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Abstract

The size of neural language models has
increased rapidly over the past several
years. This increase in model size has been
accompanied by using larger and larger
amounts of language data to train them.
As these models and training data sizes
have grown, the computational resources
required to train them has surpassed what
is available to many researchers. This work
is part of a shared task called the BabyLM
Challenge which requires language models
to be trained using a restricted amount of
training data a small fraction of the size
of what large models use. In addition, no
pretrained tools can be used. This work
presents a curriculum learning approach
to this data restricted setting by apply-
ing a bytes per line ordering to provided
datasets. Throughout training, the aver-
age bytes per line is gradually increased by
including more datasets as training data.
Overall, there is an increase in perfor-
mance on downstream tasks when using
this curriculum learning approach, which
provides a basis for potential further ex-
ploration of byte-based curriculum learn-
ing approaches.

1 Introduction

Large language models (LLMs) have received much
attention from researchers and the general public
in recent years (Devlin et al., 2018; Liu et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022; Hoff-
mann et al., 2022). One distinguishing aspect of
these recent models is an explosion in the size of
the models and a corresponding massive increase
in training data to train these large models. In
particular, the Chinchilla (Hoffmann et al., 2022)
work suggests that model size and training tokens
should be scaled at the same rate. To demonstrate
the importance of the amount of training data used
to train a model, Chinchilla was trained with 1.4
trillion training tokens, nearly five times the size
of the training data for other LLMs at the time.

The result was an improvement on a number of
downstream tasks.

While large models perform very well on a large
variety of tasks, they also come with many draw-
backs. These models require large amounts of com-
puting resources beyond what is available to many
researchers. Additionally, the amount of data used
to train these models is not currently available in
the majority of the world’s languages. In an ef-
fort to investigate language modeling abilities and
training strategies in data-limited situations, the
BabyLM challenge restricts the amount of data
available to models (Warstadt et al., 2023).

One approach to improve training speed and
improve downstream performance is by providing
training data in a specific order. In particular,
gradually increasing the difficulty of the training
samples provided to the model is known as cur-
riculum learning (Elman, 1993). Human children
learning language follow a similar exposure to lan-
guage. Speech directed at babies is far simpler
than speech directed at adults and written lan-
guage data follows the same trend. The motivation
behind curriculum learning is to treat a neural net-
work in a similar manner and allow it to learn from
easier training samples before being presented with
more difficult training samples.

The approach taken in this current work is to
apply curriculum learning in a data restricted set-
ting, without incorporating outside knowledge or
data, to see its impact on training. The prepro-
cessing steps are kept the same across models pre-
sented to reduce their effect on the ability to com-
pare across training runs. A byte-level byte-pair-
encoding tokenization is used across all models pre-
sented. Inspired by the byte-level approach to en-
coding, bytes per line is used as the measure of
“difficulty” for a given portion of the dataset. The
data used to train the model came from several
different datasets. The bytes per line “difficulty”
is used to determine the order in which training
datasets are provided to the models as part of a
curriculum learning approach. While no additional
or outside information is required to apply this ap-
proach to data, the result for this challenge was
that transcribed speech was used as training data
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before any of the written text data. This provides
another parallel to human language acquisition as
speech comes before literacy in children.

Given that the limitations motivating this work
and this challenge include data limitations as well
as computational resources, we train each model
for a set number of epochs. Models trained using
the curriculum learning approach outperformed a
traditional training approach baseline across sev-
eral benchmark downstream tasks. When com-
putational resources are less limited, the models
also continue to improve when the model size is
increased and when trained longer.

2 Related Work

There is much existing work on language models,
including methods to work with them in computa-
tional or data constrained settings. One approach
that has been used is model distillation. A well-
known example of this is DistilBERT (Sanh et al.,
2019). DistilBERT, and other distillation trained
models, require a larger pretrained model to act as
a teacher when a smaller model is trained. While
the end result is a smaller model which can per-
form quite well. This approach can be applied to
systems which require a small final model, but does
not work for data or computationally constrained
settings for training such as ours.

A similar approach is to use a large language
model and simply finetune on the data-restricted
task. Since this requires a pretrained large lan-
guage model, this approach also does not work
for constrained training settings with no such pre-
trained model available. While finetuning is used
as part of the evaluation process for this challenge,
this approach violates the restrictions of this chal-
lenge. As such, this solution to data-restricted set-
tings is not used here. When there is a domain
mismatch between the data used to pretrain an
existing language model and the training data for
a desired domain, some work suggests that train-
ing a new language model may be beneficial. For
example, Gu et al. (2021) find that training a new
language model specifically on in-domain biomed-
ical data produced a better result for in-domain
downstream tasks. This is more similar to the set-
ting of this work as a language model is trained
from scratch.

Another area of research within Natural Lan-
guage Processing that is similar to this strict-small
track is work with low-resource languages. While
many of the largest language models are built for
English with large quantities of data, there have
been efforts to improve language modeling in lower
resource language as well. Some of these, such as
multilingual BERT (Devlin et al., 2018), are them-
selves large language models which combine many
languages into one model. These models still re-

quire a large amount of resources (data and com-
putational) and are larger than what is presented
in the challenge.

Since curriculum learning relies upon increasing
the difficulty of training samples as training con-
tinues, determining what makes a training sam-
ple more difficult than another is centrally impor-
tant. For language input, some proposed measures
of difficulty include presence of rare words (Bengio
et al., 2009), block size (Nagatsuka et al., 2021),
and length (Nagatsuka et al., 2023). When viewed
in relation to these approaches, this work repre-
sents an exploration of a new, related measure of
difficulty of training samples.

The learning schedule used in this work which
determines at what rate new samples are added
to the training set shares a similar motivation to
work by Amiri et al. (2017). Their work applies
findings from psychology that human learners learn
effectively when the same information is reviewed
with increasing lengths of time between reviews.
These findings suggest that human learners abil-
ity to learn information is impacted not only by
repetition of material, but also by the interval of
time between those repetitions. The work by Amiri
et al. (2017) uses this as a basis for a curriculum
learning schedule. That work created a scheduler
which spends more time on difficulty training in-
stances and less time on easy instances. This work,
by contrast, by gradually increasing the size of the
training set, also gradually increases the time be-
tween repetitions of the easiest training samples
while saving the more difficulty samples for later
in training.

As this work was part of a shared task BabyLM
challenge, there will be other related works pub-
lished at the same time as this work. While those
works cannot be discussed here, they will also
provide good comparisons of other possible ap-
proaches.

3 Data

The dataset provided for this challenge came from
ten sources. These sources were chosen to repre-
sent the type of language that a human child may
be exposed to when learning English and includes
both written text and transcribed speech. For the
strict-small track, the total training data available
was just under 10 million words.

Given the variety of sources, the text format
was not consistent across the provided data and
required some preprocessing.

3.1 Preprocessing

Due to the strict nature of the challenge, no prepro-
cessing steps which were pretrained on outside data
were allowed. This restriction ruled out the use of
many off-the-shelf preprocessing tools. In many
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Dataset Domain Words
Size
(MB)

Lines Bytes/line

CHILDES Child-directed speech 0.44M 1.9 80K 24
OpenSubtitles Movie subtitles 3.09M 16.0 527K 30
Switchboard Dialog
Act Corpus

Dialogue 0.12M 0.6 16K 37

British National Corpus,
dialogue portion

Dialogue 0.86M 4.3 89K 48

QCRI Educational
Domain Corpus (QED)

Educational video
subtitles

1.04M 5.6 100K 56

Simple Wikipedia
Wikipedia
(Simple English)

1.52M 8.7 120K 72

Children’s Book Test Children’s books 0.57M 2.6 26K 100
Standardized Project
Gutenberg Corpus

Written English 0.99M 5.5 54K 102

Children’s Stories
Text Corpus

Children’s books 0.34M 1.8 16K 112

Wikipedia
Wikipedia
(English)

0.99M 5.8 50K 117

Total 9.96M 52.8 1078K 49

Table 1: Dataset provided for the strict-small track of the BabyLM challenge. Dataset names, domain
descriptions, and word counts provided in Warstadt et al. (2023). Bytes, line counts, and bytes per line
all measured after preprocessing was completed. See section 3.1 for details.

low-resource settings there may be no or limited
existing pretrained tools to use for preprocessing.
While such tools are useful when available, in this
challenge those tools are off-limits.

We used a rule-based sentence splitter. Sen-
tences are automatically split by punctuation un-
less they are preceded by one of the listed prefixes
(for example, “Dr” followed by punctuation does
not signify a sentence split).1 This approach was
selected since it was not trained on any outside
data and provides decent sentence breaks.

Additional preprocessing included removal of
blank lines, and lower casing the entire “QED”
dataset, which came in all capital letters.

3.2 Tokenizer

In order for the model to train on the data, a to-
kenizer must convert the input sentences into to-
kens. Word-level tokenizers replace any words not
seen in the training data with an unknown token.
Given the small amount of training data avail-
able in this challenge, this would result in many
words marked as unknown. At the other extreme,
character-level tokenization breaks every input into
characters in order to eliminate any unknown to-
kens from occurring. This also has the advantage
of having a small vocabulary size, since it consists
only of characters. A major drawback of this ap-
proach is that, unlike words, characters may not
have meaning by themselves. A popular and suc-
cessful approach sits between these two by merg-

1https://github.com/mediacloud/sentence-splitter

ing frequent pairs of characters together iteratively
to create a vocabulary of characters and merged
tokens. This approach is known as byte-pair en-
coding (BPE) (Sennrich et al., 2015). Despite its
name, byte-pair encoding applied to natural lan-
guage models typically does not operate at the
byte level. A more recent approach used in lan-
guage models such as GPT-2 (Radford et al., 2019)
is byte-level byte-pair encoding. This is similar
to earlier BPE, but operates directly on the byte
representations and has been effective in language
models.

After preprocessing, a byte-level byte-pair-
encoding tokenizer was trained on the data. The
vocabulary size was set to 52,000 with special
tokens added for sentence beginning and end,
padding, masking, and an unknown token in case
any bytes were never seen in the training data. The
maximum length was set to 128 (126+beginning
and end tokens). Once trained, this tokenizer was
used across models for consistency.

4 Model and Training

Our model is a RoBERTa (Liu et al., 2019)
model. RoBERTa improves upon the BERT (De-
vlin et al., 2018) model, increasing performance
across a range of benchmarks. While the architec-
ture of both models is nearly identical, there are
a number of smaller changes made in RoBERTa.
Among the most relevant for his work is the re-
moval of next sentence prediction task during pre-
training and modifying the masked language mod-
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eling pretraining task by re-selecting the masks
each training epoch. The architecture underlying
these models is the Transformer model (Vaswani
et al., 2017). The “base” model and the “CL-sm”
model are the same size and number of parameters,
differing only in how they were trained. The “CL-
lrg” model is trained in the same way as “CL-sm”
but is a slightly larger model. More details of the
models are discussed in section 5.1. The “CL-sm”
model trained for 5 epochs was submitted to the
BabyLM Challenge2. The “CL-lrg” model trained
for 10 epochs is also available for download3. Since
we do not significantly modify this underlying ar-
chitecture, we leave the details of these models to
their respective papers. Code to train our model
can be found on GitHub 4.

4.1 Masked Language Modeling

The pretraining objective used to train our mod-
els was masked language modeling. In masked
language modeling (MLM), tokens are randomly
replaced with a special ¡mask¿ token. Given
the surrounding context, the model predicts the
masked token and the loss is used to train the
model. As mentioned above, MLM as a pretraining
task for language modeling has been used success-
fully in many existing models such as BERT and
RoBERTa. Following RoBERTa, masks were com-
puted dynamically for each training instance and
were not retained across epochs.

4.2 Curriculum Learning

Our models used curriculum learning to gradually
increase the difficulty of the training set. As dis-
cussed earlier, there are ten datasets that were
combined to create the training data. Each of these
datasets were added one at a time to increase the
training data. The way “difficulty” was measured,
avoiding applying outside knowledge to the data,
was by dividing each of the ten data files’ size by
the number of lines in that file. This gave an ap-
proximate bytes per line ranking of the ten train-
ing files. This was computed after all preprocessing
was done, including the additional line splits and
blank line removals.

A number of epochs is chosen prior to pretrain-
ing. After that number of epochs of training, an-
other dataset was added to the training data. The
model weights from the end of the previous epochs
were used, but the learning rate and other hyper-
parameters were reset. As there was more data in
the training set as training continued, the epochs
contained more updates the further the training

2https://huggingface.co/jdebene/BabyLM-jde-
5/tree/main

3https://huggingface.co/jdebene/BabyLM-jde-
larger-10/tree/main

4https://github.com/jdebened/BabyLM2023

went. The final set of epochs included all of the
training data.

The order in which datasets were added by fol-
lowing this approach was:

1. CHILDES (MacWhinney, 2000)

2. OpenSubtitles (Lison and Tiedemann, 2016)

3. Switchboard Dialog Act Corpus (Stolcke
et al., 2000)

4. British National Corpus, dialogue portion5

5. QCRI Educational Domain Corpus (QED)
(Abdelali et al., 2014)

6. Simple Wikipedia6

7. Children’s Book Test (Hill et al., 2016)

8. Standardized Project Gutenberg Corpus (Ger-
lach and Font-Clos, 2020)

9. Children’s Stories Text Corpus7

10. Wikipedia8

This ordering also orders spoken, transcribed
datasets before written datasets. This follows the
language acquisition and exposure ordering that
human children encounter. The exact ordering dif-
fers from an ordering based on when children would
be exposed to these particular datasets, in partic-
ular Children’s Stories Test Corpus would come
much earlier in the order. One benefit of our ap-
proach is that it can be applied to any datasets
without prior knowledge of what the datasets con-
tain.

Unlike many other works which combine data
from all sources into one pool before assigning an
order to samples, this work places the ordering on
the data sources themselves. This approach is fit-
ting for settings such as this one in which the data
from different sources can differ widely in their
complexity. Datasets which contain more similar
sources may not benefit from this approach, but
that is outside the scope of this current work.

Since our tokenizer uses byte level byte pair en-
coding, we chose to explore a byte-based ranking
for the dataset complexities.

5 Results

Here we examine the results of models on the pro-
vided evaluation benchmarks (Gao et al., 2021).
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Model
Ana.
Agr.

Agr.
Str.

Bind.
Ctrl.
Rais.

D-N
Agr.

Ellip.
Fill.
Gap

Irreg. Isl. NPI Quan.
S-V
Agr.

Avg.

Base
5 ep 72.65 66.59 64.84 60.96 85.12 51.39 63.60 90.69 34.19 57.52 78.77 57.85 65.35
10 ep 79.35 70.42 68.06 64.85 94.76 65.65 65.66 92.32 34.68 59.57 79.01 62.48 69.73
20 ep 84.25 72.65 68.60 65.11 96.55 70.44 68.04 91.09 32.21 55.86 72.23 67.37 70.37
CL-sm
5 ep 81.65 72.77 71.40 67.34 96.38 71.94 68.32 81.63 33.48 65.87 69.22 71.29 70.94
10 ep 86.50 72.81 69.46 68.91 94.79 75.87 71.68 80.46 39.05 62.22 67.95 72.68 71.87
CL-lrg
5 ep 84.92 73.44 70.36 69.07 97.14 74.31 74.07 85.70 34.87 64.14 74.91 72.86 72.98
10 ep 87.88 71.40 70.04 68.94 94.75 75.75 74.56 84.17 44.25 67.86 66.18 77.76 73.63

Table 2: Comparison of models on BLiMP tasks. Average shown is macro-average across all tasks. Mod-
els trained using curriculum learning surpassed baseline (all data, no curriculum learning) and improved
further when more epochs were used for training. Bolded values show best in column.

5.1 BLiMP

Distributed as part of the BabyLM challenge was
an evaluation pipeline. This pipeline included zero-
shot evaluation on tasks from the BLiMP bench-
mark (Warstadt et al., 2020a). The BLiMP data
was filtered to only include words which appeared
at least twice in our training dataset (strict-small
track) 9. BLiMP (The Benchmark of Linguis-
tic Minimal Pairs) provides a pretrained language
model with a pair of sentences to score. The sen-
tence pairs have small differences designed to as-
sess whether a language model can select the cor-
rect sentence. If the language model assigns a
higher score to the correct sentence in the pair,
it is marked as correct. The tasks within BLiMP
test different phenomena spanning syntax, seman-
tics, and morphology. Since the sentences come
in pairs, a random guessing baseline would achieve
around 50% accuracy across all tasks.

Table 2 shows the results on BLiMP tasks. All
models shown used the same preprocessing, tok-
enization, and are RoBERTa models. The base
model had six attention heads and four hidden lay-
ers. All data was used for every epoch of training
the base model. The “CL-sm” model also had six
attention heads and four hidden layers, thus main-
taining the same architecture. The curriculum
learning technique described above was applied at
training time, gradually increasing the amount of
available training data. The “CL-lrg” model is a
larger version with twelve attention heads and six
hidden layers. The curriculum learning technique
is the same as was used for the smaller model.

As can be seen in Table 2, even with the lim-

5http://www.natcorp.ox.ac.uk
6https://dumps.wikimedia.org/simplewiki/20221201/
7https://www.kaggle.com/datasets/edenbd/children-

stories-text-corpus
8https://dumps.wikimedia.org/enwiki/20221220/
9See https://github.com/babylm/evaluation-

pipeline for more details

ited amount of training data available in this chal-
lenge, the language models were able to improve
on most BLiMP tasks. The models trained using a
curriculum learning approach all had higher aver-
age scores across the BLiMP tasks. The only two
tasks in which the base model outperformed the
curriculum learning models were irregular forms
and quantifiers. The irregular forms task focuses
on irregular forms of words in English for past par-
ticles. The example given in the BLiMP paper for
the irregular forms task is: “Aaron broke the uni-
cycle” compared to “Aaron broken the unicycle”.
For the quantifiers task, grammatical use of quan-
tifiers is tested as shown in the example from the
BLiMP paper: “No boy knew fewer than six guys”
compared to “No boy knew at most six guys”.

Upon further inspection of the training data,
this drop in performance on the irregular forms
makes sense given the order in which the curricu-
lum learning datasets were used. Initially, the
model trains exclusively on the CHILDES dataset.
After the specified number of epochs, the Open-
Subtitles data is added and additional training is
done. As this process continues, the model appears
to be heavily influenced by the improper use of ir-
regular forms within the CHILDES dataset. For
example, “you broken the trains ?” is a sentence
in the dataset in which the speaker is likely repeat-
ing a statement made by the child. By contrast,
the model is exposed to every dataset during every
epoch in the base model. The training data coming
from sources such as Wikipedia, simple Wikipedia,
Project Gutenberg, and others is much less likely
to feature many improper uses of irregular forms.

The performance drop on the quantifiers task
is not as obvious in the data, nor is the drop in
performance as dramatic. Even within the base
model itself, performance on the quantifier task
dropped when moving from 10 epochs of training
to 20 epochs of training. Training models on larger
portions of the datasets included in this challenge
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may provide more insight into which datasets con-
tribute positively or negatively toward each task in
the benchmark. This is left to future work outside
of this challenge.

Another task of note is the island effects task.
This task assesses how well the language model
learns that certain syntactic structures prevent
syntactic dependencies across them. This phe-
nomenon is investigated in works such as by Kush
et al. (2018). An example of this, given in
the BLiMP paper, is: “Whose hat should Tonya
wear?” compared to “Whose should Tonya wear
hat?”. It is noted in the BLiMP paper that this
is the hardest task in the benchmark for models
they tested. Our models not only did not do bet-
ter than random chance (50%), they actually con-
sistently preferred the wrong option. Similar to
quantifiers, there may be interesting results from
uncovering why these models prefer the sentences
which violate the island effects, but that is left to
future work outside the scope of this challenge.

5.2 SuperGLUE

The GLUE benchmark (Wang et al., 2018) was de-
signed to assess natural language systems on lan-
guage understanding tasks. There were nine tasks
aimed at testing different aspects of the language
understanding problem. About a year after its re-
lease, in response to rapid improvements on the
benchmark by natural language systems, Super-
GLUE was published as a more challenging sup-
plement or replacement (Wang et al., 2019).

Since these tasks require more than just a lan-
guage model score to make predictions, the pro-
vided evaluation scripts finetuned a model for each
task. The finetuning process involves a small
amount of additional, task-specific training of a
pretrained model in order to boost performance or
add a suitable encoder or decoder layer for the spe-
cific task. The initial learning rate was set to 5e-5,
the batch size set to 64, and the model trained for
up to 10 epochs.

The results for tasks from GLUE and Super-
GLUE can be seen in Table 3. The models trained
with curriculum learning had higher average scores
than those trained conventionally. While the cur-
riculum learning models improved on most tasks,
there were three tasks worth examining further:
QNLI, BoolQ, and WSC.

The task labeled QNLI (Question-answering
NLI) comes from the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016). In
SQuAD, systems were provided with a question
and a paragraph which contained a sentence an-
swering the question. The task was to pick out
which sentence answered the given question. This
was converted into the QNLI task by pairing the
question with each sentence in the given paragraph

and asking a natural language system to classify
whether the answer to the question is contained in
the given sentence.

In our results, we can see that the curriculum
learning approach has the highest score of any
of our models after its shortest training set of
5 epochs. However, performance dropped when
the pretraining within the curriculum learning
framework was increased to 10 epochs per set of
data. Performance degraded even further when
the model size was increased and the curriculum
remained the same.

For the task labeled BoolQ (Boolean Questions)
(Clark et al., 2019), the task is to provide a boolean
response (yes/no) to a question. The system is
provided with the question and a paragraph from
a Wikipedia article which contains the answer to
the question. Here we see a similar phenomenon
to the trend with QNLI. The curriculum learning
models’ performance decreases when allowed more
epochs for pretraining. Increasing model size had
a less noticeable drop in performance.

The WSC (Winograd Schema Challenge) task
(Levesque et al., 2012) requires a system to pick
to which noun phrase in a sentence a pronoun is
referring. The system is provided with a sentence
which includes a pronoun and noun phrases. The
pronoun refers to one of the noun phrases. The
drop in performance for models which trained for
more epochs is fairly consistent across models, re-
gardless of whether curriculum learning was ap-
plied for pretraining or not.

Despite these three tasks, average performance
across the benchmark does improve when using
curriculum learning, when increasing the number
of pretraining epochs, and when increasing the
model size.

5.3 MSGS

The MSGS (Mixed Signals Generalization Set)
(Warstadt et al., 2020b) was designed to test for in-
ductive biases in pretrained language models. The
aim of these tests are to not only find whether a
language model represents certain phenomena, but
more importantly whether it has learned to prefer
them when generalizing. As was done for the Su-
perGLUE tasks, finetuning is done for each model
to find its performance on each task. Our finetun-
ing hyperparameter setup is unchanged for MSGS.

The results shown in Table 4 show that the per-
formance across our models was relatively similar.
The conventional training method used for the base
model had nearly identical average performance
across all three different training lengths with the
exception of poor performance on the SC-LC task
for the model trained for 20 epochs. Given the
consistency across other tasks, it is possible that
retraining would not replicate this drop, though
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Model CoLA SST-2
MRPC
(F1)

QQP
(F1)

MNLI
MNLI-
mm

QNLI RTE BoolQ
Multi
RC

WSC Avg

Base
5 ep

70.76 84.84 76.92 77.07 67.02 67.84 62.20 48.48 63.35 57.94 61.45 67.08

10 ep 71.05 85.63 74.05 77.30 67.65 69.67 62.64 44.44 63.07 50.82 59.04 65.94
20 ep 70.36 86.61 78.63 77.77 68.07 69.37 65.27 44.44 65.70 58.38 59.04 67.60
CL-sm
5 ep

71.34 84.84 73.90 77.69 65.79 66.52 66.54 46.46 67.36 59.04 61.45 67.36

10 ep 72.33 87.99 76.45 78.47 70.05 71.23 64.22 45.45 64.73 59.58 56.63 67.92
CL-lrg
5 ep

72.33 87.01 79.38 78.60 70.71 72.15 63.87 47.47 65.42 57.28 61.45 68.70

10 ep 74.39 88.19 79.41 78.57 70.05 70.56 63.17 51.52 64.87 59.58 59.04 69.03

Table 3: Comparison of models on (super) GLUE tasks. Average shown is macro-average across all
tasks. Models trained using curriculum learning surpassed baseline in average performance.

Model
CR-
ctrl

LC-
ctrl

MV-
ctrl

RP-
ctrl

SC-
ctrl

CR-
LC

CR-
RTP

MV-
LC

MV-
RTP

SC-
LC

SC-
RP

Avg

Base
5 ep

82.13 100 97.76 99.29 95.25 66.46 66.64 66.61 66.38 88.69 69.75 81.72

10 ep 84.36 100 97.77 98.64 93.46 69.11 66.81 66.61 66.72 89.53 65.07 81.64
20 ep 89.94 100 97.98 99.98 89.92 66.60 66.92 66.61 66.79 67.39 64.56 79.70
CL-sm
5 ep

91.14 100 97.45 99.74 86.71 66.49 67.15 66.61 66.87 63.84 62.34 78.94

10 ep 88.37 100 97.93 100 89.96 66.38 67.29 66.61 66.78 70.10 65.72 79.92
CL-lrg
5 ep

84.57 100 99.36 98.94 94.39 66.35 67.01 66.61 66.62 72.69 70.33 80.62

10 ep 89.56 100 99.87 100 92.21 67.00 66.76 66.61 66.65 75.54 69.30 81.22

Table 4: Comparison of models on MSGS benchmark tasks. Average shown is macro-average across
all tasks. Models trained using curriculum learning performed slightly worse than baseline model, but
improved with more epochs. The base model, by contrast, had worse performance with more training
epochs.
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that would need to be tested to be confirmed. The
models trained with curriculum learning had slight
improvements when pretrained for more epochs as
well as when the model size was larger. Overall,
the techniques used in this work showed little im-
pact on the MSGS tasks.

6 Conclusion

Large language models have been highly success-
ful across a wide variety of tasks in Natural Lan-
guage Processing. Due to the rapidly increasing
model size and training data size, however, the
cost to train new models is prohibitively expen-
sive for many researchers. The BabyLM Challenge
is a shared task designed to highlight methods for
training language models at a smaller scale. These
methods may lead to improvements in scaling up
training more efficiently, training language models
in low-resource settings, and drawing upon the way
human children acquire language.

In this work, the strict-small track allowed our
models to use a given dataset containing around
ten million words from data sources that a child
may encounter when learning language. No tools
which used outside data for pretraining were al-
lowed, reducing the ability to use many existing
pipelines. This restriction is realistic for many low-
resource scenarios in which these tools are lacking.

This work explores ordering training data by
bytes per line for a curriculum learning approach.
This measure of difficulty is inspired by the use of
byte-based byte-pair-encoding tokenization and is
easy to apply without needing any domain knowl-
edge of the dataset. The results show that cur-
riculum learning with this setup obtains improved
results on benchmark evaluations when training for
a set number of epochs. In settings in which addi-
tional tools, data, or computational resources are
available, this curriculum setup is easy to apply
and further evaluation in those settings is a poten-
tial area for future work.

This work used the Augie High-Performance
Computing cluster, funded by award NSF 2018933,
at Villanova University.

Limtations

This work was completed as part of the BabyLM
Challenge. As such, additional testing would be
required to determine how well the results gen-
eralize outside of this data setting. In a simi-
lar way, pretraining settings in which some pre-
existing tools which are trained on outside data
are available may produce different results. Addi-
tionally, if more computational resources are avail-
able, the benefit to the models when trained for
more epochs remains to be seen. Other work on
curriculum learning found faster convergence, but
models in this work were trained for a set number

of epochs and not to convergence. The results out-
perform the baseline model at the set number of
epochs used, but training to convergence may lead
to better or worse results.
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