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Abstract
We present ToddlerBERTa, a scaled Baby-
BERTa language model, exploring its capabili-
ties through five different models with varied
hyperparameters. We obtain our best model
named ToddlerBERTa by meticulously opti-
mizing our models on the BLiMP benchmark.
Despite training on a smaller dataset, Tod-
dlerBERTa demonstrates commendable perfor-
mance, outperforming the baselines provided
by a significant margin in the overall evalua-
tion that include BLiMP, SuperGLUE, MSGS
and BLiMP supplement. ToddlerBERTa show-
cases robust language understanding, even with
single-sentence pretraining, and competes with
baselines that leverage broader contextual in-
formation. Our work provides insights into hy-
perparameter choices, and data utilization, con-
tributing to the advancement of low-resource
language models.

1 Introduction

Over the past few years, there has been a lot of
effort put into improving the pretraining of large
language models (LLMs) on a large scale (Brown
et al., 2020; Raffel et al., 2019; Chowdhery et al.,
2022; Hoffmann et al., 2022). While there is often
a focus on increasing the number of parameters,
there has also been significant growth in dataset
size. However, there has been minimal progress in
pretraining on smaller data scales that are compa-
rable to how humans learn language.

Exploring pretraining on a smaller scale can
serve as a trial area for developing original tech-
niques that boost data effectiveness. These tech-
niques can be scaled up to larger datasets utilized
and employed to enhance current methods for mod-
elling low-resource languages.

The BabyLM challenge (Warstadt et al., 2023)
has been created to address the gap in research on
pretraining for small-scale language models. Our
focus will be on a limited corpus of approximately
10 million words, which includes child-directed

speech, transcribed speech from various sources,
children’s books, and Wikipedia data.

We trained more than 180 BabyBERTa (Huebner
et al., 2021) models in different sizes and hyper-
parameters to determine how well language mod-
els learn grammar and understand language. Our
findings showed that scaling the model and data re-
sulted in significantly better outcomes compared to
baseline models which underscores the low utilisa-
tion of both the data and architecture we currently
have. All in all, our work demonstrates that well-
known and widely used (Liu et al., 2019; Devlin
et al., 2019; Vaswani et al., 2017) architectures can
be enhanced with moderate modifications to their
training recipes.

2 Related Work

There has been a significant amount of research on
data-efficient language models. These models aim
to achieve high accuracy in language tasks while us-
ing less training data than their larger counterparts.
One way to create data-efficient language models
is to reduce the number of model parameters while
maintaining high performance. For instance, Dis-
tilBERT (Sanh et al., 2019) is a smaller and faster
version of the popular BERT model. It was trained
by distilling knowledge from the larger model into
a smaller version. TinyBERT (Jiao et al., 2019), on
the other hand, was designed for low-resource en-
vironments, such as mobile devices. It was trained
using a combination of teacher-student learning
and knowledge distillation techniques.

Another example of a data-efficient language
model is ALBERT (Lan et al., 2019) which reduces
the number of parameters of the BERT model by
using factorization techniques and sharing parame-
ters across different layers. This results in a more
data-efficient model that can achieve similar or bet-
ter performance than the larger BERT model.

GPT-Neo (Black et al., 2021) is another data-
efficient language model that was trained on a large
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dataset of text, but it can be fine-tuned on smaller
datasets with good results. It has demonstrated
competitive performance on various natural lan-
guage processing tasks, including language genera-
tion, summarization, and question-answering.

ELECTRA (Clark et al., 2020) is a novel pre-
training approach for language models that is de-
signed to be more data-efficient than traditional
models like BERT. Instead of using a traditional
masked language modelling task, ELECTRA uses
a discriminator network to predict whether a given
input is real or generated by another model. This
approach allows for more efficient training and can
achieve similar or better performance than tradi-
tional models.

TinyStories (Eldan and Li, 2023) is an artificial
collection of short stories, specifically designed
with words understandable to 3 to 4-year-olds.
These stories are generated using GPT-3.5 and GPT-
4 (OpenAI, 2023).TinyStories can effectively serve
as a training and evaluation dataset for language
models (LMs) that are considerably smaller than
the current state-of-the-art models (less than 10
million parameters) or have simpler architectures
(with just one transformer block). Despite their
reduced size and simplicity, these LMs are capable
of producing coherent and consistent stories span-
ning multiple paragraphs. The stories are diverse,
exhibit nearly flawless grammar, and showcase im-
pressive reasoning abilities.

BabyBERTa is a lightweight model for language
acquisition (Huebner et al., 2021). BabyBERTa
is similar to RoBERTa (Liu et al., 2019), but it is
much smaller and simpler. BabyBERTa was trained
on a dataset of 5M words of American-English
child-directed input, and it can be run on a single
desktop with a single GPU.BabyBERTa was able to
achieve comparable performance to RoBERTa on
a number of language acquisition tasks, including
grammatical knowledge acquisition, generalization
to novel grammatical contexts, syntactic structure
learning, and semantic word and phrase learning.
These results suggest that BabyBERTa could be a
valuable tool for language acquisition research.

Small size: BabyBERTa is much smaller than
RoBERTa, with only 8 layers, 8 attention heads,
256 hidden units, and an intermediate size of 1024.
This makes it much faster and easier to train and
use than RoBERTa.

Comparable performance: Despite its smaller
size and simpler training regime, BabyBERTa

was able to achieve comparable performance to
RoBERTa on a number of language acquisition
tasks. This suggests that BabyBERTa could be a
valuable tool for language acquisition research.

BabyBERTa makes a number of contributions
to the field. First, it demonstrates that a small,
lightweight model can be used to acquire grammat-
ical knowledge from child-directed input. Second,
it shows that BabyBERTa can generalize to novel
grammatical contexts. Third, it shows that Baby-
BERTa is able to learn the syntactic structure of
sentences. Fourth, it shows that BabyBERTa is able
to learn the semantics of words and phrases

3 Experiment Settings

We embrace BabyBERTa (Huebner et al., 2021) as
the foundational model for our research endeavour.
Building upon this foundation, our investigation
sets forth to explore an array of model sizes and di-
verse hyperparameters in a systematic and rigorous
manner.

We construct five different models to validate
and then further exploit the performance of Baby-
BERTa. All hyperparameters are kept the same
except, hidden size, intermediate size, number of
attention heads and number of layers. Models con-
figurations can be found in Table 1.

Our study closely follows the established hyper-
parameters of BabyBERTa but with three key vari-
ations: number of mask patterns{1, 5, 10, 20, 50},
epochs{1,5,10}, and batch size {16,32,64,128}.
Due to computational limitations, we are limited to
having 36 different configurations per model.

4 Evaluation Setup

We adopt the official evaluation pipeline of the
BabyLM Challenge (Warstadt et al., 2023; Gao
et al., 2021), which combines BLiMP (Warstadt
et al., 2019), SuperGLUE (Wang et al., 2019),
MSGS (Warstadt et al., 2020), and a Supplement
benchmark. Our best model is evaluated on all
benchmarks, while other models are evaluated on
BLiMP due to limited computing resources. This
approach ensures a rigorous assessment of our
model’s performance across diverse tasks while
optimizing resource allocation.

4.1 Baselines

The competition organizers supply baseline models
extracted from well-known language models, in-
cluding OPT (Zhang et al., 2022), RoBERTa (Liu
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Table 1: Model Configurations of ToddlerBERTa.

Hidden Size Inter. Size # Heads # Layers # Parameters

ToddlerBERTa-xs 64 256 4 4 0.75 M
ToddlerBERTa-s 128 512 4 4 1.8 M
ToddlerBERTa-base 256 1024 8 8 8.5 M
ToddlerBERTa-l 512 2048 8 8 29.7 M
ToddlerBERTa-xl 768 3072 12 12 92.0 M

et al., 2019), and T5 (Raffel et al., 2019). These
baselines are trained from scratch on the competi-
tion’s exclusive dataset. Since no external models
are available, we use these baseline models as ref-
erences to assess our models’ performance within
the competition’s context.

5 Results and Analysis

As stipulated earlier, a substantial portion
of our model evaluations is conducted under
BLiMP (Warstadt et al., 2019), encompassing com-
parisons across various linguistic tasks. Addition-
ally, we undertake a comprehensive evaluation of
our best-performing model using the entire pre-
scribed evaluation pipeline. As a result, we present
our findings as two distinct sets of results: BLiMP
results and main results.
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Figure 1: Average scores of the ToddlerBERTa-xs mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1 BliMP Results

5.1.1 ToddlerBERTa-xs
Our ToddlerBERTa-xs model, with approximately
750 thousand parameters, achieves competitive per-
formance compared to the larger T5 baseline on
the BLiMP benchmark, in Figure 1. This data

scaling behaviour highlights the potential bene-
fits of optimizing smaller architectures for specific
tasks, showcasing efficient language modelling ap-
proaches.

5.1.2 ToddlerBERTa-s

ToddlerBERTa-s model, consisting of 1.8 million
parameters, exhibits superior performance com-
pared to the OPT baseline across various configu-
rations. Remarkably, experimental results demon-
strate that even with smaller parameter sizes, these
models can outperform larger counterparts in the
low data regime when leveraging the BabyBERTa
training and preprocessing recipes.

e1
-p

1-
b1

28
e1

-p
1-

b1
6

e1
-p

1-
b3

2
e1

-p
1-

b6
4

e1
-p

5-
b1

28
e5

-p
1-

b1
28

e5
-p

1-
b6

4
e1

-p
10

-b
12

8
e1

-p
5-

b6
4

e1
-p

5-
b3

2
e1

0-
p1

-b
12

8
e1

-p
5-

b1
6

e1
-p

20
-b

12
8

e1
0-

p1
-b

64
e1

-p
10

-b
64

e1
-p

50
-b

12
8

e1
-p

10
-b

32
e5

-p
1-

b1
6

e1
-p

20
-b

64
e5

-p
1-

b3
2

e1
0-

p1
-b

16
e1

-p
50

-b
64

e1
0-

p1
-b

32
e1

-p
10

-b
16

e5
-p

5-
b1

28
e1

-p
20

-b
32

e5
-p

5-
b6

4
e5

-p
5-

b3
2

e5
-p

10
-b

12
8

e1
0-

p5
-b

12
8

e5
-p

10
-b

64
e5

-p
10

-b
32

e5
-p

20
-b

12
8

e1
0-

p1
0-

b1
28

e1
0-

p2
0-

b1
28

e5
-p

20
-b

64

Model Configurations

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

ToddlerBERTa-s Variants on BLiMP
RoBERTa Baseline
OPT(125M) Baseline
T5 Baseline

Figure 2: Average scores of the ToddlerBERTa-s mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1.3 ToddlerBERTa-base

The ToddlerBERTa-base and BabyBERTa (Hueb-
ner et al., 2021) have the same number of param-
eters, which is 8.5 million. However, the best-
performing model of ToddlerBERTa-base scores
0.7407 with more epochs and mask patterns than
the original, as shown in Figure 3. On the other
hand, the original BabyBERTa (Huebner et al.,
2021) configuration achieves 0.6660.
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Figure 3: Average scores of the ToddlerBERTa-base
models on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1.4 ToddlerBERTa-l
The utilization of data scaling techniques is evi-
dently advantageous in enhancing model perfor-
mance for grammar learning tasks. However, our
research findings demonstrate that surpassing the
RoBERTa baseline is achievable through the in-
crease of model parameters. This observation
prompts an inquiry into the sustainability of this
trend. In order to address this question, we de-
veloped ToddlerBERTa-l, featuring a substantial
parameter count of approximately 30 million. Our
experimental results emphasize the indispensabil-
ity of model size, despite the relatively modest
increase in the top score, Figure 4. Notably, a
significant performance boost is observed in the
majority of models when larger architectures are
employed. These findings underscore the critical
role of model size in optimizing grammar learning
capabilities.

5.1.5 ToddlerBERTa-xl
To further explore the capabilities of BabyBERTa
within the strict-small portion of BabyLM, we
introduce ToddlerBERTa-xl, a language model
equipped with 92 million parameters similar to
RoBERTa (Liu et al., 2019). Our prior experi-
ments have highlighted the significance of both
data and model size; however, these studies have
predominantly employed relatively smaller model
sizes compared to baseline models, which exhibit
exceptional results when trained on extended cor-
pora over extended periods. Such large models
excel under substantial data volumes but tend to
perform inadequately in low-data scenarios. Con-
sequently, previous investigations (Eldan and Li,
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Figure 4: Average scores of the ToddlerBERTa-l mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

2023; Huebner et al., 2021) have often opted for
smaller model sizes. Nonetheless, to thoroughly
evaluate the boundaries of this approach, we un-
dertake the training of larger models in order to
affirm our hypothesis which is that performance
will improve with the model scaling. Figure 5 veri-
fies our hypothesis by achieving remarkable results
on BLiMP with a significant margin to baselines
which share a similar number of parameters.
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Figure 5: Average scores of the ToddlerBERTa-xl mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1.6 BLiMP Summary
Our extensive experiments show that improving the
BabyBERTa methodology involves using numer-
ous different mask patterns to augment the data,
processing single sentences, and using smaller con-
text and vocabulary sizes with limited batch sizes
and epochs. However, to achieve superior perfor-
mance with larger models, we increase batch sizes
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Models Overall
ANA. AGR

ARG. STR

BINDING

CTRL. RAIS.

D-N AGR

ELLIPSIS

FILLER GAP

IRREGULAR

ISLAND

NPI
QUANTIFIERS

S-V AGR

OPT-125m(baseline) 62.63 63.75 70.56 67.10 66.48 78.47 62.01 63.83 67.53 48.58 46.71 59.61 56.87
RoBERTa-base(baseline) 69.47 81.54 67.12 67.26 67.85 90.75 76.44 63.48 87.43 39.87 55.92 70.53 65.42
T5(baseline) 57.70 68.92 63.82 60.40 60.87 72.21 34.41 48.24 77.56 45.59 47.80 56.72 55.81
ToddlerBERTa 76.68 87.68 70.62 71.82 69.07 93.44 76.27 81.68 82.80 58.07 63.59 82.64 82.51

Roberta-base 85.4 97.30 83.50 77.80 81.9 97.00 91.40 90.10 96.20 80.70 81.00 69.80 91.90

Table 2: BLiMP(Warstadt et al., 2019) benchmark results, baseline scores are taken from the leaderboard page of
the competition , RoBERTa-base results from (Huebner et al., 2021).

Models Overall
HYPERNYM

QA CONGR.(EASY)

QA CONGR.(TRICKY)

SUBJ.-A
UX. INVER.

TURN TAKING

OPT-125m(baseline) 52.72 50.00 54.69 31.52 70.26 57.14
RoBERTa-base(baseline) 42.42 50.80 34.40 34.50 45.60 46.80

T5(baseline) 43.96 48.02 40.63 21.21 64.92 45.00
ToddlerBERTa 57.12 48.02 62.50 35.76 79.65 59.64

Table 3: BLiMP Supplement benchmark results, baseline scores are taken from the GitHub page of evaluation
pipeline.

and the number of epochs. Larger batch sizes en-
hance training stability, while more epochs help
models learn better. Consequently, our best model
outperforms the original BabyBERTa model by a
substantial 10 point in BLiMP, highlighting the
effectiveness of these changes.
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0.92 0.31 0.49 0.79 0.87 0.82 1.00 0.89 0.89 -0.28 0.90 0.88 0.93

0.94 0.43 0.55 0.82 0.89 0.90 0.89 1.00 0.92 -0.21 0.91 0.91 0.96
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0.96 0.47 0.58 0.84 0.91 0.84 0.88 0.91 0.93 -0.21 0.96 1.00 0.95

0.98 0.45 0.59 0.88 0.94 0.91 0.93 0.96 0.96 -0.17 0.96 0.95 1.00
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Figure 6: Spearman correlation matrix on the scores of
BLiMP tasks.

To refine our models based on BLiMP evalua-
tion, we carefully consider the average results while
remaining aware of potential outliers that could
have an implicit impact on the reliability of the
approach that we take while optimizing the mod-
els. To thoroughly explore relationships among the
nearly 180 results of our models, we use a Spear-

man correlation matrix as a robust analytical tool,
providing insights into potential patterns and de-
pendencies. See Figure 6 for the correlation matrix
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Figure 7: Models are ranked by the average BLiMP
score in ascending order, in the Blue time series plot.
Other time series plots represent how task scores vary
while the average score consistently improves.

The majority of the tasks exhibit a strong posi-
tive correlation with the average, with the exception
of Island Effects, Filler Gap, and Control/Raising.
In order to gain insights into the underlying reasons
behind this anomaly, we present a visual analysis
by plotting the scores of these specific tasks in as-
cending order based on their respective average
scores, as illustrated in Figure 7. The plot reveals
that all task scores either improve slightly or stay
around a fixed interval. This observation leads us
to postulate that these particular tasks may be inher-
ently more challenging, demanding a larger volume
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Models Overall
CR LC MV RP SC CR_LC

CR_RTP

MV_LC
MV_RTP

SC_LC
SC_RP

OPT-125m(baseline) 9.63 50.77 53.55 99.47 99.91 77.15 0.37 -70.33 -72.14 -77.60 13.76 -68.92
RoBERTa-base(baseline) 8.22 43.08 100.00 97.67 76.73 86.24 -28.28 -77.69 -99.30 -79.36 16.28 -45.02
T5(baseline) -6.38 21.11 100.00 33.36 82.54 77.58 -78.33 -62.04 -100.00 -79.70 -25.28 -39.43
ToddlerBERTa 2.51 51.61 80.00 99.95 71.23 45.90 2.32 -72.15 -85.73 -82.68 -34.41 -49.60

Table 4: MSGS (Warstadt et al., 2020) benchmark results, baseline scores are taken from the GitHub page of
evaluation pipeline

Models Overall
COLA(M

CC)

SST-2
MRPC(F1)

QQP(F1)

MNLI
MNLI-MM

QNLI
RTE

BOOLQ
MULTIRC

WSC

OPT-125m(baseline) 62.38 15.22 84.25 74.13 78.89 67.66 69.43 65.40 55.26 65.28 51.37 59.04
RoBERTa-base(baseline) 67.38 25.75 87.60 77.27 82.76 73.15 77.27 81.54 53.54 65.70 61.23 57.83
T5(baseline) 58.34 11.26 80.91 78.49 72.19 52.80 56.70 63.91 50.51 63.49 48.85 62.65
ToddlerBERTa 64.94 37.37 86.02 79.29 74.53 70.28 70.34 64.83 54.55 67.77 47.97 61.45

Table 5: SuperGLUE (Wang et al., 2019) benchmark results, baseline scores are taken from the GitHub page of
evaluation pipeline

of data and more complex model architectures for
optimal performance.

5.2 Main Results

After evaluating various models on
BLiMP (Warstadt et al., 2019), we select
the best one as our final model which is a
ToddlerBERTa-xl that is trained for 5 epochs
with 20 different mask patterns and 64 as the
batch size. We then assess its performance on
Blimp Supplement and fine-tune it on (Wang et al.,
2019) and MSGS (Warstadt et al., 2020) using the
evaluation pipeline (Warstadt et al., 2023).

BLiMP: In our investigation, we focus on evalu-
ating our models compared to baselines during iter-
ative training. We also include results of RoBERTa-
base (Liu et al., 2019) from Huebner et al. (2021)
for a more comprehensive analysis in Table 2.
RoBERTa-base outperforms our ToddlerBERTa
model, largely due to its extensive 3-billion-word
training data, while ToddlerBERTa is trained on a
smaller 10-million-word dataset.

To narrow the performance gap, we increase
mask patterns in ToddlerBERTa’s training, im-
proving data utilization despite the 1-billion-word
exposure constraint. Our results show that Tod-
dlerBERTa, with limited data, can perform rela-
tively well compared to RoBERTa-base, highlight-
ing the effectiveness of data augmentation by em-
ploying different masks for enhancing language
model training.

SuperGLUE: In the SuperGLUE benchmark,

our models face a challenge due to their exclusive
focus on single sentences while the dataset often
includes inputs with multiple sentences. However,
even with this constraint, our model competes re-
markably well with baselines trained on multiple
sentences. Our results in Table 5, highlight our
model’s ability to grasp complex linguistic rela-
tionships and reasoning, aligning its performance
with state-of-the-art baselines that use broader con-
textual information. This showcases our model’s
potential for robust language understanding, even
in scenarios with multi-sentence inputs.

MSGS: The Mixed Signals Generalization Set
(MSGS) evaluates language models’ generalization
capabilities for both linguistic and surface features.
Our analysis in Table 4 suggests that the poor per-
formance may be due in part to overexposure. To
enhance training, we add more mask patterns and
use them for numerous epochs, which can lead
to repeated patterns and examples in the training
data. This overexposure may affect the model’s
learning process, causing a preference for specific
features. As a result, the model might struggle to
adapt to novel patterns in the MSGS. On the other
hand, baseline models also suffer from poor perfor-
mance. Considering the worst score is -100 and the
best is 100, their performances are no better than
ours which points out that undertraining is another
drawback for generalization.

BLiMP Supplement: The challenge has been
enriched with an extra benchmark, the details of
which have not been published yet, but it is pre-
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sumed to be connected to the BLiMP evaluation
framework. Analysis of the results presented in
Table 3 leads us to speculate that the performance
gains in BLiMP are still relevant whereas insuf-
ficient to truly accomplish a major performance.
ToddlerBERTa achieves better scores than the base-
lines however performance of OPT-125m (Zhang
et al., 2022) and T5 (Raffel et al., 2019) compared
to RoBERTa (Liu et al., 2019) can be explained by
the presence of the decoder in T5 and OPT archi-
tectures. Further analysis will be ineffective given
that details of benchmark are non-disclosed yet.

6 Conclusion

We undertake a systematic and rigorous exploration
of language models, building upon the foundational
work of BabyBERTa. Through the development
and evaluation of five distinct ToddlerBERTa mod-
els, we have demonstrated the significance of hyper-
parameter choices and model sizes in the context
of natural language processing.

Our experiments have revealed the potential ben-
efits of optimizing smaller architectures for spe-
cific linguistic tasks, showcasing the efficiency of
language modelling techniques in tackling various
challenges. Additionally, our best-performing Tod-
dlerBERTa models have exhibited competitive per-
formance compared to established baselines, show-
casing their adaptability and capacity to excel in
diverse language understanding tasks.

The comprehensive evaluations conducted on
BLiMP, SuperGLUE, MSGS, and the new BLiMP
Supplement benchmark have provided valuable in-
sights into the strengths and limitations of our ap-
proach. While our research has shed light on the
impact of different hyperparameters, we acknowl-
edge that further exploration of model architectures
and training methodologies may yield additional
advancements in language modelling.

By contributing to the collective understanding
of transformer-based models and their potential for
natural language processing, our research aims to
inspire future investigations and innovations in the
field. As the quest for advancements in language
modelling continues, we emphasize the importance
of replicability and reproducibility in research to
facilitate the development of robust and reliable
language models.

7 Limitations

Despite the contributions of our research, it is es-
sential to acknowledge its limitations. Firstly, the
exploration of hyperparameters and model sizes
may not have encompassed all possible configura-
tions due to computational constraints. This leaves
room for potential superior settings to be uncov-
ered. Secondly, the evaluation framework’s focus
on transformer-based models may limit the com-
parability with other non-transformer architectures.
Additionally, the fixed dataset used for training and
evaluation may restrict the model’s exposure to di-
verse linguistic patterns and contexts. Furthermore,
the reliance on single-sentence processing during
pretraining could impact the model’s performance
on tasks requiring broader contextual understand-
ing. Lastly, our study did not extensively explore
architectural innovations or novel training method-
ologies. Despite these limitations, our research
provides valuable insights into language modeling,
calling for further investigations to address these
constraints and advance the field.
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her valuable feedback and insightful discussions.

Implementation and Hardware Details
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