GPT-wee: How Small Can a Small Language Model Really Get?

Bastian Bunzeck, Sina Zarrieß


Anthology ID:
2023.conll-babylm.2
Volume:
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning
Month:
December
Year:
2023
Address:
Singapore
Editors:
Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera, Bhargavi Paranjabe, Adina Williams, Tal Linzen, Ryan Cotterell
Venue:
CoNLL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
35–46
Language:
URL:
https://aclanthology.org/2023.conll-babylm.2
DOI:
10.18653/v1/2023.conll-babylm.2
Bibkey:
Cite (ACL):
Bastian Bunzeck and Sina Zarrieß. 2023. GPT-wee: How Small Can a Small Language Model Really Get?. In Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, pages 35–46, Singapore. Association for Computational Linguistics.
Cite (Informal):
GPT-wee: How Small Can a Small Language Model Really Get? (Bunzeck & Zarrieß, CoNLL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.conll-babylm.2.pdf