CLIMB – Curriculum Learning for Infant-inspired Model Building
Richard Diehl Martinez, Zébulon Goriely, Hope McGovern, Christopher Davis, Andrew Caines, Paula Buttery, Lisa Beinborn
Correct Metadata for
- Anthology ID:
- 2023.conll-babylm.10
- Volume:
- Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning
- Month:
- December
- Year:
- 2023
- Address:
- Singapore
- Editors:
- Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera, Bhargavi Paranjabe, Adina Williams, Tal Linzen, Ryan Cotterell
- Venues:
- CoNLL | BabyLM | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 112–127
- Language:
- URL:
- https://aclanthology.org/2023.conll-babylm.10/
- DOI:
- 10.18653/v1/2023.conll-babylm.10
- Bibkey:
- Cite (ACL):
- Richard Diehl Martinez, Zébulon Goriely, Hope McGovern, Christopher Davis, Andrew Caines, Paula Buttery, and Lisa Beinborn. 2023. CLIMB – Curriculum Learning for Infant-inspired Model Building. In Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, pages 112–127, Singapore. Association for Computational Linguistics.
- Cite (Informal):
- CLIMB – Curriculum Learning for Infant-inspired Model Building (Diehl Martinez et al., CoNLL-BabyLM 2023)
- Copy Citation:
- PDF:
- https://aclanthology.org/2023.conll-babylm.10.pdf
Export citation
@inproceedings{martinez-etal-2023-climb,
title = "{CLIMB} {--} Curriculum Learning for Infant-inspired Model Building",
author = "Diehl Martinez, Richard and
Goriely, Z{\'e}bulon and
McGovern, Hope and
Davis, Christopher and
Caines, Andrew and
Buttery, Paula and
Beinborn, Lisa",
editor = "Warstadt, Alex and
Mueller, Aaron and
Choshen, Leshem and
Wilcox, Ethan and
Zhuang, Chengxu and
Ciro, Juan and
Mosquera, Rafael and
Paranjabe, Bhargavi and
Williams, Adina and
Linzen, Tal and
Cotterell, Ryan",
booktitle = "Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.conll-babylm.10/",
doi = "10.18653/v1/2023.conll-babylm.10",
pages = "112--127"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martinez-etal-2023-climb">
<titleInfo>
<title>CLIMB – Curriculum Learning for Infant-inspired Model Building</title>
</titleInfo>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Diehl Martinez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zébulon</namePart>
<namePart type="family">Goriely</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hope</namePart>
<namePart type="family">McGovern</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Caines</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Buttery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Beinborn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Warstadt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leshem</namePart>
<namePart type="family">Choshen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="family">Wilcox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengxu</namePart>
<namePart type="family">Zhuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Ciro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael</namePart>
<namePart type="family">Mosquera</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhargavi</namePart>
<namePart type="family">Paranjabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<identifier type="citekey">martinez-etal-2023-climb</identifier>
<identifier type="doi">10.18653/v1/2023.conll-babylm.10</identifier>
<location>
<url>https://aclanthology.org/2023.conll-babylm.10/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>112</start>
<end>127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T CLIMB – Curriculum Learning for Infant-inspired Model Building %A Diehl Martinez, Richard %A Goriely, Zébulon %A McGovern, Hope %A Davis, Christopher %A Caines, Andrew %A Buttery, Paula %A Beinborn, Lisa %Y Warstadt, Alex %Y Mueller, Aaron %Y Choshen, Leshem %Y Wilcox, Ethan %Y Zhuang, Chengxu %Y Ciro, Juan %Y Mosquera, Rafael %Y Paranjabe, Bhargavi %Y Williams, Adina %Y Linzen, Tal %Y Cotterell, Ryan %S Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning %D 2023 %8 December %I Association for Computational Linguistics %C Singapore %F martinez-etal-2023-climb %R 10.18653/v1/2023.conll-babylm.10 %U https://aclanthology.org/2023.conll-babylm.10/ %U https://doi.org/10.18653/v1/2023.conll-babylm.10 %P 112-127
Markdown (Informal)
[CLIMB – Curriculum Learning for Infant-inspired Model Building](https://aclanthology.org/2023.conll-babylm.10/) (Diehl Martinez et al., CoNLL-BabyLM 2023)
- CLIMB – Curriculum Learning for Infant-inspired Model Building (Diehl Martinez et al., CoNLL-BabyLM 2023)
ACL
- Richard Diehl Martinez, Zébulon Goriely, Hope McGovern, Christopher Davis, Andrew Caines, Paula Buttery, and Lisa Beinborn. 2023. CLIMB – Curriculum Learning for Infant-inspired Model Building. In Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, pages 112–127, Singapore. Association for Computational Linguistics.