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Abstract

In this model report, we present an alterna-
tive approach to improving language models
through scaling up their architectures and train-
ing data. In contrast, we train significantly
smaller GPT-wee language models for the
CMCL and CoNLL shared task: the BabyLM
challenge. Drawing inspiration from usage-
based linguistics, specifically focusing on lan-
guage acquisition factors such as frequency,
word length, and lexical frames, we also con-
duct tests employing curriculum learning tech-
niques. Our findings demonstrate that even very
small models can achieve considerable profi-
ciency in standard evaluation tasks, performing
as good as or even better than much larger base-
line models, both on zero-shot evaluation and
tasks that require further fine-tuning. Our naïve
curriculum approach, however, does not show
any straightforward improvements, except for
certain, very specific tasks. Overall, the results
remain inconclusive and suggest interaction ef-
fects between model architecture, data make-up
and learning processes that warrant further in-
spection.

1 Introduction

In recent years, language model-based NLP has
witnessed remarkable advancements, surpassing
numerous benchmarks and continuously achiev-
ing new breakthroughs through increasingly larger
models. However, such large language models
come with certain difficulties. As their size ex-
pands, they demand substantial amounts of com-
puting power and training data, while also retain-
ing a certain degree of opaqueness and consum-
ing immense amounts of energy (Bender et al.,
2021). Besides, their overblown and complex
architectures hinder interpretability, while com-
monly used training data mostly comes from
non-naturalistic sources such as book corpora,
Wikipedia crawls, and web pages. Addressing
these concerns, the BabyLM challenge (Warstadt

et al., 2023b) emerges as an experimental test bed
for “smaller” or more optimized (and possibly more
cognitively plausible) models. By drastically reduc-
ing the allowed amount of training data compared
to state-of-the-art models, and by sourcing it from
more varied domains, it forces language model en-
gineers to come up with new solutions that are not
(only) grounded in increasing parameters, train-
ing data, and computing power. We respond to
this challenge by exploring language models with
drastically reduced GPT-2 architectures (Radford
et al., 2019) and the value of curriculum learning
(Bengio et al., 2009; Hacohen and Weinshall, 2019)
in training them, inspired by findings from usage-
based linguistics on the nature of child-directed
and child speech. Among the submissions to the
BabyLM challenge, our GPT-Wee models stand
out in the sense that we did not implement intricate
and highly complex learning strategies, but rather
examined how much simple architectures can be
reduced in size while still providing considerable
performance. Our models feature some of the low-
est, if not the lowest number of parameters among
the submissions.

Elman (1993) discusses how learning processes
(e.g. language acquisition) are tied to cognitive
maturation, and how during these processes, in-
creasingly complex human neural networks are con-
fronted with increasingly complex input. With re-
spect to the concrete nature of this linguistic input,
usage-based research has shown that its vocabulary
is compact and mainly concerned with children’s
immediate surroundings (Saxton, 2017). It fea-
tures a high amount of fragmentary utterances and
frequent, utterance-initial lexical frames (Cameron-
Faulkner et al., 2003). In turn, children’s earliest
utterances also revolve around lexically highly spe-
cific pivot schemas and item-based constructions
(Braine and Bowerman, 1976; Tomasello, 2000;
Diessel, 2013a), which only gradually expand to
more complex utterances. Due to the linguistically
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more diverse nature of training data in machine
learning – in the case of the present challenge it
is, for example, composed of realistic input from
CHILDES (MacWhinney, 2000) and other sources
like Wikipedia dumps or Open Subtitles – the com-
mon approach of providing it to the training al-
gorithm in random order does not mirror a devel-
opmentally plausible input trajectory. To better
understand the value of these two factors, the grow-
ing intricacy of natural neural networks and the
growing diversity of input, we (1) explore artificial
neural networks of increasing/decreasing complex-
ity, and (2) experiment with ordering the training
data according to its complexity and (with regard
to child-directed speech) prototypicality.

In sum, we find that a reduction of key parame-
ters, e.g. the number of hidden layers and attention
heads or the vocabulary size, does not immediately
materialize in detrimental effects. Only when they
are drastically reduced, the performance is affected
more strongly. Moreover, we find that the cur-
riculum approach does not always increase perfor-
mance, but indeed shows effects on the training and
evaluation losses that warrant further inspection.
To the shared task, we submit our medium-sized
model, as we observe the best size–performance
trade-offs for these variants. We submit the cur-
riculum variant (with a vocabulary size of 8k) of
this member of our model family, which we call
GPT-wee1 in honor of their wee architectures.

2 Language models and developmental
plausibility

Cognitive maturation in the form of an increasing
number of neurons (nodes) and synapses (connec-
tions) in human neural networks accompanies de-
velopmental processes, and thus also language ac-
quisition (Elman, 1993). The learning mechanisms
of current language models do not mirror this de-
velopment. Their architecture is defined before the
training process, and then the nodes’ and connec-
tions’ weights and biases are randomly initialized
and finally optimized, often based on randomly or-
dered input examples and influenced by the choice
of specific loss functions. Interestingly, alternative
approaches to ANNs, like dynamically growing
networks or weights with gradient values, which
were proposed during the 1980s and 1990s (for ex-
ample in Elman et al., 1996, 73), never achieved

1Our code can be found at https://github.com/
clause-bielefeld/gpt-wee

widespread adoption in NLP (although they exist,
with examples like NEAT (Stanley and Miikku-
lainen, 2002) having been shown to be useful for a
variety of tasks). The best proxy for investigating
the effects of neuronal growth are smaller models
like BabyBERTa (Huebner et al., 2021) or TinySto-
ries (Eldan and Li, 2023). They show that for small
data settings (in these cases further restrained by
linguistic simplicity through child-directed speech
or Simple English), much smaller architectures
trained for shorter periods of time can still exhibit
similar or even improved performance compared
to larger models.

Apart from model architecture, also the concrete
learning process (viz. the training goal) in cur-
rent language models requires theoretical scrutiny.
Whether it uses prediction in context, next word
prediction or next sentence prediction, learning
always involve a form of prediction. While pre-
diction effects in language are well documented
(for an overview, see Ryskin et al., 2020), it re-
mains an open question whether the current flavor
of prediction in language model training aligns
with its cognitive counterpart. While the unidi-
rectional prediction goal in autoregressive models
(like those from the GPT-family) appears cogni-
tively more plausible than bidirectional prediction,
as employed in e.g. BERT-like models – after all,
humans can only predict from what they have al-
ready processed, and not from the following (not
yet perceived) contexts – other modalities of lan-
guage acquisition like reading often involve explicit
instruction with bi-directional prediction (e.g. fill-
in-the-blank exercises).

3 Child-directed speech is tailored to
children’s needs

Child-directed speech differs from regular adult-
adult conversation in several crucial aspects. It
should be noted that its specific features2 are not
exclusive to child-directed speech, but rather pre-
ferred in this specific register. As such, child-
directed speech is a gradient concept, where certain
utterances stick out as more prototypical instances.
We use the following four features of child-directed
speech to define a prototypicality ranking that we
employ in our curriculum approach.

2The following section only reiterates the features directly
relevant to the current modelling task. For a more comprehen-
sive overview across all layers of linguistic analysis, Saxton
(2017) and Clark (2009, 32–41) should be consulted.
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The first feature is word length. Saxton (2017)
describes how the child-directed vocabulary is
mostly restricted to short words grounded in the
direct spatial and temporal proximity of the child.
Concrete objects are favoured over abstract con-
cepts. As Zipf (1935) already noted, word length is
inversely proportional to word frequency. Further-
more, longer words have a higher informational
content (Piantadosi et al., 2011) and are thus not
ideal for the – still developing – linguistic and cog-
nitive capabilities of children.

Secondly, word frequency itself, although it is a
contested notion (Saxton, 2009), plays an important
role in language acquisition. Apart from its role in
the input, it is also reflected in children’s earliest ut-
terances, which are highly item-based and revolve
around so-called pivot schemas (Braine and Bow-
erman, 1976; Tomasello, 2000; Diessel, 2013a),
for example more [NP], where more as the static
lexical element is combined with a slot for a noun
phrase. Ambridge et al. (2015) show evidence for
a direct relationship between the age of acquisition
of linguistic forms and their frequency in the in-
put. Importantly, the Zipfian distribution of lexical
elements in child-directed speech is stable across
the development span of children as well as across
typologically diverse languages (Lavi-Rotbain and
Arnon, 2023). From these empirical findings, we
deduce that child-directed utterances with more fre-
quent lexical items (across the entirety of the input)
can also be seen as more prototypical.

Thirdly, moving from the lexical to the syntactic
level, Cameron-Faulkner et al. (2003) show that
the majority of child-directed speech does not con-
sist of canonical subject-predicate sentences, but
rather of questions, imperatives and an enormous
amount of fragments without a regular predicate.
For different input types, these distributions vary
considerably. Children’s books, for example, fea-
ture a much higher amount of subject-predicate and
complex sentences (with two or more lexical verbs)
than ordinary speech (Cameron-Faulkner and No-
ble, 2013). Because the everyday child-directed in-
put (e.g. in toyplay or meal sessions) contains more
fragments compared to these specialised kinds of
input, we conclude that shorter utterances are also
more prototypical for child-directed speech.

Finally, Cameron-Faulkner et al. (2003) also
show that the majority of child-directed utterances
begin with what they call “lexical frames” – highly
frequent utterance-initial, mostly two- or three-

word, lexical sequences which are stable across
development and different caregivers. These spe-
cific frames are thought to facilitate the acquisi-
tion of item-based constructions, which then later
gradually emerge into a complete mental grammar.
From this, we conclude that child-directed utter-
ances beginning with highly frequent frames, here
measured in trigrams, are also more prototypical.

As Geeraerts (1989) notes, prototype theory is
prototypical in itself and not a monolithic frame-
work. For the sake of the present analysis, we
define the overall prototypicality of an utterance
as the shared centrality along all axes of the men-
tioned prototype criteria – in concrete terms this
means that we combine the utterance ranks to de-
termine a final rank for each utterance.

4 Curriculum learning

Curriculum learning is an approach to machine
learning where “the examples are not randomly pre-
sented but organized in a meaningful order which
illustrates gradually more concepts, and gradually
more complex ones” (Bengio et al., 2009, 41).
They propose two advantages: less training time
(as the learner does not waste time on predicting
noisy or hard examples too early), and an orienta-
tion into “better areas of the training space” – local
minima during optimization.

This approach has been proven effective across
a variety of tasks, for example in vision and lan-
guage (Zhang et al., 2021) or reinforcement learn-
ing (Narvekar et al., 2020), but it remains question-
able under which circumstances considerable ad-
vantages emerge. Wu et al. (2021) show that for es-
tablished benchmarks, the advantages are marginal
to non-existent. In contrast, the benefits are the
most pronounced for problems with noisy training
data. Child-directed speech, with its high amount
of fragmentary utterances, can also be considered
somewhat noisy input which, in conclusion, might
benefit from a curriculum approach.

Importantly, our flavor of curriculum learning
implements usage-based and cognitive principles
as the source of the concrete curriculum ordering,
and no engineering-based metrics, pacing functions
or other kinds of transfer learning, e.g. those with
teacher networks that determine the examples’ dif-
ficulty (as in Hacohen and Weinshall, 2019). Due
to the a priori nature of these aspects, we employ a
vanilla approach to curriculum learning (Soviany
et al., 2022), meaning that we only order the exam-
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Small Medium Large
Vocabulary size 4k 8k 16k
Hidden layers 2 2 4
Attention heads 2 2 4
Embedding size 64 128 256
Context size 64 128 128
Parameters 0.42M 1.55M 7.52M

Table 1: Model parameters

ples once and then provide them to the training al-
gorithm in this static order, to maintain comparabil-
ity with equivalent no-curriculum models. Interest-
ingly, the BabyBERTa experiments implemented a
somewhat comparable functionality. They showed
that, in their own grammatical test suite, models
benefit from this scaffolding, i.e. first training on
child-directed speech and only later on more com-
plex registers and non-dialogue input data.

5 Implementation

5.1 Training

As training data, we used the babylm_10M data
set from the strict-small submission track for
the BabyLM challenge. It consists of a mixture
of child-directed and adult-directed speech, e.g.
from CHILDES (MacWhinney, 2000), as well as
written language, e.g. from Wikipedia. The exact
composition of the corpus is described in Warstadt
et al. (2023a). For evaluation during the training
process, we used the babylm_test3 data set.

We trained models of three different sizes, each
once with and once without curriculum learning.
Table 1 shows the different parameter configura-
tions4. The training process was implemented in
the huggingface transformers library (Wolf et al.,
2020). As already mentioned, we decided on a
GPT2 architecture (Radford et al., 2019) to ac-
count for the sequential nature of language. A
BPE tokenizer was trained with a vocabulary size
of 4k/8k/16k subword tokens. Before tokenization,
all textual input was normalized in terms of capital-
ization and eventual diacritics. For the curriculum
models, the pre-ordered examples were dynami-
cally loaded in unshuffled batches during training
time, which preserved the calculated order based

3A dev data set was also provided, but due to their equiva-
lent size it the choice between did not affect the outcome of
the training process.

4From this point onwards, we will denote the models by
the vocabulary size of their tokenizer.

on the prototypicality measures. We supplied the
models with training batches of size 32. Regard-
ing training hyperparameters, we used the cosine
learning rate scheduler with a learning rate if 5e-4,
weight decay of 0.1, 1k warm-up steps and 8 gra-
dient accumulation steps. All models were trained
for exactly 10 epochs in the non-curriculum setting
and roughly 10 epochs in the curriculum setting,
where we could not set the exact number of epochs
due to the dynamic data loading. The models were
evaluated after each training epoch. After those
10 epochs, the losses mostly stabilized. We did
not conduct any kind of extensive hyperparameter
search. Instead, we only used the default configura-
tions for GPT-2 training, including dropout proba-
bilities of 0.1 and layer normalization. By doing so,
we tried to stay as close as possible to the vanilla
configuration, which allows us to better assess the
effects of smaller architectures in isolation.

The models were trained on a GPU worksta-
tion equipped with an Intel Core i7-4770 CPU
(3.40GHz), 32GB of RAM and an NVIDIA
GeForce GTX 1080 Ti GPU. Due to the small num-
ber of parameters, training times varied between
3–4 hours for the smallest models to 20h for the
largest models.

5.2 Sentence scoring

To order the curriculum input sentences, we de-
termined four different scores based on the afore-
mentioned prototypicality criteria of child-directed
speech. For each utterance/sentence in the training
data (delimited by sentence-final punctuation or
line breaks, dependening on the corpus file), we
calculated the following:

• the average word length of a sequence, mea-
sured by the mean number of characters for
all tokens in a sequence

• the average word frequency of a sequence,
measured by taking the mean of the individual
token frequencies across the whole training
data

• the utterance length, measured as the number
of lexical tokens in the sequence

• the frame frequency, calculated as the
amount of times that the three utterance-initial
tokens occur in that configuration through the
training data
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Mean (SD)
Frame frequency 188.76 (917.04)
Utterance length 8.01 (9.21)
Mean word length 4.28 (1.37)
Mean word frequency 55153.93 (42877.18)

Table 2: Distribution of scoring variables

We operationalized the frame frequency as ex-
actly three utterance-initial tokens because this
number provides a good trade-off between the
open-ended nature of sentences (and their long-tail
distribution of final lexical items) and the number
of fixed lexical items that certain syntactical con-
structions are associated with.

For each value, we calculated the respective rank
of the utterance across all utterances. The final
“prototypicality rank” for each utterance was cal-
culated by taking the sum of these four ranks and
then ranking by this sum.

Mean values and standard deviations for the four
criteria are reported in table 2. Especially for the
frame frequency and the utterance length, the dis-
tributions are heavily skewed and indicate long-tail
distributions. The mean word length of approxi-
mately 4 with a standard deviation of 1.34 is to be
expected, whereas the distribution of the sentences’
mean word frequency also appears to be heavily
skewed. As Lavi-Rotbain and Arnon (2023) show
how pervasive Zipfian distributions are on a lexical
level, it is not surprising that other properties of
language, e.g. lexical frames, follow similar laws.

6 Results

6.1 Training

We evaluated the models after every 5k training
steps during the approximately 40k training steps,
returning 8 data points for training and evaluation
loss. Their development is reported in appendix A
(figures 1, 2 and 3). Across all models, the eval-
uation loss for the curriculum learning is initially
much higher than the other losses, whereas the
evaluation loss for the normal, randomized learn-
ing is the lowest. This is not surprising, however,
as the evaluation data was not re-ordered and thus
many linguistic features present in it were not yet
processed by the curriculum models during earlier
training steps. The regular training losses share a
very similar development across all model sizes.
Between the model sizes, differences are more pro-

nounced in the later stages of training. Noticeably,
the smallest model seems to converge the earliest,
while the largest model might have benefited from
even further training. Furthermore, the curriculum
evaluation loss stays much higher for the larger
model, whereas it converges in similar dimensions
of the training losses for the smaller models. As
such, both an effect of the curriculum learning (al-
beit not strictly positive) and an interaction between
model size and (non-)curriculum learning can be
reported.

6.2 Zero-shot evaluation with BLiMP

We tested our models with the evaluation suite
supplied by the BabyLM challenge (Gao et al.,
2022; Warstadt et al., 2023a), which included zero-
shot evaluation tasks as well as tasks requiring
additional fine-tuning. The zero-shot tasks are
taken from the BLiMP evaluation suite (Warstadt
et al., 2020a), which consists of minimal accept-
able/unacceptable pairs of sentences across a wide
variety of linguistic phenomena. To evaluate mod-
els, these sentences are scored by the models for
their likelihood. A model is said to have acquired
grammatical knowledge of a specific phenomenon
if it consistently scores the acceptable sentences
higher.

The results for the BLiMP tasks are shown in Ta-
bles 3 and 4. When comparing our own GPT-Wee
models, we find that there is no straightforward
effect of model size on task performance. For the
majority of tasks, the performance increases with
model size, whereas some tasks (e.g. hypernym,
island effects) show light inverse scaling behavior.
On most tasks, the effect of curriculum learning
is small and rather mixed (positive or negative),
when compared to the respective baseline (same
model size, without curriculum). Overall, model
size has a larger effect than curriculum learning.
In a few task-model combinations, though, cur-
riculum learning has a very strong positive effect
(16k model/anaphor agreement, 8k model/irregular
forms, 16kmodel /quantifiers) and in one case a
strong negative effect(8k/NPI). Thus, if at all, it
is rather the medium-sized or larger models than
the small models which seem to benefit from the
curriculum. For the quantifiers task, for example,
the curriculum model with a 16k vocabulary out-
performs all other models by approx. 18%.

Compared to the baseline results5, we find that

5Taken from https://github.com/babylm/
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anaphor
agree-
ment:

argument
struc-
ture:

binding: control
raising:

determiner
noun
agree-
ment:

ellipsis: filler
gap:

irregular
forms:

island ef-
fects:

4k 63.50 60.11 61.26 60.78 65.34 32.56 64.11 68.65 47.80
4k (cu.) 57.98 57.86 63.97 60.78 64.58 35.45 66.06 70.03 43.05
8k 71.06 64.69 65.75 62.64 78.69 44.11 62.68 82.29 42.49
8k (cu.) 64.37 63.86 65.94 62.88 75.96 44.86 65.70 90.13 37.07
16k 73.82 71.91 68.97 66.26 88.36 54.56 68.67 86.06 41.03
16k (cu.) 82.87 69.51 65.24 63.21 85.52 55.43 66.65 77.56 40.88
OPT 63.8 70.6 67.1 66.5 78.5 62 63.8 67.5 48.6
RoBERTa 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9
T5 68.9 63.8 60.4 60.9 72.2 34.4 48.2 77.6 45.6

Table 3: Results (accuracies) of zeroshot BLiMP and BLiMP Supplement evaluation measures for our GPT-Wee
models and baseline models (OPT, RoBERTa and T5)

npi licens-
ing:

quantifiers: subject
verb agree-
ment:

hypernym: qa congru-
ence easy:

qa con-
gruence
tricky:

subject
aux inver-
sion:

turn
taking:

4k 49.95 54.87 50.62 52.21 48.44 39.39 81.53 45.71
4k (cu.) 49.47 55.41 52.09 50.00 43.75 44.85 80.09 43.57
8k 52.10 60.90 56.24 49.77 51.56 32.12 82.58 50.36
8k (cu.) 37.97 60.38 57.81 49.88 50.00 40.00 85.44 46.43
16k 51.97 59.61 66.49 49.42 57.81 28.48 80.09 54.29
16k (cu.) 46.60 78.54 65.82 50.93 53.12 33.33 83.46 56.79
OPT 46.7 59.6 56.9 50.0 54.7 31.5 80.3 57.1
RoBERTa 55.9 70.5 65.4 49.4 31.3 32.1 71.7 53.2
T5 47.8 61.2 65.0 48.0 40.6 21.2 64.9 45.0

Table 4: Results (accuracies) of zeroshot BLiMP and BLiMP Supplement evaluation measures for our GPT-Wee
models and baseline models (OPT, RoBERTa and T5), contd.

our smaller models do not perform considerably
worse on average, and outperform the baseline
models for selected tasks. For example, a few
of our small models are surprisingly good at is-
land effects, hypernyms, qa congruence, or subject-
auxiliary inversion. As the baseline results are
derived from BERT/OPT/T5 models with much
larger architectures and higher parameter numbers
(e.g. 125M parameters for the OPT model, with 12
hidden layers, 12 attention heads, a 50k token vo-
cabulary and intermediate embeddings of size 768),
we are pleasantly surprised by the comparatively
good results which our models achieve.

6.3 (Super)GLUE and MSGS evaluation
For the evaluation tasks requiring additional fine-
tuning, we only collected results for our submitted,
medium-sized curriculum model due to constraints
in computing power and time.

The GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) benchmarks involve fine-tuning
on a variety of tasks, e.g. question answering, cor-
rect identification of entailment or the extraction of
correct co-references. As such, this benchmark is

evaluation-pipeline

more focused on semantic and pragmatic aspects.
Regarding the (Super)GLUE scores (table 5),

a similar picture to the BLiMP scores emerges.
Across many of the tasks, our model performs in
similar ranges as the baselines, often better than the
T5 baseline and more similar to the OPT baseline.
Although our models are considerably smaller, they
seem to provide similar starting points for fine-
tuning on additional data.

Finally, the Mixed Signals Generalization Set
(MSGS) introduced by Warstadt et al. (2020b) also
contains different ambiguous binary classification
tasks. The test sentences are ambiguous in the
sense of allowing both surface generalizations and
generalizations that require deeper linguistic under-
standing of structure. Additionally, control exper-
iments are included that test whether a feature is
actually encoded. The scores reported in table 6
are correlations, where a value greater than zero
denotes a preference for linguistics generalizations,
and a value below zero shows a preference for
surface generalizations. The performance of our
model is (once more) very similar to the baselines.
The control tasks show that our model does encode
the tested features, but the test tasks show a system-
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CoLA
(MCC)

SST-2 MRPC
(F1)

QQP
(F1)

MNLI MNLI-
mm

QNLI RTE BoolQ MultiRC WSC

8k
(cu.)

4 80 82 66 60 61 61 60 61 55 60

Maj. 0.0 50.2 82.0 53.1 35.7 35.7 35.4 53.1 50.5 59.9 53.2
OPT 15.2 81.9 72.5 60.4 57.6 60.0 61.5 60.0 63.3 55.2 60.2
RoB. 25.8 87.0 79.2 73.7 73.2 74.0 77.0 61.6 66.3 61.4 61.4
T5 11.3 78.1 80.5 66.2 48.0 50.3 62.0 49.4 66.0 47.1 61.4

Table 5: (Super)GLUE scores (accuracies unless otherwise stated as MCC or F1) for our 8k curriculum GPT-Wee
model, the majority baseline and the three provided model baselines

CR
(Con-
trol)

LC
(Con-
trol)

MV
(Con-
trol)

RP
(Con-
trol)

SC
(Con-
trol)

CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP

8k
(cu.)

43 93 37 100 76 0 -74 -99 -99 -57 -73

OPT 50.8 53.6 99.5 99.9 77.2 0.4 -70.3 -72.1 -77.6 13.8 -68.9
RoB. 43.1 100.0 97.7 76.7 86.2 -28.3 -77.7 -99.3 -79.4 16.3 -45.0
T5 21.1 100.0 33.4 82.5 77.6 -78.3 -62.0 -100.0 -79.7 -25.3 -39.4

Table 6: MSGS scores (MCC) for our 8k curriculum GPT-Wee model and the three provided model baselines

atic bias for surface generalizations. However, this
behavior is also (with minor deviations) observable
in the baseline models. All naïve models fail to
generalize based on the linguistic features.

6.4 Age-of-acquisition evaluation

Additionally, the BabyLM evaluation suite pro-
vided an age-of-acquisition evaluation (Portelance
et al., 2023). The calculated scores (table 7) are
Mean Absolute Deviation (MAD) values, measured
in months, representing the difference between
the actual average age-of-acquisition (AoA) of the
tested word among American English-speaking
children and the predicted AoA based on our mod-
els’ average surprisal scores. Lower MAD scores
indicate better performance. We calculate these
scores for all of our models and find that the indi-
vidual differences between the models are tiny or
nonexistent, and roughly the same as the baseline
results provided by the challenge. As such, also
here the effect of the choice of a specific language
model architecture does not seem to have much of
an influence on the evaluation metric.

7 Discussion

The present analysis set out to investigate the influ-
ence of a usage-based factors, input ordering, and
an architectural factor, model size, on the learn-
ing processes (and successes) of language models.
We found that both factors have a certain influence
on the training process and the model performance.
While model size affects the performance in linguis-

tic evaluation, the effect is not linear across tasks.
For zero-shot tasks, the majority show improved
scores, although a few scores decrease with increas-
ing model size. Compared to much larger baseline
models, our models’ performance is not consider-
ably worse. Especially the non-linear effects of
model size warrant further inspection: it remains
unclear which internal factors (context length, vo-
cabulary size, model parameters, number of train-
ing epochs, etc.) contribute to which developments,
and how these factors interact with each other. For
the tasks requiring additional fine-tuning, our 8k
curriculum model also performed similarly to the
baselines. Especially for the (SUPER)Glue bench-
mark, a more semantics- and pragmatics-oriented
benchmark, the performance was quite in line with
the baseline models, hinting at the acquisition of a
fair amount of the needed information. The MSGS
benchmark, however, showed that our model sys-
tematically picks up surface generalizations. Yet,
this also applies to the much larger baselines.

The usage-inspired naïve ordering approach to
curriculum learning also has no straightforward ef-
fects on model performance. Especially during the
training process, differences to traditional, random-
ized learning are observable. Although it appears
to be somewhat detrimental to overall performance,
certain specific evaluation tasks are positively influ-
enced. The results thus remain inconclusive. From
a usage-based viewpoint, Diessel (2013b) stresses
the importance of deictic pointing and joint atten-
tion as (extralinguistic) language acquisition fac-

41



Overall Nouns Predicates Function words
4k 2.07 2.00 1.84 2.65
4k (cu.) 2.06 1.99 1.84 2.64
8k 2.07 2.00 1.82 2.65
8k (cu.) 2.06 2.00 1.82 2.64
16k 2.06 2.00 1.83 2.65
16k (cu.) 2.06 2.00 1.83 2.58
OPT 2.03 1.98 1.81 2.57
RoBERTa 2.06 1.99 1.85 2.65
T5 2.04 1.97 1.82 2.64

Table 7: MAD scores between actual AoA and the predicted AoA, for our GPT-Wee models and the three baselines

tors. Besides, also intention reading, role reversal
and imitation (Tomasello, 2003, 21–28) are impor-
tant acquisition factors that LLMs cannot mirror –
they are strictly confined to statistical/frequency-
driven aspects of usage-based theory (which are
nevertheless very important, as noted by Ambridge
et al., 2015). Still, we only have child-directed
speech for training, and no real child-directed com-
munication, which connects speech with such ex-
tralinguistic factors and influences utterance proto-
typicality beyond the modalities that we were able
to include in the present experiment.

The non-improvements added by the curricu-
lum approach also further add to the debate on
what language models mean for linguistic theory.
For example, Pannitto and Herbelot (2022) and Pi-
antadosi (2023) have stressed the anti-Chomskyan
evidence provided by the successes of language
models. Curriculum learning looks like an obvious
choice when trying to implement usage-based find-
ings in the training process for (smaller) language
models. However, this does not seem to work with
the simple form of curriculum learning based on
prototypicality measures that we used in this pa-
per. For that, several explanations are possible: 1)
more advanced curriculum approaches are needed,
with different and more directed ways of order-
ing and optimizing the curriculum, 2) curriculum
learning may not be the right choice for small mod-
els (it seems that, if at all, it was rather the larger
models which showed tendencies of improvement.
Also, other options for implementing usage-based
accounts might just work better (e.g. models with
dynamic structures and growing numbers of nodes).
After all, real human neural networks grow and ma-
ture while they are constantly shaped and re-shaped
by linguistic input and processing. As such, it also
remains hard to interpret language models, their

parts and their performance on various evaluation
suites in a coherent way. The integration of more
linguistic factors into the training process needs
to be tested in this regard. For example, Yehezkel
and Pinter (2023) propose a subword tokenization
algorithm that incorporates contextual information
and creates vocabularies that seem to align more
with classical ideas of morphology. It remains an
open question whether such alterations and other
linguistic experiments in the training process would
also improve the linguistic quality of the generated
output.

8 Conclusion

The BabyLM challenge set out to test different ap-
proaches to language modelling with small data.
When looking at the leaderboard6, we find that our
model is located in the lower section of the rank-
ings. However, the best-performing models imple-
ment much more complex learning strategies and
larger architectures. We, on the other hand, decided
on very small architectures. As such, our results
can be seen as a success: benchmark performance
seems to be much more strongly constrained by
the concrete linguistic make-up of the training data
and not so much by model size alone, as our down-
sizing apprach shows. This also confirms earlier
findings from BabyBERTa (Huebner et al., 2021)
and TinyStories (Eldan and Li, 2023). Our key
takeaway is that a one size fits all approach to lan-
guage model architectures should not be adopted
without further thought, and that training data qual-
ity and make-up should be valued more. Besides,
we also tested a usage-based approach to curricu-
lum learning. Although our curriculum models are
generally not superior to the regular, randomized

6At https://dynabench.org/babylm
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models, some zero-shot evaluation tasks did ben-
efit from it. Additionally, small model size and
the curriculum training did not have a detrimental
effect on pre-training for the tasks that require fine-
tuning. Still, our results show that a much more
fine-grained approach to the evaluation of such fac-
tors is needed. As language model engineers, we
can choose between a large variety of evaluation
suites that test along all levels of linguistic analysis
and across many different task set-ups. However,
we do not know how the changes in individual,
low-level variables (e.g. number of hidden layers,
context size) impact specific factors of linguistic
performance (e.g. the ability to judge acceptability
for island effects, or the ability to correctly predict
entailment). To correctly interpret such choices,
further systematic analyses are clearly needed.
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Figure 1: Training and evaluation losses for the 4k vocabulary models, calculated every 5k steps
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Figure 2: Training and evaluation losses for the 8k vocabulary models, calculated every 5k steps
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Figure 3: Training and evaluation losses for the 16k vocabulary models, calculated every 5k steps
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