
Proceedings of the 27th Conference on Computational Natural Language Learning:
Volume 2: The BabyLM Challenge, pages 112–127

December 6-7, 2023 ©2023 Association for Computational Linguistics

CLIMB – Curriculum Learning for Infant-inspired Model Building

Richard Diehl Martinez Zébulon Goriely ∗ Hope McGovern ∗

Christopher Davis Andrew Caines Paula Buttery Lisa Beinborn
Department of Computer Science & Technology, University of Cambridge, U.K.

ALTA Institute, University of Cambridge, U.K.
Vrije Universiteit Amsterdam, Netherlands

firstname.secondname@cl.cam.ac.uk
l.beinborn@vu.nl

Abstract

We describe our team’s contribution to the
STRICT-SMALL track of the BabyLM Chal-
lenge (Warstadt et al., 2023). The challenge
requires training a language model from scratch
using only a relatively small training dataset of
ten million words. We experiment with three
variants of cognitively-motivated curriculum
learning and analyze their effect on the per-
formance of the model on linguistic evalua-
tion tasks. In the vocabulary curriculum, we
analyze methods for constraining the vocab-
ulary in the early stages of training to simu-
late cognitively more plausible learning curves.
In the data curriculum experiments, we vary
the order of the training instances based on i)
infant-inspired expectations and ii) the learn-
ing behaviour of the model. In the objec-
tive curriculum, we explore different varia-
tions of combining the conventional masked
language modelling task with a more coarse-
grained word class prediction task to reinforce
linguistic generalization capabilities. Our re-
sults did not yield consistent improvements
over our own non-curriculum learning base-
line across a range of linguistic benchmarks;
however, we do find marginal gains on se-
lect tasks. Our analysis highlights key take-
aways for specific combinations of tasks and
settings which benefit from our proposed cur-
ricula. We moreover determine that careful
selection of model architecture, and training
hyper-parameters yield substantial improve-
ments over the default baselines provided by
the BabyLM challenge. Our code is pub-
licly available at https://github.com/
codebyzeb/CLIMB.

1 Introduction

Children acquire language skills from being ex-
posed to an estimated two to seven million words

∗Equal contribution

per year (Gilkerson et al., 2017). The current learn-
ing regimes of large language models require dis-
proportionately larger sizes of training data to ac-
quire linguistic generalization capabilities (Zhang
et al., 2021). State-of-the-art LMs are typically
trained on gigabytes of data gleaned from the World
Wide Web, on multiple GPUs continuously for days
at a time (Zhao et al., 2023). For example, the Chin-
chilla language model was trained on a dataset of
1.4 trillion words (Hoffmann et al., 2022). Such
large-scale training regimes are economically and
ecologically unsustainable, and access to the re-
quired computing resources remains out of reach
for most academic groups and industry start-ups
(Izsak et al., 2021).

To enable language models to still perform
well with limited data, recent work has looked
at utilizing smaller, well-curated, and represen-
tative corpora (Samuel et al., 2023; Gao et al.,
2020) and careful selection of training and model
hyper-parameters (Geiping and Goldstein, 2023).
‘Zero-shot’ and ‘few-shot’ learning are other data-
efficient approaches which can perform well in
certain settings but rely on large pre-trained lan-
guage models (Brown et al., 2020; Wei et al., 2021).
These approaches, however, provide engineering
solutions to the problem rather than a cognitively-
inspired, compute-efficient framework for training
language models from scratch.

Conventional pre-training of large language mod-
els remains far removed from human language
learning: models operate on a predetermined static
vocabulary and optimize a monotonous training
objective on a randomly shuffled dataset. We
conducted experiments to explore more dynamic
learning processes that are motivated by the psy-
cholinguistic and language acquisition literature
and are set within the machine learning paradigm
of curriculum learning (Bengio et al., 2009). Our
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models are implemented and evaluated within the
‘BabyLM Challenge’ framework, a shared task in
which the stated goal is “to incentivize researchers
with an interest in pretraining and/or cognitive mod-
eling to focus their efforts on optimizing pretrain-
ing given data limitations inspired by human de-
velopment” (Warstadt et al., 2023). Our goal in
participating in the BabyLM Challenge is two fold:
First, we aim to contribute toward democratizing
language modelling research and move towards
this goal by training smaller language models that
are still well-performing on NLP tasks. Second,
we establish a computational framework based on
curriculum learning for simulating aspects of hu-
man language acquisition. We participate in the
strictest track of the challenge, limiting the training
data to only 10 million words of text extracted from
various pre-existing corpora.

Initially, we train our own BabyBERTa-style
vanilla model 1 (Huebner et al., 2021) and find
that simply tuning model size and vocabulary size
in itself leads to substantial performance gains on
some of the BabyLM test sets compared to the
shared task baselines. We furthermore carried out
a number of pre-processing steps on the training
data to further improve performance, including con-
catenating input sequences to make the most of the
available input length.

In our own approach, which we term CLIMB
– Curriculum Learning for Infant-inspired Model
Building – we explore three different curriculum
strategies for language modelling: gradually in-
creasing the size of the vocabulary (vocabulary
curriculum), the difficulty of the training instances
(data curriculum), or the specificity of the ob-
jective function (objective curriculum) over the
course of training. Within the context of the
BabyLM Challenge, Curriculum Learning estab-
lishes a framework through which we attempt
to replicate key facets of child language acqui-
sition. Counter-intuitively, we find that all of
our curriculum learning approaches under-perform
our BabyBERTa-style (non curriculum learning)
vanilla models. Our contribution to the Baby LM
Challenge builds upon this negative finding in three
main ways:

1. Our paper establishes a novel framework
through which to categorize and implement

1We refer to our non-curriculum learning baselines as
‘vanilla’ models in order to differentiate these models from the
baselines that were provided by the workshop organizers.

curriculum learning methods that simulate hu-
man language acquisition. We open-source
our accompanying code-base for future re-
search to study how curriculum learning repli-
cates the language learning dynamics in hu-
mans.

2. We conduct a comprehensive evaluation of
our three main curriculum approaches; our
results show that the curriculum learning set-
tings we tested did not provide consistent
improvements over a baseline on linguistic
benchmarks. Instead, we provide a set of rec-
ommendations for specific combinations of
tasks and settings which may benefit from our
proposed curricula.

3. We highlight the importance of careful data,
model and hyper-parameter selection to estab-
lish a well performing fully supervised base-
line for the BabyLM shared task. Our vanilla
models outperform the shared task baseline
models on tasks involving grammatical knowl-
edge (BLiMP: The Benchmark of Linguistic
Minimal Pairs (Warstadt et al., 2020a)) and
all the shared-task baselines except RoBERTa
(Liu et al., 2019) on tasks involving natural
language understanding (SuperGLUE (Wang
et al., 2019)).

2 Curriculum Learning

Curriculum learning (Bengio et al., 2009) is a
machine-learning paradigm which optimizes a
model’s performance by gradually increasing the
difficulty of training over time according to a set
schedule (a ‘curriculum’) – based on the idea that
learning should proceed from easy to hard, in-
spired by the way that humans learn (Elman, 1993).
Within the context of curriculum learning, one of
the central questions is how to define and manipu-
late the difficulty of the learning process over the
course of training. In a recent survey, Soviany et al.
(2022) decompose this challenge into two main
sub-problems: determining a sorting mechanism to
assess the difficulty of instances and developing a
pacing function for increasing difficulty over time.

2.1 Determining Difficulty

Previous work in curriculum learning typically fo-
cuses on difficulty from a data-centric perspective,
however, we note that difficulty can arise from (at
least) three major elements of training a neural

113



model: the input representation, the data sampling,
and the training process. We explore curriculum
learning strategies across three distinct dimensions:
the vocabulary, the order of training data, and the
objective function.

For machine learning models, instance difficulty
is in part influenced by the choice of instance rep-
resentation. For language models, the representa-
tional space is constrained by the vocabulary. We
propose a new vocabulary curriculum inspired by
Soviany et al. (2022), who discuss linking the cur-
riculum criteria to the observed vocabulary sizes
in child development. To the best of our knowl-
edge, this is the first attempt at manipulating the
vocabulary available to a language model through
curriculum learning.

In natural language processing models, the order
of the training instances can have a strong effect on
performance (Schluter and Varab, 2018). Existing
approaches to instance-level curriculum learning
determine the difficulty of each instance according
to a pre-defined static difficulty assessment accord-
ing to linguistic criteria (Campos, 2021; Kocmi and
Bojar, 2017; Liu et al., 2018; Platanios et al., 2019).
It has been shown that humans pay more attention
to stimuli that are in just the right zone of difficulty
for them: neither too easy nor too hard (Kidd et al.,
2012). This so-called ‘Goldilocks effect’ can be
modelled by assessing the difficulty of an instance
dynamically based on model behaviour (Sachan
and Xing, 2016; Lalor and Yu, 2020). Static and
dynamic difficulty assessment can be mapped to
teacher-centric and learner-centric educational ap-
proaches and we compare both variants in our data
curriculum experiments.

Human language learning is guided and enabled
to some extent by other agents in the learner’s en-
vironment (e.g., adult caregivers, siblings) who in-
teract with the learner. In machine learning, such
interactions are modelled by the objective function
that guides the weight optimization process. The
typical ‘masked language modelling’ (MLM) ob-
jective function requires that a model predicts a
target token from a pre-defined vocabulary of size
N given the surrounding context. Thus standard
MLM defines an N -way token classification task.

Curriculum learning can be leveraged within this
context to attenuate the difficulty of the classifi-
cation task during training. One natural starting
point for doing so is to redefine the classification
task to be over a smaller set of items, K, such that

K << N . Bai et al. (2022) map rare words with hy-
pernyms of that word to simplify the classification
task in training. A related line of research suggests
replacing certain words with either part-of-speech
tags (Wang et al., 2022) or syntactic dependency
relations (Cui et al., 2022). Since the number of
syntactic tags is substantially smaller than the num-
ber of vocabulary items, these approaches greatly
reduce the difficulty of the objective. Moreover, by
varying the amount of syntactic tags that the model
should classify over, the difficulty of the task can be
dynamically adapted (Wang et al., 2022). We take
inspiration from this latter line of work in defining
our own objective curriculum.

2.2 Pacing Functions

Once a notion of difficulty is set, a pacing func-
tion is needed to govern how quickly the model
will progress from training on easier examples to
training on harder ones (Wu et al., 2021). We exper-
iment with two different pacing functions: linear
and logarithmic. Linear pacing functions involve a
steady and consistent advancement through the cur-
riculum. This approach ensures a gradual increase
in difficulty over time. Logarithmic pacing func-
tions, on the other hand, emphasize early exposure
to “easier” concepts, with diminishing increments
as the model’s capabilities are assumed to increase.
Both pacing functions have been proposed in the
broader curriculum learning literature (Bai et al.,
2022; Li et al., 2021; Wu et al., 2021).

3 Methodology

All of our models are based on an 8-layer Trans-
former language model (Section 3.2) comparable to
the BabyBERTa model (Huebner et al., 2021). For
all experiments, we use the Hugging Face Trans-
formers library (Wolf et al., 2020), Weights & Bi-
ases for performance tracking (Biewald, 2020), Hy-
dra to define experiment configurations (Yadan,
2019), and a high performance computing cluster.
We introduce curriculum learning to three of the pri-
mary components of language model pre-training:
the vocabulary (Section 3.3), the data sampling
approach (Section 3.4), and the selection of the
objective function (Section 3.5). For each of these
aspects, we attempt to simulate facets of human
language learning by dynamically increasing the
difficulty of the language modelling task over the
course of training. Table 1 provides an overview of
our experiment variables.
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Curriculum Type Parameter Variants

Vocabulary Selection frequency, word class, mixed
Pacing linear, logarithmic

Data
Difficulty source, unigram perplexity, self-perplexity
Pacing linear, logarithmic
Initial Perplexity unigram, random

Objective Tasks noun-verb prediction, POS prediction, MLM
Learning Setup sequential, multitask

Table 1: Curriculum learning experiments overview

3.1 Training Data

We use only the training data provided in the
STRICT-SMALL track of the BabyLM challenge,
which is limited to 10 million words and combined
from 10 individual corpora. Given the variety of
data sources (including books, subtitles, transcripts
and articles) we carefully curated the data to ensure
consistency across corpora. These steps include
lowercasing, normalizing punctuation, standardiz-
ing typographical conventions using regular expres-
sions, and removing extraneous lines (such as page
numbers, bibliography entries, plain text tables ,
and one-word on-screen actions). We also concate-
nated contiguous sections of five lines into a single
data instance in the transcribed speech corpora (ex-
cept the BNC) due to the relatively short sequence
lengths. In addition, we join data at the point of
passing input to the models, in order to make full
use of the available input sequence length (128
subtokens).

According to the rules of the STRICT-SMALL

track, we were not permitted to make use of exter-
nal resources, including supervised part-of-speech
(POS) taggers. Therefore, we attempted to cluster
the words in the training data into word classes
by applying the anchor-features algorithm
of the unsupervised POS-tagger by Stratos et al.
(2016) on our cleaned data. The algorithm yields
30 clusters which we manually mapped to the 12
universal speech tags (Petrov et al., 2012) by choos-
ing the POS-tag that best represents the anchor
word of each cluster. We were only able to identify
10 of the 12 universal POS tags in the 30 clus-
ters: no cluster neatly coincided with ’ADV’ or
’X’ tags. We provide further detail on our data pre-
processing and unsupervised POS-tagging in the
Appendix.

We provide our cleaned and tagged versions of
the 10M word dataset on Hugging Face, along with
the scripts used.2 Our pre-processing procedure

2https://huggingface.co/
cambridge-climb

reduces the data down to 335,858 instances (corre-
sponding to roughly 9.4 million words) from the
initial 1,058,740 newline-delineated samples.3 Our
models, tokenizers and part-of-speech taggers were
trained on this pre-processed data; however, we ac-
tually noticed an increase in performance when
training on the raw data, as discussed in Section 5.

3.2 Vanilla Models
We investigate three different sizes of a vanilla Pre-
Layer Norm RoBERTa model (Liu et al., 2019;
Ott et al., 2019) based on the BabyBERTa model
(Huebner et al., 2021): ‘small’, ‘medium’, and
‘large’ – Table 2 lists the model configurations and
presents the results for the different model sizes
evaluated by perplexity, on BLiMP (Warstadt et al.,
2020a) and on the supplementary BLiMP-like tasks
issued by the BabyLM organizers (‘Blimp.Supp’).
We found the medium model with a small vocabu-
lary size performed the best overall; however, the
small model achieved similar results, and so to save
on compute and keep to the restrained intentions
of the STRICT-SMALL track, we used the small
model in our curriculum learning experiments. We
use Byte Pair Encoding (BPE) tokenization (Gage,
1994) with a vocabulary of 8,192 because it yields
better overall performance compared to a larger
vocabulary of 16,384. The tokenizers we use in our
experiments were trained on the cleaned data that
we processed using the steps outlined in 3.1. In
pilot experiments, we did not observe the benefits
reported by Huebner et al. (2021) from removing
the unmasking procedure that is a standard compo-
nent of the MLM objective (Devlin et al., 2019),
and therefore did not investigate this option further.

All of the curriculum learning methods in the
following sections were applied on top of our small
vanilla BabyBERTa-style baseline – to isolate the
effect of the curriculum-learning training process,

3The word count is estimated by whitespace splitting; the
same metric used by the organizers of the task to derive the
estimate of 10 million words. When applying a tokenizer, the
pre-processed dataset is more accurately split into 11.7 million
words (including punctuation) or 13.6 million subwords
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Model Layers Heads Hidden Intermediate Vocab Train.steps BLiMP BLiMP.Supp Perplexity

Small 8 8 256 2,048 8,192 250K 75.43 61.14 9.46
Medium 10 10 500 2,000 8,192 156K 76.45 63.28 9.05
Large 12 12 768 3,072 8,192 94K 75.80 60.83 9.34

Small 8 8 256 2,048 16,384 250K 76.16 60.85 13.80
Medium 10 10 500 2,000 16,384 94K 76.09 60.03 13.80
Large 12 12 768 3,072 16,384 62K 75.08 63.45 14.22

Table 2: Our vanilla BabyBERTa-style models evaluated on original BLiMP and the BLiMP-like tasks prepared for
BabyLM (BLiMP.Supp). Models are grouped by their vocabulary sizes.

we fixed the architecture of the model and the
model hyper-parameters. We use an AdamW opti-
mizer with linear scheduling (Loshchilov and Hut-
ter, 2019).

3.3 Vocabulary Curriculum

During the early stages of language acquisition,
children start with a small vocabulary that rapidly
expands at a rate of eight to ten words per day
(Weizman and Snow, 2001). In this process, chil-
dren prioritize learning verbs and nouns before pro-
gressing to other parts of speech (Bergelson and
Swingley, 2015). Large language models, on the
other hand, tend to begin training with a full, fixed
vocabulary available to them.

To represent a child’s growing vocabulary, we
select a limited vocabulary in the initial stages of
learning and map all other input tokens into the
representation for the unknown token (UNK). We
consider three strategies for selecting tokens. In
the first strategy, tokens are selected according to
frequency. We approximate the frequency of a
token by the identifier the BPE tokenizer assigns
to it as lower IDs are assigned to tokens that are
merged first (i.e., sequences of characters that oc-
cur more frequently in the corpus). In the second
strategy, tokens are selected by their word class.
We approximate the word class of a token by the
cluster that the unsupervised POS-tagger assigns to
it. We order the word classes as follows, progress-
ing from lexical to functional classes per Bergelson
and Swingley (2015): NOUN, VERB, ADJ, PRON,
DET, ADP, NUM, CONJ, PRT, PNCT. In this strat-
egy, all words with the respective part-of-speech
tag are included in the vocabulary at the same step
during learning. To smooth this process, we com-
bine the frequency and the word class constraint in
the third strategy. We sort words by their frequency
(approximated by the token ID) within each part-
of-speech category. Note that the same word may

be available in some instances and not others if it
is assigned a more difficult POS tag.

During the initial steps of training, only 10% of
the tokens are available while the rest are replaced
with UNK. The vocabulary curriculum regime be-
gins after 25,000 training steps and ends at 350,000
steps, during which time, the vocabulary gradu-
ally increases according to a pacing function. We
experiment with linear and logarithmic pacing func-
tions. After the end of the curriculum regime, there
remain 50,000 training steps before the end of train-
ing during which all of the vocabulary tokens are
available to the model. Figure 5 in the Appendix
shows a plot of the percentage of unmasked vocab-
ulary over the course of training according to our
pacing functions.

3.4 Data Curriculum

Conventional masked language modelling ap-
proaches train a given neural network on a large
amount of crawled internet data. The resulting text
sequences are usually not curated beyond basic
cleaning and are presented to the model in random
order, in contrast to the way that human children
learn a language.

We attempt to carefully optimize the way data is
sampled and presented to the language model over
the course of training. We experiment with theory-
driven and model-driven approaches to determine
the ‘relative difficulty’ of a certain example and
train the model on instances with progressively
increasing difficulty.

Source Difficulty We order the available datasets
based on their sources so that spoken samples
are considered ‘easier’ and purely written texts
‘harder’, following the findings of Huebner et al.
(2021). Within this ordering, we place the mostly
child-directed speech from CHILDES before adult-
to-adult dialogues in the Switchboard Corpus, and
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Difficulty Level Corpora

1 AO-CHILDES
2 BNC Spoken, Switchboard
3 Open Subtitles, QED
4 CBT, Children’s Stories
5 Simple Wikipedia
6 Wikipedia, Gutenberg

Table 3: Difficulty level assigned to each dataset.

Simple Wikipedia before Wikipedia, see Table 3.4

Model Difficulty Determining the difficulty of
an instance based on its data source is a relatively
naive heuristic that ignores the variation of in-
stance difficulty within one corpus. As a more
fine-grained alternative, we determine the diffi-
culty of each instance individually using the model-
intrinsic metric of perplexity which determines the
likelihood of a sentence. We experiment with two
variants: a static unigram language model and a
more dynamic self-evaluation. With the unigram
model, perplexity for each instance is only deter-
mined once at the beginning of training. Alterna-
tively, we evaluate the perplexity of the remaining
training data using the model that has been trained
so far – from model checkpoints saved at regular
intervals in training (every 25K steps).

One challenge with the latter approach is the lack
of exposure to training data at the beginning, lead-
ing to random perplexity scores for each sample. To
address this, we propose two ideas: 1) using a sep-
arately trained unigram model to initially evaluate
perplexity, or 2) initially sample training instances
randomly. After 25,000 training steps, we switch to
using the current model for perplexity evaluation.
Every 25,000 steps thereafter, we re-evaluate per-
plexity to identify samples categorized as relatively
difficult or relatively easy by the model.

3.5 Objective Curriculum
The MLM objective has proven tremendously suc-
cessful in training Transformer networks as lan-
guage models (Devlin et al., 2019). Psycholinguis-
tic research, however, suggests that MLM is not a
cognitively plausible approximation of language ac-
quisition processes in children (Caucheteux et al.,
2023). Curriculum learning establishes a frame-
work for varying the difficulty of the learning pro-
cess over the course of training. The MLM objec-
tive is a very challenging discriminative classifica-

4There is likely some adult-to-adult dialogue included in
CHILDES as well.

tion task because the identity of the masked token
needs to be determined over the entire vocabulary.
We experiment with using more coarse-grained
tasks at the initial stages of training to facilitate
generalization and leverage syntactic information.
Research in cognitive linguistics has shown that
one-year-old infants are sensitive to distributional
aspects of language and from two years of age be-
gin to recognize lexical categories such as nouns
and verbs Alishahi (2010); Gleitman (1990). We
therefore experiment with predicting only the word
class of a masked token at the start of training rather
than predicting its exact target token ID.

The psycholinguistic literature remains divided
on the question of how exactly word learning pro-
ceeds from memorizing a small set of fixed lexical
items to a more generalized representation of word
classes (Clark and Casillas, 2015). Our framework
provides a flexible approach to vary the difficulty
of objective functions during the course of training,
and to enable systematic studies of the effect of
objective functions on the acquisition of linguistic
knowledge by a model. Here we propose estimat-
ing the word class using the unsupervised POS
tagger and we vary the number of POS tags which
are being classified over. The masked word is clas-
sified into 1) one of VERB, NOUN, or OTHER, or
2) one of 10 universal POS tags.

We examine activating the tasks in sequential
order (first word class prediction then MLM) or
optimizing them in parallel, comparable to a multi-
task learning setting. For each objective function,
we learn a separate task head with its own linear
task classifier and separate optimizer.

4 Results

Multiple evaluation metrics are employed in
BabyLM. In this paper we focus on BLiMP
(Warstadt et al., 2020a) and the supplementary
BLiMP-style tests provided by the shared task or-
ganizers. We also report our results on the nat-
ural language understanding benchmark, Super-
GLUE (Wang et al., 2019), and the ambiguous
subset of MSGS (the Mixed Signals Generaliza-
tion Set) (Warstadt et al., 2020b). In brief, BLiMP
evaluates specific linguistic abilities, MSGS evalu-
ates linguistic preference over surface generalisa-
tion and SuperGLUE evaluates downstream task
performance. For all scores, we report the aver-
age score across all categories, rather than test in-
stances, as provided by the BabyLM evaluation
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Figure 1: Comparison of the BabyLM baselines with our BabyBERTa-style vanilla models (left), and our vanilla
models against our curriculum learning models (right) – using BabyBERTa-small trained on clean data as a reference
point (asterisked) to show the difference in scores on BLiMP and BLiMP-supplement tasks. For combination
models, all pacing is logarithmic, and ‘multitask’ refers to the 2-task objective curriculum, 10 POS-tags and MLM
from the outset. Absolute values may be found in Appendix Tables 5–9.

pipeline.5 All of our curriculum learning models
are small BabyBERTa-style ones using the param-
eters shown in Table 2 and the cleaned training
dataset of 9.4M words (reduced from the 10M word
dataset for the STRICT-SMALL track) and their re-
sults can be found in Tables 5, 6 and 7.

In the tables we compare to our small
BabyBERTa-style vanilla model also trained on
the clean data (Section 3.2). Figure 1 visualizes
these comparisons for the BLiMP tasks; there are
similar plots for SuperGLUE in the Appendix (Fig-
ure 4). Furthermore, we experimented with some
combinations of different curricula to see how they
would interact (Table 8), and compare the official
BabyLM shared-task baselines with our shared task
entries – a number of our own BabyBERTa-style
vanilla models and curriculum learning models (Ta-
ble 9). For all of our runs, we use the same set of
hyper-parameters that we report in Table 10. We
also report the average amount of compute used for
each type of curriculum learning setting (Table 11).

We find notable gains for our own vanilla models

5For instance, there are 12 categories in BLiMP but 50+
individual tests. We average over the scores given for each
category, rather than the scores given for each test.

over the shared-task baselines, and, while we do not
identify further large improvements in our curricu-
lum learning models, we do notice some modest
gains which suggest possibilities for future research
and experimentation over variables. While the dif-
ferences in performance between most of our ex-
perimental conditions are small, the large number
of ablations we run enables us to provide a compre-
hensive set of recommendations for how and when
different curriculum learning strategies may offer
improved performance on linguistic tasks. Below
we summarize our observations over the full results
tables.

In general, log pacing works at least as well as
linear pacing across different curricula learning
strategies. In our data curriculum experiments,
models using the log pacing function outperform
their linear counterparts in 4/4 settings on BLiMP,
and 3/4 settings for BLiMP-supplement and Su-
perGLUE (Table 6). This indicates that rapidly
increasing the difficulty of training instances in the
early stages brings downstream benefits on gram-
maticality and NLU tasks.

In our vocabulary curriculum experiments on
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the other hand, there is not such a clear picture.
Log pacing outperforms linear in 2/3 settings on
BLiMP and 3/3 on SuperGLUE, but 0/3 for BLiMP-
supplement (Table 5). Presumably this is a reflec-
tion of the different vocabulary required by each
set of evaluation tasks, which could be a matter for
future investigation but also indicates that we do
not yet have a clear generalizable pacing function
for the vocabulary curriculum. There are of course
other pacing functions to be tried.

Different representations of vocabulary diffi-
culty work better for different tasks. When rep-
resenting difficulty in the vocabulary curriculum
experiments, token ID – our proxy for frequency
– appears to work better than word classes (POS
tags) or a combination of token ID and POS tags on
the BLiMP evaluation tasks, but worse than POS
tags on SuperGLUE and MSGS (Table 5).

In multi-corpora datasets, ordering by difficulty
is a good first step. Training data requirements
have grown so much in modern NLP that usually
training a language model from scratch will involve
multiple datasets, or multiple domains. The results
of our data curriculum experiments indicate that a
good first step is to put these sub-corpora into some
order of intuitive difficulty, as we did (Table 6). In
the case of BLiMP this approach outperforms our
perplexity-based data curricula, and with log pac-
ing our vanilla model. The same is true of MSGS
(with log pacing), as well as BLiMP-supplement
and SuperGLUE (though the last two do not beat
our vanilla model). Amongst the perplexity-driven
models, the picture is less positive: out of 24 tests,
only one model outperforms our vanilla model (log
pacing, random initialisation + model perplexity in
Table 6).

Multitask learning holds sway over sequentially
swapping objective functions for now. In our
experiments with curricula for the objective func-
tion, we compare training on simultaneous tasks
– known as multitask learning (Caruana, 1997) –
with predefined sequences of objective functions
which swap from one to another at set thresholds
in the training process. We set up two sequential
curricula: one with 2 tasks (predicting the 10 uni-
versal POS tags found in our dataset, and MLM)
and the other with 3 (like the 2 task curriculum,
additionally with noun/verb/other prediction). We
compare these against multitasking alternatives. In
general the sequential curricula are outperformed

by the multitasking ones, though the 3-task sequen-
tial curriculum outperforms our BabyBERTa-style
vanilla model on SuperGLUE and is second only
marginally to our best-performing multitask model
(Table 7). The multitask learning model with 10-
class universal POS-tag prediction and MLM in
place from the outset performs best on BLiMP and
SuperGLUE. However, our best model on BLiMP-
supplement – a multitask one – has an element of
sequential task scheduling in that the two POS-tag
prediction tasks are lined up one after the other,
with a switch from 3-class to 10-class after 6.25%
of training steps. In Figure 2, we visualize this
result for each task in BLiMP-supplement, illustrat-
ing that our curriculum learning model improves
over our vanilla model in 5/6 tasks. Altogether,
these results suggest that sequential objective func-
tion curricula do hold some potential for perfor-
mance gains if further tuning of the tasks and
scheduling can be carried out.

Combining all three curricula shows potential
on BLiMP. While each individual curriculum
learning experiment did not result in consistent im-
provements across tasks, we investigated whether
combining aspects from the different curricula
would, together, improve the model. We do find
that a combination of all three curricula outper-
forms any single curriculum model on BLiMP, but
the same is not true for BLiMP-supplement and
SuperGLUE (Table 8). This is another matter for
future investigation, as it seems that improving
each of the three curricula we investigate may lead
to further gains if they are all combined.

In small data settings, filtering data which we
intuitively think is noisy is in fact counter-
productive. Perhaps surprisingly, we find that
the vanilla models trained on the raw data outper-
form those trained on the pre-processed data on
BLiMP and MSGS. We surmise that models can
learn even from linguistically non-standard data-
points.

4.1 Submitted models
Table 9 in the Appendix compares our submissions
to the shared task baselines. We submitted our
best curriculum learning models from each individ-
ual curriculum learning setting, and four different
vanilla models: two small and two medium models,
where each pair additionally varies by whether it
was trained on the pre-processed dataset or the raw
dataset. We find our curriculum learning models
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are comparable to our BabyBERTa-style vanilla
models, and we think that in most cases some con-
tinued experimentation with configurations may
yield larger gains for CL approaches.

For interest, we also trained a BabyBERTa-
style large vanilla model on the 100M training
set made available in the BabyLM STRICT track
(‘large-100M’ in the table). The improvements
over smaller models trained on less data are ev-
ident and finally provide an advantage over the
RoBERTa baseline on SuperGLUE. It remains to
be seen how well curriculum learning methods, and
our preprocessing methods, would work with this
larger dataset.

5 Discussion

We set out to investigate a number of curriculum
learning approaches to language model training,
motivated by findings from the human language
acquisition process and by the wish to success-
fully train smaller models for smaller budgets. We
first of all implemented a stronger model of our
own, based on BabyBERTa (Huebner et al., 2021)
and found that a small 8-layer vanilla model could
outperform the provided BabyLM baselines on
the BLiMP grammaticality tests and get close to
the best RoBERTa shared-task baseline on Super-
GLUE. This underlines the findings reported in the
BabyBERTa paper: that with smaller datasets, it
makes sense to use smaller models and a smaller
vocabulary size.

The results of our curriculum learning exper-
iments, trained with a small BabyBERTa-style
vanilla model, suggest that we can further improve
performance in certain linguistic tasks by careful
application of a pacing function, how we represent
and grow the model’s vocabulary during training,
select the next training instances according to their
difficulty, and vary the objective function. Specif-
ically, we find that a logarithmic pacing function
works better for the data curriculum than a linear
one, but the findings for the vocabulary curriculum
are less clear. Other pacing functions might be tried
in the future, including those that reflect acquisi-
tion theory around non-monotonic or ‘U-shaped’
development trajectories.

It is apparent that ordering the subcorpora
within a training set may be worthwhile, and that
perplexity-based approaches to data selection hold
potential even though we have not found a clear-
cut best method for perplexity calculation as yet.

As shown in other NLP work, multitask learn-
ing can be a beneficial approach, though MLM
or next-word prediction remain preeminent as sin-
gular tasks used in language modelling. We find
multitask learning models hard to beat in the objec-
tive curriculum, but do find good performance in
our sequential settings. We believe that future work
varying the timing of task switches and introducing
more tasks could be worthwhile.

On a more general note, the Baby LM challenge
evaluates a language model only on its final down-
stream performance on a set of tasks – i.e. at a
finite point in time. The challenge does not di-
rectly measure whether a given model is learning
in a ‘human-like’ fashion. Our contribution to the
BabyLM challenge is to provide a set of curricu-
lum learning strategies which are motivated by the
language learning dynamics of infants and children.
We encourage future research to study how to quan-
titatively evaluate whether the learning trajectory of
a model parallels that of a human language learner
and how similarities to human language learning
results in downstream NLU performance.

6 Conclusions

We use child-like language learning as inspiration
to investigate and implement three types of curricu-
lum learning for language modelling: gradually
increasing the size of the vocabulary (vocabulary
curriculum), the difficulty of the training instances
(data curriculum), or the specificity of the objec-
tive function (objective curriculum).

We find that our BabyBERTa-style vanilla mod-
els outperform the BabyLM baselines on BLiMP
and MSGS, and get close on SuperGLUE. Our
various curriculum learning models at times offer
further gains over our vanilla models, and indicate
the potential for curriculum learning methods given
further exploration. We list out a set of recommen-
dations for when and how to optimally apply our
proposed curriculum learning strategies.

Additionally, training our vanilla model trained
on unprocessed data outperforms a ‘cleaned’ ver-
sion – suggesting that retaining as much data as
possible, in low-resource settings, is more impor-
tant than standardizing it according to linguistic
norms.

Finally, our work establishes a computational
framework for how to categorise and implement
curricula learning strategies that simulate human
language learning dynamics.
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Appendix

Unsupervised POS-tagging. The strict-small
track we enter does not allow using any external
dataset. This restriction disallows usage of any
third-party POS taggers, as these tend to be trained
with a supervised corpus. To still be able to use
POS information we train our own POS tagger us-
ing the unsupervised anchor-features part-
of-speech algorithm by Stratos et al. (2016). This
algorithm learns a hidden Markov model (HMM)
under the assumption that certain tags are associ-
ated with words that have no other tags (the anchor
words) and uses additional features to improve the
estimation process.

We used the default parameters for this algorithm
but learn 30 clusters instead of 12. These clusters
are lexicalized, labelled only by the anchor word
found for each by the algorithm so must be mapped
to POS tags for our usage. Unsupervised POS
taggers are typically evaluated by mapping each
cluster to the most frequently coinciding gold POS
tag. However, since this would be taking advantage
of supervised data, we instead map each cluster by
inspection, choosing the universal part-of-speech
tag (Petrov et al., 2012) most representative of the
anchor word for each cluster. This mapping is
many-to-one, with several clusters mapping to the
same tag, but no clusters mapped to ADV (adverb)
or X (unknown), suggesting that the unsupervised
approach failed to coherently group adverbs into a
single cluster.

POS Tag Precision Recall F1

NOUN 0.786 0.790 0.788
DET 0.820 0.772 0.795
CONJ 0.969 0.821 0.895
NUM 0.592 0.799 0.681
PRON 0.592 0.962 0.733
VERB 0.816 0.823 0.819
PRT 0.501 0.701 0.584
ADJ 0.673 0.554 0.608
ADP 0.842 0.888 0.864
PUNC 0.944 0.960 0.952

Table 4: Accuracy of our unsupervised POS tagger on
a per-tag level.

We also evaluate how well our POS tagger pre-
dicts POS tags, compared to the supervised POS
tagging system that is part of the NLTK Python
package (Bird et al., 2009). Table 4 summarizes
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these results. Interestingly, we observe a large dif-
ference in our ability to correctly predict different
types of POS tokens.

Objective curriculum models on BLiMP Sup-
plement and (Super)GLUE. Figures 2 and 3
compare our small BabyBERTa-style vanilla model
to our best objective-curriculum model – a multi-
task trained model with sequential POS-tag predic-
tion – on each task in BLiMP Supplement and (Su-
per)GLUE. We find our curriculum-learning (CL)
model outperforms our vanilla model on 5/6 tasks
in BLiMP Supplement. While on (Super)GLUE,
our CL model outperforms our baseline on 4/10
tasks and obtains comparable performance on an-
other 4/10 tasks. This results illustrate the potential
to further explore objective-curricula settings.

Figure 2: Comparison between our vanilla model and
the best objective curriculum learning setting on the
BLiMP supplementary tasks.

Figure 3: Comparison between our vanilla model and
the best objective curriculum learning setting on the
(Super)GLUE tasks.
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Figure 4: Comparison of the BabyLM baselines with our BabyBERTa-style vanilla models (left), and our vanilla
models against our curriculum learning models (right) – using BabyBERTa-small trained on clean data as a reference
point (asterisked) to show the difference in scores on SuperGLUE tasks. For combination models, all pacing is
logarithmic, and ‘multitask’ refers to the 2-task objective curriculum, 10 POS-tags and MLM from the outset.

Pacing Difficulty Perplexity BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig
†Linear Token ID 9.70 75.09 66.43 68.71 68.61
Linear POS 10.17 72.06 63.44 69.50 66.91
Linear POS + Token ID 10.21 73.37 66.11 69.22 66.61
Log Token ID 9.26 74.97 64.63 69.94 66.82
Log POS 9.29 74.12 62.06 70.66 70.52
Log POS + Token ID 9.29 74.74 63.62 70.29 66.42

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 5: Results for vocabulary curriculum models (Section 3.3). All models score above 90 in the MSGS Control
tasks. † indicates the model we submitted to BabyLM, ‘CLIMB-tokens’.

Pacing Difficulty Perplexity BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

Linear Source 10.41 73.32 61.99 69.68 66.22
Linear Unigram ppx 12.51 72.45 61.67 69.10 66.90
Linear Unigram + model ppx 11.88 72.62 62.57 69.86 66.64
Linear Random + model ppx 10.82 71.88 63.10 70.37 67.48
†Log Source 9.21 75.87 64.29 70.20 70.99
Log Unigram ppx 9.39 75.03 63.78 69.90 66.69
Log Unigram + model ppx 9.35 74.83 64.24 70.09 66.89
Log Random + model ppx 9.21 75.81 63.03 68.93 66.64

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 6: Results for data curriculum models (Section 3.4). All models score above 92 in the MSGS Control tasks. †

indicates the model we submitted to BabyLM, ‘CLIMB-data-split’.
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Task duration (% of training steps)
Task Order 3 POS 10 POS MLM PPX BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

Sequential – 0 - 12.5 12.5 - 100 9.58 73.87 62.98 69.85 66.70
Multitask – 0 - 100 12.5 - 100 9.78 74.60 62.17 69.12 66.64
Multitask – 0 - 100 0 - 100 9.30 75.82 65.77 70.74 66.58
Sequential 0 - 6.25 6.25 - 12.5 12.5 - 100 9.49 74.03 63.02 70.71 66.93
Multitask 0 - 6.25 6.25 - 100 12.5 - 100 9.72 73.68 63.89 70.07 67.00
†Multitask 0 - 6.25 6.25 - 100 0 - 100 9.30 74.80 67.55 69.89 67.65
Multitask 0 - 100 – 0 - 100 9.25 74.48 63.98 69.77 67.72

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 7: Results for objective curriculum models (Section 3.5). All models score above 94 in the MSGS Control
tasks. Task duration defines when an objective function was active during training, as a percentage of the total
number of training steps. † indicates the model we submitted to BabyLM, ‘CLIMB-multitask’.

Vocab Curric. Data Curric. Obj. Curric. PPX BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

– Source Multitask 9.29 74.06 64.06 70.02 66.90
– Random + model ppx Multitask 9.44 75.89 64.63 69.72 67.78
Token ID Source – 9.27 75.89 64.62 70.24 67.90
Token ID Random + model ppx – 9.30 75.88 65.79 70.42 66.63
Token ID Source Multitask 9.22 74.86 62.82 70.09 66.68
Token ID Random + model ppx Multitask 9.46 75.92 63.68 69.98 71.30

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 8: Results for the combination curriculum models. The multitask objective curriculum refers to the 2-task
10-POS and MLM model shown in Table 7.

Type Model PPX BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

Official Baseline OPT-125m – 63.16 55.08 63.38 69.22
RoBERTa-base – 69.84 50.52 71.42 70.25
T5-base – 58.27 47.55 60.93 68.55

Vanilla Models CLIMB-base (medium) 9.01 75.66 66.13 70.75 67.62
CLIMB-base-small 9.21 75.48 65.34 70.47 68.30
CLIMB-raw (medium) 8.47 77.97 66.16 70.63 69.44
CLIMB-small-raw 8.64 76.42 64.60 69.46 70.65
large-100M 4.35 81.03 75.56 72.93 74.17

Vocab Curriculum CLIMB-tokens 9.70 75.09 66.43 68.71 68.61
Data Curriculum CLIMB-data-split 9.21 75.87 64.29 70.20 70.99
Objective Curriculum CLIMB-multitask 9.30 74.80 67.55 69.89 67.65

Table 9: Comparison between the official shared task baselines, our BabyBERTa-style vanilla models, and our
submitted curriculum learning models on the main evaluation tasks: BLiMP, (Super)GLUE, and MSGS. Our *small
and *medium models are defined in Section 3.2. All models are trained on pre-processed data except for those
labelled with *-raw, which are trained on mostly unprocessed data (except we join the input sentences). The
‘large-100M’ model was a larger BabyBERTa-style model trained on the 100M BabyLM training set (all others
have been trained on the 10M dataset available in the STRICT-SMALL track).

Parameter Value

Layer Norm EPS 1e-5
Tie Word Embeddings False
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 400,000
Warm-up Steps 100,000
Per Device Batch Size 32

Table 10: Hyperparameter settings which are constant across our vanilla models described in 3.2. Table 2 reports
variations to the architectures to create the ‘small’, ‘medium’ and ‘large’ versions of the vanilla model. Where
values are not reported, they may be assumed to be default values.
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Figure 5: Illustration of the linear and logarithmic pacing functions used in our vocabulary curriculum experiments.
The red dotted lines denote the curriculum regime, during which the percentage of unmasked words available to the
model grows according to the respective function.

Type Model Training Time

Vanilla Models CLIMB-small-raw 12h
CLIMB-raw (medium) 17h40m

Data Curriculum Log Source 12h30m
Log Random + model ppl 17h10m

Objective Curriculum Sequential All POS 11h40m
Multitask All POS 15h30m

Vocabulary Curriculum Linear POS 11h50m
Log Token ID 12h10m

Combination Log Data Split + Log Token ID 12h30m
Log Random + model ppl + Log Token ID 17h10m

Table 11: Compute required to train our models. We report the model with the shortest and longest runtime for each
experiment type. Each model is trained for 400,000 steps with 4 A100 GPUs.
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