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Abstract

We investigate the viability of surprisal in an
active curriculum learning framework to train
transformer-based language models in the con-
text of the BabyLM Challenge. In our ap-
proach, the model itself selects the data to la-
bel (active learning) and schedules data sam-
ples based on a surprisal oracle (curriculum
learning). We show that the models learn
across all the tasks and datasets evaluated, mak-
ing the technique a promising alternative ap-
proach to reducing the data requirements of lan-
guage models. Our code is available at https:
//github.com/asayeed/ActiveBaby.

1 Introduction

We describe our submission to the BabyLM Chal-
lenge (Warstadt et al., 2023), a shared-task about
language models trained from scratch on a develop-
mentally plausible corpus. Inspired by expectation-
based theories of sentence processing (Hale, 2001;
Levy, 2008) and active curriculum learning (ACL)
(Jafarpour et al., 2021), our approach relies on sur-
prisal to select informative samples and streamline
them into the model during training. We henceforth
refer to our strategy as active curriculum learning
modeling (ACLM).

There is a large volume of published studies de-
scribing how the processing difficulty of a sentence
is correlated with its incremental probability in
context (Linzen and Jaeger, 2016; Futrell and Levy,
2017; Hahn et al., 2019, among others). In other
words, as people process sentences, they generate
predictions about what is coming next and this can
be measured using surprisal (Demberg et al., 2012).
Here, we test to what extent this principle of syn-
tactic predictability can also be used to guide the
learning of a language model.

ACL, on the other hand, combines the strengths
from Active Learning (AL) and Curriculum Learn-
ing (CL). AL is a classic paradigm for small data su-
pervised scenarios, whereby an oracle labels infor-

mative examples selected by the model itself based
(most often) on a uncertainty heuristic. The un-
certainty metrics, however, tend to bias the model
towards eccentric examples (Zhang et al., 2022b).
To counteract this, Jafarpour et al. (2021) use CL,
a technique that mimics how humans learn by reg-
ulating the training according to some schedule
criterion, e.g., easy to difficult or short to long ex-
amples (Bengio et al., 2009).

In our approach, we use surprisal as sampling
heuristic. A sample is formed from the sentence
with the highest surprisal value s from an initial
pool, along with the n most similar sentences to
s from the rest of the training data. At each it-
eration, a new sample is added to the pool until
convergence.

Our results show that the technique successfully
learns steadily and incrementally in all the tasks,
although its performance remains modest in com-
parison with equivalent systems with full access to
the training data.

2 Background

AL specifically aims at reducing the amount of
examples required for training. In AL, it is the
algorithm itself that selects the most informative
examples to annotate based on a probabilistic query
heuristic. Each example is used to make the model
better at selecting the next example. Nevertheless,
AL is difficult to implement with neural networks
frameworks due to their large number of param-
eters leading to poor uncertainty estimation and
model instability (Lowell et al., 2019; Schröder
et al., 2022). An excellent survey about the latest
work on AL specifically for NLP is presented by
Zhang et al. (2022b).

There is remarkably little research on surprisal
and AL, or surprisal and CL. In the context of
sentence classification, Yuan et al. (2020) exploit
a pre-trained BERT model (Devlin et al., 2019)
to generate surprisal embeddings as input to the
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sentence labeling part of their model. In our case,
sentence surprisal is used to select the sentence
seeding the samples and the model is trained with
a language modeling objective. Similar ideas are
found in the context of machine translation.

Zhang et al. (2021) have experimented with
adding training samples from a pool based on a dif-
ficulty criterion operationalized as sentence length
(short sentences are easy, long ones are difficult)
and word rarity (common sentences are easy, rare
ones are difficult). In the second case, rare words
are estimated based on the logarithms of word prob-
abilities averaged over the sentence, which is ef-
fectively the same as surprisal. Likewise, Zhou
et al. (2021) also report sampling based on sen-
tence length and word rarity. In addition, they
experiment with the probability of the sentence
from an independent language model, source sen-
tence word embeddings from another independent
model, and the sentence score of the model under
training itself. Last, Mohiuddin et al. (2022) rank
their training sentences from easy to hard using the
prediction scores of the model under training. They
experiment with different window ranges over the
distribution of these scores.

In keeping with the goals of the shared task, we
train a language model from scratch. Elsewhere,
a considerable amount of literature has been pub-
lished on compressing state-of-the-art large lan-
guage models (LLMs) into much smaller models
without losing too much in accuracy and perfor-
mance (Sanh et al., 2020; Zhang et al., 2022a,
among others).

Cognitive studies, on their part, use LLMs to
predict estimates about different effects attested in
human language processing (Linzen et al., 2016;
Futrell and Levy, 2019; Wei et al., 2021). This
type of work also sheds light on the biases and
mechanisms of learning of the LLMs themselves.
Sinha et al. (2021), for instance, find the LLMs can
account for word order due to their capacity for
higher-order word co-occurrence statistics, while
Arehalli et al. (2022) and Oh and Schuler (2023)
have raised questions about the reliability of LLMs
predictions due to their conflation of lexical and
syntactic biases and their large capacity to memo-
rize linguistic structures.

Humans acquire language in the context of in-
teraction with a social and physical environment,
which may explain at least part of the inductive
bias humans display that allows them to learn from

quantities of data far less than LLMs typically re-
quire to produce some of the spectacular-seeming
recent results. The strict and strict-small set-
tings of the BabyLM challenge effectively probe
how small we can make the training data in an
ungrounded setting. In this context, we still hy-
pothesize that an interactive, environment-aware
approach will be important in making learning ef-
ficient. We conceive of the learner as seeking out
stimuli that represent domains of syntax and se-
mantics on which the learner is furthest away from
convergence, and we represent that distance by
surprisal. We then hypothesize that the learner is
motivated to seek out or pay attention to items that
have a similar pattern of overall uncertainty, even
if the specific syntactic or semantic conditions may
be different in terms of, e.g., parts of speech or
lexical semantics.

3 The model

Training a model with active learning (Cohn et al.,
1996) involves (1) selecting an initial training set
of sentences from a pool of sentences available for
future training iterations and (2) iteratively adding
sentences from the pool to the training set based on
a criterion of uncertainty about the data. For clas-
sification tasks in scenarios with limited labelled
data, this involves a human in the loop who labels
a selection of “least certain" data from the pool,
where the certainty is calculated based on model
confidence. This form of active learning is intended
to reduce the difficulty of labelling training data
when, for example, annotators are difficult to find—
only label what the model finds most “interesting”
for the learning algorithm. This concept can be ex-
tended from classification to, for example, machine
translation in low-resource contexts (Gupta et al.,
2021), where a small group of proficient translators
would be prompted for translations of items in the
pool that the model is, e.g., most perplexed about.

Pre-training a language model is, however, not
primarily a classification task. For a generative lan-
guage model, the learning goal is for the model to
be able to produce the next token or set of tokens
given a prefix and to do so until a complete utter-
ance is produced. Uncertainty for a generative LM
over an utterance requires the aggregate of uncer-
tainty over a number of decisions, each with low
prior probability. Insofar as the model is intended
to represent an approximation of human acquisi-
tion, it is implausible that the pool (representing
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Figure 1: The architecture of our ACLM method.

the full environment over time of the learner) be
fully evaluated in advance for uncertainty in the
service of training data selection. This requires the
introduction of an additional criterion for selecting
new examples that are likely to represent utterances
that are currently uncertain to the model.

To solve this, we adapt the concept of Active
Curriculum Learning (ACL) from Jafarpour et al.
(2021), who envision a joint scoring criterion for
the selection of additional examples, composed
of the scoring criterion for an active learning al-
gorithm and the scoring criterion for a curricu-
lum learning algorithm. Our approach is two-step,
rather than a linear combination of two criteria. In
the first step, we use a trained model to select the
least certain example from the existing training set,
rather than the pool. Then we apply a heuristic to
select sentences that are structurally similar to the
current least certain training example and add them
to the next iteration’s training set (see Figure 1).

Our heuristic is similarity based on a profile of
the token-by-token incremental trigram surprisal of
each sentence. Profiles of all the training and pool
sentences are represented as seven-dimensional
surprisal vectors by rescaling the sequence of sur-
prisal values, which varies by the sentence length.
This enables us to take the least certain training
example’s surprisal vector and request the nearest-
neighbours, which are then added to the training
set.

3.1 Base model
The base model is RoBERTa (Liu et al., 2019;
Zhuang et al., 2021) trained from initialization on a
100K randomly selected subset—the initial training
set—of the strict-small dataset of the BabyLM

challenge.
The data for all our model variants was pre-

processed in the same way. The documents where
split at the sentence level and then BPE tokenized
with a truncated maximum length of 512 tokens.

3.2 Surprisal space

The surprisal space for the corpus as a whole is
generated by training a simple language model via
Maximum Likelihood Estimation on n-grams up to
trigrams via the nltk.lm module. Trigram surprisal
can be used to explain part of human linguistic be-
haviour at a syntactic and semantic level in human
dialogue (Sayeed et al., 2015).

Every sentence in the pool and training set is
then labelled with a sequence of surprial values,
one for each token. We use scikit-image’s resizing
function to stretch or shrink the surprisal sequences
to vectors of dimension seven.1

All the vectors are placed in an instance of scikit-
learn’s KDTree (Sproull, 1991) implementation,
which allows for an efficient search for the k near-
est neighbours (kNN) of a given query vector and
returns sentence identifiers for the vectors in the
pool that are nearest to the surprisal vector of the
least certain example. These are added to the train-
ing set.

For efficiency reasons, we do not re-evaluate the
surprisal space at every iteration of active learning.
This part of the model represents an oracle selecting
items from the pool that bear a model uncertainty
pattern that is similar to the least certain item in the
training set.

1This is a random choice to get a small number such that
the surprisal space can fit into the main memory.
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3.3 Active curriculum language modeling

RoBERTa is allowed to train with the current train-
ing set for multiple epochs until the least certain
training set example is found and the active learn-
ing loop initiated. This process thus combines ac-
tive learning, in terms of the model being used to
identify sets of data that need to be labelled, and
curriculum learning, where a heuristic—a vector-
based surprisal oracle—is used to schedule the
newly delivered examples. We stop the model train-
ing after a set number of iterations.

The least certain example is the one with the
highest cross-entropy loss or surprisal according to
the model; that is, while the surprisal vectors do not
change between iterations based on the RoBERTa
model, the model under training changes to pro-
duce a different ranking of sentences in its training
set, thereby allowing for variation in curriculum
presented by the surprisal oracle.

4 Results

4.1 Shared task evaluation

We use the official evaluation tools (Gao et al.,
2021) from the BabyLM Challenge to report our
results. Our submissions mostly targeted the
strict-small track, but we also report results for
one system trained for the strict track. Tables 1,
2 and 3 in Appendix A contain the details of the
obtained scores.

Strict-100M is trained with the data from
the strict track, all other models rely on the
strict-small data. 10ep10it and 10ep20it served
as our internal baselines. They are RoBERTa mod-
els without ACLM that only differ in the number
of iterations, 10 for the first and 20 for the second,
both have a batch size of 64 sentences. The ACLM
models are s50Kep1 and s50Kep5. Both have a
batch size of 64 and use a sample size of 50K sen-
tences; they differ in that the first runs one epoch
per sample and the second 5 epochs per sample.

In summary, the results for the Strict-100M
model tend to be overall higher, as it is trained
on a larger amount of data. When considering the
ACLM models, we observe that they performed the
best when evaluated on the (Super)GLUE datasets
and the worst on the MSGS one. There is also a
clear gain in performance when training the model
with more epochs per sample.
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Figure 2: Comparison of the learning curves of systems
with random sampling (green line), sampling with max-
imal surprisal (orange line), and sampling with minimal
surprisal criterion (red line).

4.2 Hyper-parameter search

We experimented with batch sizes of 32 and 64
data points and observed that it produced minimum
differences. As for the number of epochs, we tested
different values between 1 and 5 for the ACLM
systems, with 5 yielding the best performance. We
expected to see some variation if changing the size
of the sample size, but we also did not observe any
important changes.

5 Analysis

5.1 Sampling Methods

Our method set out to determine the extent to which
the principle of predictability as represented by sur-
prisal can be used to guide language model train-
ing. In order to test this hypothesis, we compared
the best performing ACLM system (s50Kep5)
using three different values of surprisal for the
query: minimum, maximum, and random (Figure
2). What we found is that the model with the maxi-
mal surprisal performed closely to the random one
and learned faster, while the one with minimal sur-
prisal did clearly well on evaluation. While this
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Figure 3: Accuracy of the systems 10ep10it (blue line, without ACLM), 50Kep5min (red line, with ACLM and
minimal surprisal sampling) and s50K_ep5 (orange line, with ACLM) in the zero-shot tasks over 20 checkpoints
during training.

seemed counter-intuitive at first, we believe that
the model with the minimal surprisal is actually se-
lecting sentences that are overall more informative

than those with the maximal surprisal which might
be too divergent. Furthermore, this also accords
with Mohiuddin et al.’s (2022) analysis that if a
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sample is too easy, the model might not gain any
useful information from it, whereas if the sample
is too hard, it might degrade the model’s perfor-
mance at that point. Taken together, this strongly
suggests that surprisal does have an effect as a sam-
pling query, but more work will need to be done to
determine the optimal curriculum for its efficiency.

5.2 Zero-shot tasks

As a means to understand the way in which the
ACLM models learn, we evaluated the 20 training
checkpoints of the models 10ep10it, 50Kep5 and
50Kep5min (50Kep5 which samples data points
with minimal surprisal) on the official zero-shot
tasks. As mentioned, while all systems are trained
on the strict-small data, the 10ep10it system
uses all the data at once, in the standard way, while
50Kep5 and 50Kep5min are trained through ACLM
with different sampling methods. These systems
have a sample size of 50k sentences and runs 5
epochs per sample. Both have a batch size of 64.
Results are depicted in Figure 3.

The plots from this figure indicate that the
ACLM model learns in a steadier fashion than
its non-ACLM counterpart, in particular for the
“agreement” categories: determiner-noun, subject-
verb and (somewhat less) anaphor agreement. This
might indicate a frequency effect better caught on
by the ACLM model, as basically every sentence
contains a positive example of correct agreement,
but it is unknown how many total examples there
are of the other tested phenomena. For most of
the other categories, the learning curves are simi-
lar overall, and the ACLM model shows consis-
tent learning increments. The exception seems
to be the island effects category, where the accu-
racy tends to drop over time. Surprisingly, the
ACLM model with minimal surprisal sampling
(50Kep5min) underperforms the ACLM model
with maximal surprisal (50Kep5) across many tasks
except congruence-tricky and island, effects even
though 50Kep5min has a lower evaluation loss than
50Kep5. The results indicate that maximal sur-
prisal sampling is an effective method to improve
model performance on zero-shot grammatical tasks.
Moreover, lower perplexity does not always imply
better performance on linguistic tasks.

6 Conclusions and future work

To our knowledge, this is the first contribution to
the literature in reducing the pre-training require-

ment of a transformer-based language model via
active curriculum learning modeling. What we
have shown is that learning does take place under
these conditions and produces promising results. It
is not the case, however, that we explored the full
potential of this technique; there is a huge scope for
plausible variants that may be even more effective
than what we have proposed.

For example, we designed the surprisal oracle
around a vector space defined by trigram surprisal
over tokens which is never re-evaluated. A more re-
alistic learner would re-evaluate the surprisal space
based on what it knows now, i.e., compute per-
token surprisal based on the current training state
of the transformer model. We did not implement
this for computational resource reasons.

Another likely possibility for improvement of
our model lies in the fact that the surprisal space
is created by resizing all the vectors to the same
dimensionality, which is equivalent to represent-
ing all sentences as having the same length. It is
implausible that longer sentences produce model
uncertainty in the same way as shorter sentences.
A future version of our work could attempt to bin
the sentences by length, creating separate surprisal
spaces.

Limitations

The models trained in this study are designed to
test ACLM as a viable method to train language
models and as such, they are not overly optimized.
Furthermore, any claims are specific to English, in
keeping with the shared-task constraints.
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Submitted RoBERTa models Official baselines

Strict small 10M

ACL

Strict-
100M

10ep10it 10ep20it s50Kep1 s50Kep5 OPT-
125m

RoBERTa-
base

T5-
base

Anaphor Agr. 82.31 77.76 74.34 42.02 75.30 63.8 81.5 68.9
Agr. Structure 74.03 72.91 68.83 61.52 60.36 70.6 67.1 63.8
Binding 68.63 69.09 67.62 64.02 85.95 67.1 67.3 60.4
Control/Raising 70.35 68.96 64.98 61.36 50.03 66.5 67.9 60.9
Det-N Agr. 94.84 95.66 91.94 55.49 55.79 78.5 90.8 72.2
Ellipsis 65.42 65.82 56.41 32.79 55.41 62 76.4 34.4
Filler-Gap 78.32 75.61 69.89 63.68 50.12 63.80 63.50 48.20
Irregular Forms 92.01 89.41 89.87 75.01 43.98 67.5 87.4 77.6
Island Effects 48.62 46.30 40.58 47.20 50.00 48.6 39.9 45.6
NPI Licensing 61.52 54.16 56.77 51.90 35.15 46.7 55.9 47.8
Quantifiers 66.82 66.87 63.96 45.96 78.02 59.6 70.5 61.2
S-V Agr. 80.85 79.33 70.66 50.44 60.39 56.9 65.4 65

Supplement

Hypernym 49.07 49.30 49.07 50.23 62.15 50 49.4 48
QA Cong. (easy) 57.81 56.25 53.13 50.00 66.51 54.7 31.3 40.6
QA Cong. (tricky) 33.33 35.76 35.76 30.30 69.17 31.5 32.1 21.2
Subj.-Aux. Inv. 78.92 75.38 82.73 75.82 62.03 80.3 71.7 64.9
Turn Taking 57.50 61.79 66.79 56.43 42.96 57.1 53.2 45

Table 1: Accuracy scores of the zero-shot evaluation on the BLiMP dataset. Comparisons per row highlighted with
bold do not include the Strict-100M column. QA Cong. means QA Congruence. Inv. means inversion.

Submitted RoBERTa models Official baselines

Strict small 10M

ACL

Strict-
100M

10ep10it 10ep20it s50Kep1 s50Kep5 Majority OPT-
125m

RoBERTa-
base

T5-
base

CoLA 73.11 72.62 70.76 69.48 61.17 69.5 64.6 70.8 61.2
SST-2 86.42 84.84 83.27 81.3 75.97 50.2 81.9 87 78.1
MRPC 63.28 64.41 64.41 64.41 90.2 82 72.5 79.2 80.5
QQP 79.93 81.65 79.88 77.65 65.98 53.1 60.4 73.7 66.2
MNLI 69.02 70.34 68.62 65.27 100 35.7 57.6 73.2 48
MNLI-mm 71.94 71.26 69.51 67.06 66.6 35.7 60 74 50.3
QNLI 64.96 66.4 66.49 58.36 68.44 35.4 61.5 77 62
RTE 47.47 51.52 49.49 49.49 98.93 53.1 60 61.6 49.4
BoolQ 65.98 63.35 66.11 66.11 74.9 50.5 63.3 66.3 66
MultiRC 57.28 58.6 56.19 50.82 58.6 59.9 55.2 61.4 47.1
WSC 61.45 61.45 61.45 61.45 81.89 53.2 60.2 61.4 61.4

Table 2: Accuracy scores of the fine-tuning evaluation on the (Super)GLUE datasets. Comparisons per row
highlighted with bold do not include the Strict-100M column.
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Submitted RoBERTa models Official baselines

Strict small 10M

ACL

Strict-
100M

10ep10it 10ep20it s50Kep1 s50Kep5 OPT-
125m

RoBERTa-
base

T5-
base

CR (Control) 91.55 86.68 86.89 75.51 94.5 86.4 84.1 78.4
LC (Control) 100 100 100 100 66.45 86.1 100 100
MV (Control) 99.72 99.77 99.63 97.57 84.33 99.8 99.4 72.7
RP (Control) 98.85 100 100 97.87 0 100 93.5 95.5
SC (Control) 81.27 89.54 90.54 88.17 66.78 94.3 96.4 94.4
CR_LC 66.76 66.74 66.69 66.32 83.46 66.5 67.7 66.7
CR_RTP 66.78 67.25 66.73 66.61 66.71 67 68.6 69.7
MV_LC 66.51 66.61 66.61 66.61 55.1 66.5 66.7 66.6
MV_RTP 67.18 69.08 67.04 66.71 100 67.6 68.6 66.9
SC_LC 63.83 66.28 67.49 67.44 66.73 80.2 84.2 73.6
SC_RP 62.32 65.05 64.86 64.07 66.19 67.5 65.7 67.8

Table 3: Accuracy scores of the fine-tuning evaluation on the MSGS datasets. Comparisons per row highlighted
with bold do not include the Strict-100M column.

268


