
various triggers and environments can lead to the
discovery of new cases of variable projectivity. In
addition, we find that DeBERTa does not capture
variable projectivity in some cases, suggesting that
DeBERTa’s ability to process presupposition is not
necessarily human-like.

5 Conclusion

Our experiments reveal that humans exhibit the
variable projectivity of presupposition in some con-
ditions (two out of 24 and six out of 24 conditions
in Experiments 1 and 2, respectively), but the best-
performed model, DeBERTa, does not capture it
most of the time, indicating that it does not gener-
alize pragmatic inferences for presuppositions.

In our experiments, quite a few conditions are ex-
cluded from the analysis for various reasons such as
lexical ambiguity in some items, disagreements in
human judgments, and the models’ lack of knowl-
edge. To tease apart these factors carries us well
beyond the scope of this study. However, this fact
suggests that we need to be careful with dataset
creation so that we can train or evaluate models on
well-designed datasets targeting pragmatic infer-
ences.
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A Limitations

One of the limitations of our study is that not all
data have human labels. However, it is not feasible
to get many judgments for all the data in IMPPRES
and PROPRES in terms of cost. Extending this
study, we hope to conduct a targeted human eval-
uation with some of the triggers that exhibit the
variable projectivity (e.g., manner adverbs).

The second limitation has to do with humans’
low accuracy in control modal and question con-
ditions. We attribute this to the procedure of our
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evaluation. The participants are asked to judge
whether the hypothesis contradicts, entails, or is
neutral to the question or modal premise. Since it
is hard to imagine the situation in which the modal
and question sentences are true or false, people
might be confused with the instruction. We hope
to collect more valid data using a better instruction
in our future study.

The third limitation is that we do not conduct the
thorough analyses of between-item variability and
between-participant variability in data from the two
human evaluations. It is likely that the projectivity
of the presupposition depends on lexical items and
participants. We take these into consideration in
the future study.

The final limitation is that this study investi-
gates presuppositions without any context. Tak-
ing John did not stop cutting trees as an example,
whether the presupposition John had cut trees be-
fore projects over negation depends on a context.
For instance, the presupposition does not project
over negation if we associate the sentence with the
appropriate context. Consider the following exam-
ple: Mary liked cutting trees but never smoked. In
contrast, John never cut trees but liked smoking.
One day Mary and John stopped cutting trees and
smoking, respectively. Later Bob said to Ken “John
stopped cutting trees.” Then Ken responded “wait,
John didn’t stop cutting trees but he stopped smok-
ing”. In this example, the sentence John did not
stop cutting trees does not presuppose John had
cut trees before. It remains to be seen how the con-
textual information affects each trigger embedded
under different environments.

B Templates

Tables 3—7 contain templates of premises and hy-
potheses for six triggers crossed with five environ-
ments in PROPRES.

C Crowdsourcing Human Evaluation

Before the experiment, each participant is asked to
read a written instruction about the NLI task care-
fully. All data are collected anonymously except
workers’ ID.

Evaluation 1 Using Amazon Mechanical Turk,
we recruit 116 people with the requirements of hav-
ing an approval rating of 99.0% or higher, having
at least 5,000 approved tasks, being located in the
US, the UK, or Canada, and having passed a qual-
ification task. We make sure that the workers are

300

250

200+

150

Number

1001

501

0 .
0 10 20 30 40 50 60 70 80 90 100
Accuracy

Figure 9: Distributions of accuracy in the control condi-
tions in PROPRES.

paid at least $12.0 USD per hour. Among them, we
exclude the responses of 46 participants from the
analysis because their accuracy rates for a sanity
check are below 80.0%. We analyze the data of the
remaining 71 participants.

Evaluation 2 Using Amazon Mechanical Turk,
we recruit 635 people with the requirements of hav-
ing an approval rating of 99.0% or higher, having
at least 5,000 approved tasks, and being located
in the US, the UK, or Canada. We make sure that
the workers are paid at least $12.0 USD per hour.
Among them, we exclude the responses of 352 par-
ticipants whose accuracy for the control conditions
is less than 90% based on the distributions of accu-
racy in Figure 9. The control results include results
for unembedded, negation, and conditional condi-
tions. The interrogative control condition is not
included in the mean calculation, because its mean
accuracy is around chance (36.0% over the chance
level 33.3%). As a result, we analyze the data of
the remaining 283 participants.

D Triggers and Environments in
IMPPRES

Tables 8 and 9 present triggers and environments
used in IMPPRES, respectively.

E Results without Exclusion

Figures 10 and 11 present results without exclu-
sion of triggers and environments in IMPPRES and
PROPRES, respectively.
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Trigger

Template

Premise and Hypothesis

Again

Manner
adverbs

Comparatives

Temporal
adverbs

Aspectual
verbs

Factive
verbs

P: The N VP again.

H1: The N had VP before.
H>: The N had not VP before.

P: The N VP MADV.
H1: The N VP.
Hs: The N did not VP.

P: The doctor shed tears again.
H1: The doctor had cut the tree before.
H>: The doctor had not shed tears before.

P: The doctor shed tears slowly.
H1: The doctor shed tears.

P: The N; VP ADVer than No.
Hy: The Ny VP.
Hs: The N3 did not VP.

P: The N VP, TADV VPzing.
Hy: The N VP.
H>: The N did not VP5.

P: The N ASP VPing.
Hi: The N had been VPing.
H>: The N had not been VPing.

P: The N Factive VPing.
H;: The N VP.
H>: The N did not VP.

Hs: The doctor did not shed tears.

P: The doctor shed tears better than the singer.
H: The singer shed tears.
H>: The singer did not shed tears.

P: The doctor shed tears before hurting others.
H;: The doctor hurt others.
H>: The doctor did not hurt others

P: The doctor stopped shedding tears.
Hi: The doctor had been shedding tears.
H>: The doctor had not been shedding tears.

P: The doctor regretted shedding tears.
H;: The doctor shed tears.
H>: The doctor shed tears.

Table 3: Templates for affirmative sentences.

Trigger

Template

Premise and Hypothesis

Again

Manner
adverbs

P: The N7 did not VP ADVer than Ns.

Comparatives

Temporal
adverbs

Aspectual
verbs

Factive
verbs

P: The N did not VP again.
H;: The N had VP before.
Ho>: The N had not VP before.

P: The N did not VP MADV.

Hi: The N VP.
H>: The N did not VP.

Hy: The N2 VP.

H>: The N5 did not VP.

P: The N did not VP; TADV VPaing.

Hy: The N VPa.

H>: The N did not VPs.
P: The N did not ASP VPing.
Hy: The N had been VPing.
H>: The N had not been VPing.

P: The N did not Factive VPing.

Hi: The N VP.

Ho>: The N did not VP.

P: The doctor did not shed tears again.
H;: The doctor had shed tears before.
H>: The doctor had not shed tears before.

P: The doctor did not shed tears slowly.
H;: The doctor shed tears.
Ho: The doctor did not shed tears.

P: The doctor did not shed tears better than the singer.
H,: The singer shed tears.
H>: The singer did not shed tears.

P: The doctor did not shed tears before hurting others.
H: The doctor hurt others.
H>: The doctor did not hurt others.

P: The doctor did not stop shedding tears.
H,: The doctor had been shedding tears.
H>: The doctor had not been shedding tears.

P: The doctor did not regret shedding tears.
Hi: The doctor shed tears.
Ho: The doctor did not shed tears.

Table 4: Templates for negative sentences.
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Trigger

Template

Premise and Hypothesis

P: Did the N VP again?

P: Did the doctor shed tears again?

Again H1: The N had VP before. H1: The doctor had shed tears before.
H>: The N had not VP before. H>: The doctor had not shed tears before.
Manner P: Did the N VP MADV? P: Did the doctor shed tears slowly?
adverbs H1: The N VP. H1: The doctor shed tear.
H>: The N did not VP. H>: The doctor did not shed tears.
P: Did the Ny VP ADVer than No? P: Did the doctor shed tears better than the singer?
Comparatives H1: The N2 VP. H1: The doctor shed tears.
H>: The N2 did not VP. H>: The doctor did not shed tears.
Temporal P: Did the N VP, TADV VP3ing? P: Did the doctor shed tears before spreading the rumor?
a dvg bs H1: The N VPs. Hi: The doctor spread the rumor.
H>: The N did not VP5. H>: The doctor did not spread the rumor.
Aspectual P: Did the N ASP VPing? P: Did the doctor stop shedding tears?
‘\I/)erbs Hi: The N had been VPing. H: The doctor had been shedding tears.
Hs: The N had not been VPing. Hj;: The doctor had not been shedding tears.
Factive P: Did the N Factive VPing? P: Did the doctor regret shedding tears?
verbs Hi: The N VP. Hi: The doctor shed tears.
H>: The N did not VP. H>: The doctor did not shed tears.
Table 5: Templates for interrogatives.
Trigger Template Examples
P: If the Ny had VP again, P: If the doctor had shed tears again,
Acain the N2 would have VPs. the singer could have spread the news.
8 H1: The N1 had VP; before. H: The doctor had shed tears before.
H>: The N; had not VP; before. H>: The doctor had not shed tears before.
P: If the N; VP MADV, P: If the doctor shed tears slowly,
Manner the N> would have VPs. the singer could have spread the news.
adverbs Hi: The N; VP;. Hi: The doctor shed tears.
Hy: The Ny did not VP;. H>: The doctor did not shed tears.
P: If the N7 had VP; ADVer than P: If the doctor had shed tears better than the singer,
Comparatives N3, the N2 would have VPs,. the artist could have spread the news.
p Hi: The N1 VP;. Hi: The singer shed tears.
Hs: The N did not VP;. H>: The singer did not shed tears.
P: If the Ny had VP, TADV VP3ing, P: If the doctor had shed tears before spreading the rumor,
Temporal the N2 would have VP3. the singer could have burst into the room.
adverbs H,: The Ny VPs. H,: The doctor spread the rumor.
Ho: The N; did not VPs. Hy: The doctor did not spread the rumor.
P: If the N1 ASP VPjing, P: If the doctor had stopped shedding tears,
Aspectual the N2 would have VPs. the singer could have spread the rumor.
verbs Hi: The N; had been VP1ing. Hi: The doctor had been shedding tears.
H>: The Ny had not been VP;ing. H>: The doctor had not been shedding tears.
P: If the N; Factive VP;ing, P: If the doctor had regretted shedding tears,
Factive the N2 would have VPs. the singer could have spread the rumor.
verbs H1: The N1 VP;. H1: The doctor shed tears.

Ho: The N did not VP;.

H>: The doctor did not shed tears.

Table 6: Templates for counterfactual conditionals.
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Premise and Hypothesis

Trigger Template
P: The N Modal VP again. P: The doctor might shed tears again.
Again H1: The N had VP before. H1: The doctor had shed tears before.
H>: The N had not VP before. H>: The doctor had not shed tears before.
Manner P: The N Modal VP MADV. P: The doctor might shed tears slowly.
adverbs H1: The N VP. H1: The doctor shed tears.
H>: The N did not VP. H>: The doctor did not shed tears.
P: The N; Modal VP ADVer than Na. P: The doctor might shed tears better than the singer.
Comparatives H1: The Ny VP. H,: The singer shed tears.
H>: The N3 did not VP. H>: The singer did not shed tears.
T P: The N Modal VP; TADV VPaing. P: The man might shed tears before spreading the rumor.
emporal . >
adverbs H1: The N VPs. H1: The man spread the rumor.
H>: The N did not VP5. H>: The man did not spread the rumor.
Aspectual P: The N Modal ASP VPing. P: The doctor might stop shedding tears.
‘\I/)erbs Hi: The N had been VPing. H,: The doctor had been shedding tears.
H>: The N had not been VPing. Hs: The doctor had not been shedding tears.
Factive P: The N Modal Factive VPing. P: The doctor might regret shedding tears.
verbs H1: The N VP. H: The doctor shed tears.
Hj: The N did not VP. Hj: The doctor did not shed tears.
Table 7: Templates for modal sentences.
Trigger Example Presupposition
AllN All four waiters that bothered Paul telephoned. Exactly four waiters telephoned.
Both Both people that hoped to move have married. Exactly two people have married.
Change of state verb Marie was leaving. Marie was here.
Cleft existence It is Margaret that forgot Dan. Someone forgot Dan.
Cleft uniqueness It is Donna who studied. Exactly one person studied.
Only The pasta only annoys Roger. The pasta annoys Roger.
Possessive definites The boy’s rugs did look like these prints. The boy has rugs.
Possessive uniqueness Maria’s apple that ripened annoys the boy. Maria has exactly one apple that ripened.
Question Bob learns how Rachel approaches Melanie. Rachel approaches Melanie.

Table 8: Examples of triggers in IMPPRES.

Environment

Example

Unembedded
Negation
Interrogative
Conditional
Modal

All four waiters that bothered Paul telephoned.
All four waiters that bothered Paul did not telephone.
Did all four waiters that bothered Paul telephone?
If all four waiters that bothered Paul telephoned, it’s okay.
All four waiters that bothered Paul might telephone.

Table 9: Environments used in IMPPRES.
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Figure 10: Results on triggers embedded under the negation, conditional, interrogative, and modal in IMPPRES.

N tion nditional Interr tiv M |
100 egatio 100 Conditiona 100 errogative 100 oda
_. 80 80 80 80
=
2 60 60 60 60
=
@ 40 40 40 40
S - J - J - J - - J
& 20 20 20 20 Models
Emm DeBERTa
= Humans
S \ S y 0 S v 0 S e N
N CIENLIRNLIRC AN WE e D N CIENIRNLIRC N W€ (18 O
SIS c‘; B P s c‘z) (B @® S c‘; 2\‘(\?0 b e c’% e
<« o™

@ @ Triggers ¢

Figure 11: Results on triggers embedded under the negation, conditional, interrogative, and modal in PROPRES.

137



A Minimal Approach for Natural Language Action Space
in Text-based Games

Dongwon Kelvin Ryu®
Shirui Pan®

Meng Fang®
Ehsan Shareghi® *

Gholamreza Haffari®

# Department of Data Science & AI, Monash University
¥ University of Liverpool ¢ Griffith University
* Language Technology Lab, University of Cambridge

firstname.lastname@monash.edu

Meng.Fang@liverpool.ac.uk

s.pan@griffith.edu.au

Abstract

Text-based games (TGs) are language-based in-
teractive environments for reinforcement learn-
ing. While language models (LMs) and knowl-
edge graphs (KGs) are commonly used for
handling large action space in TGs, it is un-
clear whether these techniques are necessary
or overused. In this paper, we revisit the chal-
lenge of exploring the action space in TGs and
propose e-admissible exploration, a minimal
approach of utilizing admissible actions, for
training phase. Additionally, we present a text-
based actor-critic (TAC) agent that produces
textual commands for game, solely from game
observations, without requiring any KG or LM.
Our method, on average across 10 games from
Jericho, outperforms strong baselines and state-
of-the-art agents that use LM and KG. Our ap-
proach highlights that a much lighter model
design, with a fresh perspective on utilizing the
information within the environments, suffices
for an effective exploration of exponentially
large action spaces. !

1 Introduction

An intelligent agent that communicates in natu-
ral language space has been a long goal of artifi-
cial intelligence (Fang et al., 2017). Text-based
games (TGs) best suit this goal, since they allow
the agent to read the textual description of the
world and write the textual command to the world
(Hausknecht et al., 2020; Coté et al., 2018). In TGs,
the agent should perform natural language under-
standing (NLU), sequential reasoning and natural
language generation (NLG) to generate a series of
actions to accomplish the goal of the game, i.e. ad-
venture or puzzle (Hausknecht et al., 2020). The
language perspective of TGs foists environments
partially observable and action space combinatori-
ally large, making the task challenging. Since TGs
alert the player how much the game has proceeded

'The code is
ktre921/tac

available at https://github.com/

with the game score, reinforcement learning (RL)
naturally lends itself as a suitable framework.

Due to its language action space, an RL agent
in TGs typically deals with a combinatorially large
action space, motiving various design choices to
account for it. As two seminal works in this space,
Yao et al. (2020) trained a language model (LM)
to produce admissible actions” for the given tex-
tual observation and then used, under the predicted
action list, Deep Reinforcement Relevance Net-
work to estimate the Q value. As an alternative,
Ammanabrolu and Hausknecht (2020) constructs a
knowledge graph (KG) to prune down action space
while learning the policy distribution through actor-
critic (AC) method and supervision signal from the
admissible actions. Both paradigms leverage ad-
missible actions at different stages at the cost of
imposing additional modules and increasing model
complexity.

In this paper, we take a fresh perspective on lever-
aging the information available in the TG environ-
ment to explore the action space without relying
on LMs or KGs. We propose a minimal form of
utilizing admissibility of actions to constrain the ac-
tion space during training while allowing the agent
to act independently to access the admissible ac-
tions during testing. More concretely, our proposed
training strategy, e-admissible exploration, lever-
ages the admissible actions via random sampling
during training to acquire diverse and useful data
from the environment. Then, our developed text-
based actor-critic (TAC) agent learns the policy
distribution without any action space constraints.
It is noteworthy that our much lighter proposal is
under the same condition as other aforementioned
methods since all the prior works use admissible
actions in training the LM or the agent.

Our empirical findings, in Jericho, illustrate that

2 Admissible actions are grounded actions that are guaran-
teed to change the world state produced by the environment
(Hausknecht et al., 2020; Coté et al., 2018).
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TAC with e-admissible exploration has better or
on-par performance in comparison with the state-
of-the-art agents that use an LM or KG. Through
experiments, we observed that while previous meth-
ods have their action selections largely dependent
on the quality of the LM or KG, sampling admis-
sible actions helps with the action selection and
results in acquiring diverse experiences during ex-
ploration. While showing a significant success on
TGs, we hope our approach encourages alterna-
tive perspectives on leveraging action admissibility
in other domains of applications where the action
space is discrete and combinatorially large.

2 Basic Definitions

Text-based Games. TGs are game simulation
environments that take natural language commands
and return textual description of the world. They
have received significant attention in both NLP and
RL communities in recent years. Coté et al. (2018)
introduced TextWorld, a TG framework that au-
tomatically generates textual observation through
knowledge base in a game engine. It has sev-
eral hyper-parameters to control the variety and
difficulty of the game. Hausknecht et al. (2020)
released Jericho, an open-sourced interface for
human-made TGs, which has become the de-facto
testbed for developments in TG.

Admissible Action. A list of natural language ac-
tions that are guaranteed to be understood by the
game engine and change the environment in TGs
are called Admissible Actions. The term was intro-
duced in TextWorld while a similar concept also ex-
ists in Jericho under a different name, valid actions.
Hausknecht et al. (2020) proposed an algorithm
that detects a set of admissible actions provided by
Jericho suite by constructing a set of natural lan-
guage actions from every template with detectable
objects for a given observation and running them
through the game engine to return those actions
that changed the world object tree.

Template-based Action Space. Natural language
actions are built with template (T) and object (OQ)
from template-based action space. Each template
takes at most two objects. For instance, a template-
object pair (take 0BJ from OBJ, egg, fridge)
produces a natural language action take egg from
fridge while (west,-,-) produces west.

Partially Observable Markov Decision Pro-
cess. TG environments can be formalized as
Partially Observable Markov Decision Processes

(POMDPs). A POMDP is defined as a 7-tuple,
(S, A, P,0,P,,R,~), where S and A are a set
of state and action, and P is the state transition
probability that maps state-action pair to the next
state, Pr(sy11|s¢, at). O is a set of observation that
depends on the current state via an emission proba-
bility, P, = Pr(o¢|s¢). R is an immediate reward
signal held between the state and the next state,
7(st, St+1), and -y is the discount factor. The action
selection rule is referred to as the policy 7(alo), in
which the optimal policy acquires the maximum
rewards in the shortest move.

TG Environment as POMDP. Three textual ob-
servations are acquired from the engine, game feed-
back 0game, Toom description ook, and inventory
description oj,y. The game feedback is depen-
dent on the previous action, Pr(ogame,|st, a¢—1),
while room and inventory descriptions are not,
Pr(0100k,¢|5¢) and Pr(ojny,¢|s¢). Inadmissible ac-
tions do not influence the world state, room and in-
ventory descriptions but change the game feedback
changes. Each action is sampled sequentially from
template-based action space. For template, we di-
rectly sample from observation 7(art|o) while an
object policy is sequentially produced, 7(agp|o, @),
where a is previously sampled template-object pair.
The agent ought to find the optimal policy that max-
imizes the expected discounted sum of rewards, or
the return, Ry = 72 Yor st

Traditional Reinforcement Learning. There are
three traditional algorithms in RL, Q-learning (QL),
policy gradient (PG) and actor-critic (AC). QL esti-
mates the return for a given state-action pair, or Q
value, Q(s, ar) = E[337 07 riik11]st, aq], then
selects the action of the highest Q value. However,
this requires the action space to be countably fi-
nite. To remedy this, PG directly learns the policy
distribution from the environment such that it max-
imizes the total return through Monte-Carlo (MC)
sampling. AC combines QL and PG, where it re-
moves MC in PG and updates the parameters per
each step with estimated Q value using QL. This
eliminates the high variance of MC as an exchange
of a relatively small bias from QL.

3 Related Work on TG Agents in RL

We provide a brief overview of widely known TG
agents relevant to the work presented in this paper.
We empirically compare these in the Section 5.1.

Contextual Action LM (CALM)-DRRN (Yao
et al., 2020) uses an LM (CALM) to produce a
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set of actions for a given textual observation from
the TGs. It is trained to map a set of textual ob-
servations to the admissible actions through causal
language modeling. Then, Deep Reinforcement
Relevance Network (DRRN) agent was trained on
the action candidates from CALM. DRRN follows
QL, estimating the Q value per observation-action
pair. As a result, CALM removes the need for the
ground truth while training DRRN.?

Knowledge Graph Advantage Actor Critic (KG-
A2C) (Ammanabrolu and Hausknecht, 2020) uses
the AC method to sequentially sample templates
and objects, and KGs for long-term memory and ac-
tion pruning. Throughout the gameplay, KG-A2C
organizes knowledge triples from textual observa-
tion using Stanford OpenlE (Angeli et al., 2015)
to construct a KG. Then, the KG is used to build
state representation along with encoded game ob-
servations and constrain object space with only the
entities that the agent can reach within KG, i.e. im-
mediate neighbours. They used admissible actions
in the cross entropy supervised loss.

KG-A2C Inspired Agents. Xu et al. (2020) pro-
posed SHA-KG that uses stacked hierarchical at-
tention on KG. Graph attention network (GAT)
was applied to sample sub-graphs of KG to enrich
the state representation on top of KG-A2C. Am-
manabrolu et al. (2020) used techniques inspired
by Question Answering (QA) with LM to construct
the KG. They introduced Q*BERT which uses AL-
BERT (Lan et al., 2020) fine-tuned on a dataset spe-
cific to TGs to perform QA and extract information
from textual observations of the game, i.e. “Where
is my current location?". This improved the qual-
ity of KG, and therefore, constituted better state
representation. Ryu et al. (2022) proposed an explo-
ration technique that injects commonsense directly
into action selection. They used log-likelihood
score from commonsense transformer (Bosselut
etal.,2019) to re-rank actions. Peng et al. (2021) in-
vestigated explainable generative agent (HEX-RL)
and applied hierarchical graph attention to sym-
bolic KG-based state representations. This was to
leverage the graph representation based on its sig-
nificance in action selection. They also employed
intrinsic reward signal towards the expansion of
KG to motivate the agent for exploration (HEX-
RL-IM) (Peng et al., 2021).

31t is noteworthy, orthogonal to the focus of our work, the
recently proposed eXploit-Then-eXplore (Tuyls et al., 2022)
uses LM and admissible actions to resolve another challenge,
exploration-exploitation dilemma in TGs.

All the aforementioned methods utilize admissi-
ble actions in training the LM or agent. Our pro-
posed method, introduced shortly (§4), uses admis-
sible actions as action constraints during training
without relying on KG or LM.

4 Text-based Actor Critic (TAC)

Our agent, Text-based Actor Critic (TAC), follows
the Actor-Critic method with template-object de-
coder. We provide an overview of the system in
Figure 1 and a detailed description in below. We
follow the notation introduced earlier in Section 2.

Encoder. Our design consists of text and state
encoders. Text encoder is a single shared bi-
directional GRU with different initial hidden state
for different input text, (Ogame, Olook, Oinv, @N). The
state representation only takes encoded textual ob-
servations while the natural language action ay
is encoded to be used by the critic (introduced
shortly). State encoder embeds game scores into
a high dimensional vector and adds it to the en-
coded observation. This is then, passed through a
feed-forward neural network, mapping an instance
of observation to state representation without the
history of the past information.

Actor. The Actor-Critic design is used for our RL
component. We describe our generative actor first.
Our actor network maps from state representation
to action representation. Then, the action repre-
sentation is decoded by GRU-based template and
object decoders (Ammanabrolu and Hausknecht,
2020). Template decoder takes action representa-
tion and produces the template distribution and the
context vector. Object decoder takes action repre-
sentation, semi-completed natural language action
and the context from template decoder to produce
object distribution sequentially.

Critic. Similar to (Haarnoja et al., 2018), we em-
ployed two types of critics for practical purpose,
state critic for state value function and state-action
critic for state-action value function. Both crit-
ics take the state representation as input, but state-
action critic takes encoded natural language action
as an additional input. The textual command pro-
duced by the decoder is encoded with text encoder
and is passed through state-action critic to predict
state-action value, or Q value, for a given command.
A more detailed diagram for Actor and Critic is in
Appendix D. To smooth the training, we introduced
target state critic as an exponentially moving av-
erage of state critic (Mnih et al., 2015). Also, the
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Figure 1: Text-based Actor-Ciritic (TAC); A blue circle is the input to the encoder, (nscores Ogame s Olook Oinv) TEPTE-
senting (game score, game feedback, room description, inventory), while a red circle is the output from actor, a
representing natural language action. Blue, red and green boxes indicate encoder, actor and critic, respectively.

two state-action critics are independently updated
to mitigate positive bias in the policy improvement
(Fujimoto et al., 2018). We used the minimum of
the two enhanced critic networks outputs as our
estimated state-action value function.

Objective Function. Our objective functions are
largely divided into two, RL and SL. RL objectives
are for reward maximization LR, state value pre-
diction Ly, and state-action value prediction Lq.
We overload the notation of 6: for instance, Vp(0)
signifies parameters from the encoder to the critic,
and 7g(a|o) from the encoder to the actor. Reward
maximization is done as follows,

Lr = —E[A(0,a)VyInmg (alo)], (1)
A(07 a) = QO(Ov CL) - VG(O)a (2)

where A(o, a) is the normalized advantage function
with no gradient flow.

Ly =E[Vo (Va(o) — (r+V5(0")))] . ©)

Lo=E [Vg (Qg(o, a) — (r + 'ng(o')))] , )

where o’ is observation in the next time step and 6

signifies the parameters containing the target state
critic, updated as moving average with 7,

by =70, + (1 —7)6,. (5)

Our SL updates the networks to produce valid

templates and valid objects,

Lt Z Yar 10 (mp(at|0))

- (©)
+ (1 = Yar) (1 = In(mg(ar|0)))),
Z (Yao In (mg(anlo, @))
a@E(D (N

+ (1= 9a5) (1

1 ayeT,
Yar = .

— In (mp(anlo, @)))),

1 ag €O,
Yag = .

0 otherwise 0 otherwise

where L1 and L are the cross entropy losses over
the templates (T) and objects (Q). Template and ob-
ject are defined as at and ag, while a is the action
constructed by previously sampled template and
object. Positive samples, y4, and ¥, are only if
the corresponding template or object are in the ad-
missible template (T,) or admissible object (OB%
The final loss function is constructed with A coeffi-
cients to control for trade-offs,

L= >\R£R+)\V£V+>\Q£Q+/\T£T+>\@£©. (8)

Our algorithm is akin to vanilla A2C proposed by
Ammanabrolu and Hausknecht (2020) with some
changes under our observations. A detailed com-
parison and qualitative analysis are in Appendix E
and F.

e-admissible Exploration. We use a simple ex-
ploration technique during training, which sam-
ples the next action from admissible actions with
e probability threshold. For a given state s, de-
fine Ay (s) C Ay as an admissible action subset
of all natural language actions set. We sample an
action directly from admissible action set under
uniform distribution, ay ~ U(A4(s)). Formally,
we uniformly sample p € [0, 1] per every step,

Hlals) = {“(“““(5”

p<e )

m(als)
This collects diverse experiences from altering the
world with admissible actions. We also tried a
variant where the € is selected adaptively given the
game score the agent has achieved. However, this
variant under-performed the static €. See Appendix
I for more details on this and the results.

pD=>e€

*Eq. 7 is calculated separately for two objects in a single
template, where the admissible object space (O,) is condi-
tioned on the previously sampled template and object.
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LM-BASED KG-BASED
Games CALM-DRRN KG-A2C SHA-KG Q*BERT HEX-RL HEX-RL-IM TAC
BALANCES 9.1 10.0 9.8 10.0 10.0 10.0 10.0 = 0.1
DEEPHOME 1.0 1.0 1.0 1.0 1.0 1.0 254 +3.2
DETECTIVE 289.7 207.9 246.1 274.0 276.7 276.9 27234233
LIBRARY 9.0 14.3 10.0 18.0 159 13.8 18.0 1.2
LUDICORP 10.1 17.8 17.6 18.0 14.0 17.6 7.7+£25
PENTARI 0.0 50.7 48.2 50.0 34.6 44.7 53.2+29
TEMPLE 0.0 7.6 7.9 8.0 8.0 8.0 58423
ZORK 1 30.4 34.0 33.6 35.0 29.8 30.2 46.3 5.0
ZORK3 0.5 0.1 0.7 0.1 - — 1.6 £ 1.2
ZTUU 3.7 5.0 5.0 5.0 5.0 5.1 33.2 +26.3
NORMALIZED MEAN 0.1549 0.2475 0.2490 0.2788 0.27221 0.2834" 0.3307

Table 1: Game score comparison over 10 popular game environments in Jericho, with best results highlighted by
boldface. We only included algorithms that reported the end performance. THEX-RL and HEX-RL-IM did not

report the performance in ZORK3 and are not open-sourced, so the mean average did not account ZORK3.
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Figure 2: The full learning curve of TAC on five games in Jericho suite. Blue and red plots are training and testing
game score while cyan and yellow star marker line signify CALM-DRRN and KG-A2C.

5 Experiments

In this section, we provide a description of our
experimental details and discuss the results. We
selected a wide variety of agents (introduced in Sec-
tion 3) utilizing the LM or the KG: CALM-DRRN
(Yao et al., 2020) and KG-A2C (Ammanabrolu and
Hausknecht, 2020) as baselines, and SHA-KG (Xu
et al., 2020), Q*BERT (Ammanabrolu et al., 2020),
HEX-RL and HEX-RL-IM (Peng et al., 2021) as
state-of-the-art (SotA).

Experimental Setup. Similar to KG-A2C, we
train our agent on 32 parallel environments with 5
random seeds. We trained TAC on games of Jeri-
cho suite with 100k steps and evaluated with 10
episodes per every 500 training step. During the
training, TAC uses uniformly sampled admissible
action for a probability of € and during the testing,
it follows its policy distribution generated from the
game observations. We used prioritized experience
replay (PER) as our replay buffer (Schaul et al.,
2016). We first fine-tune TAC on ZORK 1, then ap-
ply the same hyper-parameters for all the games.
The details of our hyper-parameters can be found
in Appendix A. Our final score is computed as the
average of 30 episodic testing game scores. Addi-
tionally, our model has a parameter size of less than

2M, allowing us to run the majority of our experi-
ments on CPU (Intel Xeon Gold 6150 2.70 GHz).
The full parameter size in ZORK1 and the training
time comparison can be found in Appendices B
and C.

5.1

Table 1 reports the results for baselines, SotAs and
TAC on 10 popular Jericho games. TAC attains the
new SotA scores in 5 games. Apart from PENTARI,
TAC surpasses 4 games with a large margin, where
all of the other agents fail to pass the performance
bottleneck (DEEPHOME with 1, ZORK1 with 35,
ZORK3 with 1, and ZTUU with 5). In DETECTIVE,
TAC matches many SotAs, but falls short in LUDI-
CORP and TEMPLE. Nevertheless, TAC achieves
the highest mean score over LM or KG-based meth-
ods.

On a larger set of 29 games in comparison with
the baselines, TAC surpasses CALM-DRRN in
14 out of 29 games and KG-A2C in 16 out of
29 games and achieves more than ~ 50% higher
score than both CALM-DRRN and KG-A2C with
normalized mean score. Per game, in SORCERER,
SPIRIT, ZORK3 and ZTUU, TAC achieves at least
~ 200% and at most ~ 400% higher score.. In
ACORNCOURT, DEEPHOME and DRAGON, both

Main Results
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Figure 4: The learning curve of TAC for stronger supervised signals where 5-3 signifies Ay = 5 and A\gp = 3. Left

two plots are with € = 0.3 and right two are with € = 0.

CALM-DRRN and KG-A2C fails to achieve any
game score (approximately 0), but TAC achieves
the score of +3.4, +25.4 and +2.81 For detailed
game scores and the full learning curves on 29
games, please refer to Appendix G.

There are a few games that TAC under-performs.
We speculate three reasons for this: over-fitting,
exploration, and catastrophic forgetting. For in-
stance, as illustrated by the learning curves of TAC
in Figure 2, LUDICORP appears to acquire more
reward signals during training, but fails to achieve
them during testing. We believe this is because
the agent is over-fitted to spurious features in spe-
cific observations (Song et al., 2020), producing
inadmissible actions for a given state that are ad-
missible in other states. On the other hand, TAC
in OMNIQUEST cannot achieve a game score more
than 5 in both training and testing. This is due to
the lack of exploration, where the agent is stuck at
certain states because the game score is too far to
reach. This, in fact, occurs in ZORK3 and ZTUU for
some random seeds, where few seeds in ZORK3 do
not achieve any game score while ZTUU achieves
10 or 13 only, resulting in high variance. Finally,
catastrophic forgetting (Kirkpatrick et al., 2016) is
a common phenomenon in TGs (Hausknecht et al.,
2020; Ammanabrolu and Hausknecht, 2020), and
this is also observed in JEWEL with TAC.

Training Score vs. Testing Score. Figure 2 shows
that the game scores during training and testing in
many games are different. There are three inter-

pretations for this: (i) the e-admissible exploration
triggers negative rewards since it is uniformly sam-
pling admissible actions. It is often the case that
negative reward signal triggers termination of the
game, i.e. —10 score in ZORK ], so this results in
episodic score during training below testing. (ii)
the e-admissible exploration sends the agent to the
rarely or never visited state, which is commonly
seen in ZTUU. This induces the agent taking use-
less actions that would not result in rewards since it
does not know what to do. (iii) Over-fitting where
testing score is lower than training score. This
occurs in LUDICORP, where the agent cannot es-
cape certain states with its policy during testing.
e-admissible exploration lets the agent escape from
these state during training, and therefore, achieves
higher game score.

5.2 Ablation

e-Admissible Exploration. To understand how
e influences the agent, ablations with two ¢ val-
ues, 0.0 and 1.0, on five selective games were
conducted. As shown in Figure 3, in the case
of ¢ = 0.0, the agent simply cannot acquire re-
ward signals. TAC achieves 0 game score in RE-
VERB, ZORK1 and ZORK3 while it struggles to
learn in DETECTIVE and PENTARI. This indicates
that the absence of e-admissible exploration results
in meaningless explorations until admissible ac-
tions are reasonably learned through supervised
signals. With e = 1.0, learning becomes unstable
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since this is equivalent to no exploitation during
training, not capable of observing reward signals
that are far from the initial state. Hence, tuned
€ is important to allow the agent to cover wider
range of states (exploration) while acting from its
experiences (exploitation).

Supervised Signals. According to the Figure
3, removing SL negatively affects the game score.
This is consistent with the earlier observations (Am-
manabrolu and Hausknecht, 2020) reporting that
KG-A2C without SL achieves no game score in
ZORK1. However, as we can observe, TAC man-
ages to retain some game score, which could be
reflective of the positive role of e-admissible explo-
ration, inducing similar behaviour to SL.

From the observation that the absence of SL de-
grades the performance, we hypothesize that SL
induces a regularization effect. We ran experiments
with various strengths of supervised signals by in-
creasing A\t and \g in LUDICORP and TEMPLE, in
which TAC attains higher scores at training com-
pared with testing. As seen in Figure 4 (left two
plots), higher A\t and \g relaxes over-fitting, reach-
ing the score from 7.7 to 15.8 in LUDICORP and
from 5.8 to 8.0 in TEMPLE. Since SL is not directly
related to rewards, this supports that SL acts as reg-
ularization. Further experimental results on ZORK 1
is in Appendix H.

To further examine the role of admissible actions
in SL, we hypothesize that SL is responsible for
guiding the agent in the case that the reward sig-
nal is not collected. To verify this, we excluded
e-admissible exploration and ran TAC with differ-
ent At and Ag in REVERB and ZORK 1, in which
TAC fails to achieve any score. According to Fig-
ure 4 (right two plots), TAC with stronger SL and
e = 0.0 achieves game scores from 0 to 8.3 in
REVERB, and from 0 to 18.3 in ZORK 1, which sug-
gests that SL acts as guidance. However, in the
absence of e-admissible exploration, despite the
stronger supervised signals, TAC cannot match the
scores using e-admissible exploration.

Admissible Action Space During Training. To
examine if constraining the action space to admis-
sible actions during training leads to better uti-
lization, we ran an ablation by masking template
and object with admissible actions at training time.
This leads to only generating admissible actions.
Our plots in Figure 3 show that there is a reduction
in the game score in PENTARI, REVERB and ZORK 1
while DETECTIVE and ZORK3 observe slight to

Game Kitchen. On the table is an elongated brown sack, smelling of hot
peppers. A bottle is sitting on the table. The glass bottle contains:
_Aquantiyofwaer. o _

Inventory
Room

Kitchen. You are in the kitchen of the white house. A table seems
to have been used recently for the preparation of food. A passage
leads to the west and a dark staircase can be seen leading upward.
A dark chimney leads down and to the east is a small window
which is open. On the table is an elongated brown sack, smelling
of hot peppers. A bottle is sitting on the table. The glass bottle
contains: A quantity of water

LM ‘close bottle’, ‘close door’, ‘down’, ‘drink water’, ‘drop bottle’,

Actions ‘drop painting’, ‘east’, ‘empty bottle’, ‘get all’, ‘get bottle’, ‘get
on table’, ‘get painting’, ‘get sack’, ‘north’, ‘open bottle’, ‘out’,
‘pour water on sack’, ‘put candle in sack’, ‘put painting in sack’,
‘put painting on sack’, ‘put water in sack’, ‘south’, ‘take all’,
‘take bottle’, ‘take painting’, ‘take sack’, ‘throw painting’, ‘up’,

KG ~ T, ‘all’, “antique’, ‘board”, ‘bottle’, ‘brass’, ‘chimney’, ‘dark’,” ~

Objects ‘door’, ‘down’, ‘east’, ‘exit’, ‘front’, ‘grue’, ‘house’, ‘is’

‘kitchen’, ‘lantern’, ‘large’, ‘light’, ‘narrow’, ‘north’, ‘of”,
‘passage’, ‘path’, ‘quantity’, ‘rug’, ‘south’, ‘staircase’, ‘table’,
‘to’, ‘trap’, ‘trophy’, ‘up’, ‘west’, ‘white’, ‘window’, ‘with’

"~ “close window”, ‘east’, jump’, ‘open bottle’, ‘Open sack’, “put
down all’, ‘put down light’, ‘put down painting’, ‘put light on
table’, ‘put out light’, ‘put painting on table’, 