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Abstract

This paper presents our findings for the
BabyLM Challenge (Warstadt et al., 2023). Our
exploration is inspired by vanilla curriculum
learning (Bengio et al., 2009) and we explored
the effect of linguistic complexity in forming
the best curriculum for pre-training. In particu-
lar, we explore curriculum formations based
on dependency-based measures (dependents
per token, average dependency distance) and
lexical-based measures (rarity, density, disper-
sion and diversity). We found that, overall,
models pretrained using curriculum learning
were able to beat the performance of a non-
curriculum learning pre-trained model. Fur-
thermore, we notice using different linguistic
metric for measuring complexity lead to advan-
tageous performance for some tasks, but not all.
We share our results and analysis in the hope
that it can provide beneficial insights for future
work.

1 Introduction

Currently, pretraining language models (LMs) in-
volve training models on large, diverse datasets
before fine-tuning them on specific downstream
tasks. As a byproduct of this procedure, datasets
have grown substantially beyond developmentally
plausible amounts. For instance, the recently re-
leased large variant of LLAMA-2 has 70 billion
parameters and it was pre-trained with 2 trillion
tokens (Touvron et al., 2023). This amount of data
is well over the amount of exposure a child would
have. Gilkerson et al. (2017) find that on average,
a child aged 48-mo would be exposed to 12,128 to-
kens, from solely their parents. Calculations show
LLAMA2’s pretraining data is 165,000 times more
than this developmental-plausible quantity.

Therefore, the goal of this task is to use human-
development plausible methods for pretraining
smaller-sized language models. In particular, we
combine intuitions from linguistics and curriculum

learning to explore whether different curricula de-
signs affect models’ performance. To do this, we
investigate two strands of complexity measures,
namely, structural complexity and lexical complex-
ity.

Our research questions (RQs) are as follows:

1. Do pre-training LMs using CL produce better
performance? If so:

2. Are linguistic complexity measures helpful in
designing curricula for CL?

3. Which linguistic metric is advantageous and
which is less? Is one strand of complexity
measure inherently better than the other?

To answer RQ1, we aim to compare a baseline
non-CL model to the results of CL-pretrained mod-
els. For RQ2, we make a similar comparison but
this time using the results of a model that is trained
on a random curriculum. For the last RQ, we make
inter-model comparisons.

We provide an analysis of curriculum designs
and the novel aspects of our work (§ 2). Following
this, we explain the linguistic metrics in detail and
provide details of our approach (§ 3). In § 4, we
present our findings and discussions, before finally
summarising the paper in § 5.

2 Related Works

Curriculum learning (CL) was first proposed by
Bengio et al. (2009). The idea behind curricu-
lum learning comes from the pedagogical obser-
vation that animals and humans learn better when
knowledge is presented in a meaningfully organ-
ised way. For instance, starting with simple ex-
amples and gradually advancing to more complex
ones (Skinner, 1958; Sweller, 1994; Krueger and
Dayan, 2009). In the language modelling experi-
ment carried out by Bengio et al. (2009), a corpus
replacement method was used to make the data
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increasingly difficult. This way of pertaining was
found to be more effective, producing improved
results.

There have been then numerous works have ex-
plored using CL as the pretraining approach for
language models. Whilst some works reported CL
as beneficial to pretraining, others have reported
the opposite results. Nagatsuka et al. (2021) inves-
tigated a CL-based pretraining scheme that utilises
the length of the input text as the measure of "dif-
ficulty" in curriculum design. It was found that
using length-based curriculum training alongside
using the maximum available batch size, models
achieved drastically faster convergence speed, and
higher scores on downstream tasks ( Nagatsuka
et al., 2021, 2022) .

Curriculum design greatly varies in each work.
Linguistic features that have been used in curricu-
lum formation include Parts-of-Speech (POS) infor-
mation, n-gram frequency (Platanios et al., 2019),
average number of dependents per word in the sen-
tence parse tree (Jafarpour et al., 2021), edit dis-
tance (Kadotani et al., 2021; Chang et al., 2021).
However, arguably, the most common curriculum
formations are based on measures of frequency
(Liu et al., 2018) and text length (Tay et al., 2019;
Cirik et al., 2016).

Comparing curriculum learning studies becomes
challenging due to the inherent variability in cur-
riculum choices across different tasks. However,
it is undeniable that the arrangement of data holds
significance. As a result, in distinction from prior
research, our work is oriented towards investigating
diverse linguistic features in curriculum formation.
Notably, we investigate 5 different measures of
linguistic complexity. They are:

• Average dependency distance (ADD)
• Dependents per word (DPW)
• Lexical rarity (RARITY)
• Lexical density (DENSITY)
• Lexical Evenness (DISPERSION)
• Lexical diversity (TTR)

We choose these measures of linguistic complexity
to address the multi-dimensionality of measuring
language complexity. In particular, we consider
not only lexical (vocabulary-based) information,
but also syntactical (structural-based) complexity
measures. To the best of our knowledge, this study
is the first to consider curriculum formation using

such a comprehensive set of measures. Moreover,
we focus our experimentation specifically on low-
resource, data-constrained scenarios. As a result,
we adopt a simple CL approach to reflect these
settings.

3 Methodology

Our submission considers GPT-2 models (Radford
et al., 2019) pretrained using curricula formed by
various linguistic measures detailed in § 2. The pre-
training approach involves sequentially training the
model using ten different curriculum levels of the
dataset, with each level building upon the previous
one in terms of difficulty. Each model is pretrained
three times, with a random seed used each time.

3.1 Curricula Formations

We used the 10M words dataset provided by the
task authors for the STRICT-SMALL track of the
Challenge. As detailed in the task description, the
dataset consists of 10 excerpts, sourced from 10
different corpora of mixed domains (Warstadt et al.,
2023). We consider all of the models to qualify for
the LOOSE track, and only the evenness and lexical
diversity models are legible for the STRICT-SMALL

track. This is due to the fact that we use existing
scripts from textcomplexity1, which makes use
of external tools, such as POS taggers trained on
much more data than the given amount for linguis-
tic complexity calculations.

For each part of the overall dataset, a score for
each linguistic metric was calculated. As an ex-
ample, Table 1 provides the TTR scores of each
subset of the data. Curriculum formation is based
on this ranking, with the "easiest", or in this case,
the least lexically diverse data being Open Subtitles
and the "hardest" being the Wikipedia data. Using
the same idea, other curricula were formed using
each linguistic measure.

3.1.1 Syntactic Diversity (DPW)
DPW quantifies the average number of syntactic de-
pendents (i.e., words that depend on another word
for their grammatical function) in a given text per
word. A DPW score indicates that, on average,
each word in a sentence has a large number of syn-
tactic dependents. This means that the sentence has
a complex and intricate syntactic structure, with
many words relying on each other to convey mean-
ing and grammatical relationships. Sentences with

1https://github.com/tsproisl/textcomplexity
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high DPW scores tend to be more challenging for
humans to process and understand (Hawkins, 1994;
Grodner and Gibson, 2005; Gibson, 1998).

3.1.2 Syntactic Proximity (ADD)
ADD is mathematically defined as (Liu et al.,
2009):

ADD =
1

n− s

n−s∑

i=1

|DDi|

where:

• n is the total number of tokens in the sentence

• s is the total number of sentences in the docu-
ment

• DDi is the dependency length of the i-th syn-
tactic link

Conceptually, this is calculating a ratio of calcu-
lating the total lengths of dependency links in a
sentence to the total number of dependencies links
in the same sentence. It gives an indication of how
closely related the words are in a sentence syn-
tactically. A lower average dependency distance
suggests that the words in a sentence tend to be
more closely connected, indicating a more compact
sentence structure. Conversely, a higher average
dependency distance suggests more complex and
possibly longer distances between heads and their
dependents in a sentence (Oya, 2011).

3.1.3 Lexical Rarity (RARITY)
As detailed in textcomplexity, rarity was cal-
culated with the help of the COW frequency list
(Schäfer, 2016). More frequent lexical items were
given a smaller score.

3.1.4 Lexical Density (DENSITY)
Lexical density is calculated as the proportion of
content words to function words. We consider a
higher score on this metric as data that is harder
to learn since it is more likely to be information-
heavy.

3.1.5 Lexical Evenness (DISPERSION)
Dispersion is measured using Gini-based disper-
sion (Gini, 1912). It measures how evenly tokens
of the same type are distributed in the text (Blom-
bach et al., 2022). The Gini-based dispersion for a
single type is computed as

1− Gini

Ginimax

where Gini is the Gini coefficient of the distances
between tokens of the same type, and Ginimax is
the maximum value for a type with frequency f in
a text of length N .

The formula for Ginimax is:

Gini_max =
(N − f) · (f − 1)

f ·N
where

• N is the length of the entire text (total number
of tokens in the text)

• f is the frequency of the type (number of
times a particular token appears in the text)

In this work, evenness serves to illustrate the
arrangement or spread of token types within a text.

3.1.6 Lexical Diversity (TTR)
Type-token ratio (TTR) is used to measure lexical
diversity. It is calculated by dividing the number of
unique words (types) to the total number of words
(tokens) present in the text (Templin, 1957). This
can be thought of as measuring the richness of the
vocabulary of the corpus. A higher TTR indicates
a more diverse vocabulary with a greater range
of unique words in the text. Conversely, a lower
TTR suggests a more repetitive or limited use of
vocabulary.

TTR is given by :

TTR =
Number of different word types

Total number of tokens

Table 1: TTR scores of each subset of the 10M words
dataset, shown in increasing order.

Subset TTR Score

open subtitles 1.623
bnc spoken 2.034
aochildes 2.068
qed 2.966
cbt 3.450
children_stories 3.570
switchboard 3.997
gutenberg 4.149
simple wikipedia 4.491
wikipedia 5.678

3.2 Model Description
We use the provided data to train a Unigram-16000
tokeniser, and our experiments all use this to-
keniser.

In this Challenge, we focus specifically on
smaller settings of the models. All models featured
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in this work are trained on architectures with 12 lay-
ers and 12 attention heads 2. Our focus is directed
towards this smaller setting since smaller mod-
els typically require less computational power and
memory, making them more accessible and cost-
effective for researchers with limited resources.

3.3 Model Evaluation

All models undergo evaluation on The Benchmark
of Linguistic Minimal Pairs (BLiMP) benchmark
as well as SuperGLUE and MSGS tasks. We run
each evaluation suite three times for every model.
Each run uses a different random seed.

BLiMP is an evaluation suite that tests LMs’
abilities on a range of grammatical phenomena in
the English language (Warstadt et al., 2020a). For
BLiMP tasks, a zero-shot evaluation approach is
used, allowing the models to be assessed without
any additional fine-tuning. On the other hand, to
gauge the models’ performance on SuperGLUE
tasks, they are subjected to fine-tuning using the
respective datasets.

SuperGLUE is a benchmark that comprises
challenging language understanding tasks. Inspired
by GLUE, SuperGLUE aims to address the limita-
tions of the original GLUE benchmark (Wang et al.,
2018), which had gradually lost its challenge due
to the improving capabilities of LMs.

Mixed Signals Generalization Set (MSGS) as-
sess whether language models exhibit preferences
for certain aspects of language, such as linguistic
features (e.g., specific sentence structures) or sur-
face features (e.g., word positioning). The MSGS
dataset evaluates whether language models can
identify and detect these linguistic and surface fea-
tures and whether they prioritize linguistic features
over surface features, which is a crucial aspect of
human language understanding abilities (Warstadt
et al., 2020b).

Taken together, these evaluation suites provide
insights into the models’ general language under-
standing capabilities as well as their adaptability
and performance on specific downstream tasks.
The code for this task’s evaluation originates from
eval-harness by Gao et al. (2021). Furthermore,
as a fascinating aspect of cognitive modelling, we
assess our models’ capability to predict the age
of word acquisition (AoA). Based on the work
of Portelance et al. (2023), computing this metric

2The code for curriculum formation and training can be
found on Github: https://github.com/mi-m1/BabyLM-Entry.

involves an estimation of the average surprisal of
words in child-directed utterances sourced from
CHILDES. Models are then evaluated using leave-
one-out cross-validation. The metric used to mea-
sure prediction is mean absolute deviation (MAD).
A lower MAD score indicates that the model’s
predictions are closer to the actual age of acqui-
sition, signifying better performance on the task.
Conversely, a higher MAD score suggests that the
model’s predictions are less accurate.

Baselines: The two baseline models we use
are a model trained without CL (NONCL) and a
model trained on a randomly formed curriculum
(RANDOM). The non-CL model represents a con-
ventional approach, where the model is trained on
all available data simultaneously for a fixed number
of steps (50000 in this case). On the other hand,
the CL model trained on a randomly formed cur-
riculum serves as a comparison to understand how
much improvement linguistically justified curricula
can provide.

4 Results

The results of models can be seen in Tables 2, 3,
4. We provide the performance results for the sup-
plement BLiMP tasks and MSGS tasks (see Table
6 and 7). The analysis of the main BLiMP, Su-
perGLUE and AoA prediction tasks serves as a
representative basis, and the conclusions drawn
from these tasks can be extended to the results pre-
sented in the Appendices. The analysis presented
takes into consideration the results of all evaluation
metrics, however, we mainly focus on the BLiMP,
SuperGLUE and AoA benchmarks; MSGS and the
supplement BLiMP tasks will be referred to on a
needs basis.

4.1 Non-CL vs. CL

By comparing the non-curriculum learning pre-
trained baseline model (NONCL) with models pre-
trained using curriculum learning, we observe that
the latter exhibit slightly better performance. For
most of the tasks, CL models (RANDOM, ADD,
DPW, DISPERSION, DENSITY, RARITY, TTR) out-
perform NONCL. Higher scores are observed in
these systems on BLiMP tasks such as ANA. AGR,
ARG. STR, QUANTIFIERS and SuperGLUE tasks
such as QQP, BoolQ, and MultiRC indicating that
curriculum learning leads to better performance.
Although the improvements are not substantial in
some cases and there exist also situations where
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Model ANA. AGR ARG. STR BINDING CTRL. RAIS D-N AGR ELLIPSIS FILLER. GAP IRREGULAR ISLAND NPI QUANTIFIERS S-V AGR
NONCL baseline 50.19 58.53 46.26 55.57 50.31 38.41 28.94 47.96 45.71 45.74 30.52 48.35
RANDOM baseline 61.28 59.53 48.74 56.87 49.24 40.36 28.99 56.49 52.14 23.70 38.01 46.91

ADD 64.37 59.53 47.03 55.04 49.58 37.30 29.05 48.50 48.13 31.49 55.15 48.93
DISPERSION 63.19 59.78 46.82 57.39 49.58 39.32 28.94 52.60 51.08 45.27 46.68 48.93
DPW 63.80 59.86 49.80 56.79 49.38 37.88 28.99 59.29 51.97 30.11 43.39 47.77
DENSITY 65.56 59.66 45.83 57.56 49.25 40.07 29.76 49.86 50.31 41.48 42.25 48.93
RARITY 59.01 59.78 49.01 57.11 49.47 38.51 29.03 56.28 50.75 18.91 41.60 48.43
TTR 59.00 59.13 44.99 56.99 49.78 36.76 30.58 47.75 49.00 49.52 33.08 48.55

Table 2: Table showing BLiMP results of models. All results are average performance accuracy over three runs.
Bold values are results that are the best performance achieved average for the given task. These values are also
statistically significantly better than the baseline CL model tested with Welch’s t-test (p < 0.05).

the NONCL model has exceeded CL models, for in-
stance, in CoLA and MRPC. Comparisons between
the random CL baseline model (RANDOM) and
models trained on structured curriculum suggest
that training data on increasing lexical complexity
can contribute to improved performance, albeit to
a limited extent.

Since the models are trained on small amounts
of data, they are likely to overfit. Future investiga-
tions can explore more computationally complex
methods, such as competency-based scheduling
functions to make more robust decisions on when
to expose a new level of curriculum to the model
(Platanios et al., 2019).

4.2 Best and Worst Curriculum Design
Considering the similarity of the results and the
diverse nature of the evaluation tasks, we deter-
mine the best model as the one that outperforms
the baseline CL model statistically significantly
in the highest number of tasks. We find that the
best curriculum depends on the evaluation suite.
On BLiMP tasks, the best curriculum is found to
be DENSITY; ADD on SuperGLUE tasks; TTR

on MSGS tasks. Interestingly, the curriculum that
demonstrated the fewest instances of outperform-
ing the baseline across all evaluation suites is DIS-
PERSION. From these observations, organising pre-
training data according to syntactic complexity is
perhaps more advantageous on the SuperGLUE
and MSGS tasks, whereas lexical information is
more effective for gaining the knowledge required
to perform well on BLiMP tasks. The best ag-
gregate model is found to be pretrained by ADD

curriculum. This could indicate that exposing data
incrementally to the model based on sentence struc-
ture is a modest choice for curriculum design.

4.3 Curriculum Design Variation
The variation in performance between each model
is observed to be diverse across all evaluation
schemes. On average, the gap in performance be-

tween the best and worst CL model on SuperGLUE
tasks (3.072) and MSGS tasks (4.670) is smaller
than on BLiMP (7.440) and supplement BLiMP
tasks (5.763). This difference in spread shows that
models perform more consistently on finetuning
tasks than BLiMP ones. We attribute this to the
nature of the evaluation tasks. SuperGLUE com-
prises a variety of natural language understanding
tasks, but they may share certain linguistic or se-
mantic characteristics that make them more pre-
dictable for models to generalize across tasks. On
the other hand, BLiMP tasks are designed to test
specific linguistic phenomena, making them more
challenging and potentially leading to greater vari-
ation in model performance. Furthermore, given
that a portion of the dataset comprises transcribed
spoken speech, the exposure to intricate linguistic
structures may be restricted, as spoken language
tends to be less complex than written language. For
instance, Chang and Bergen (2022) find that the
average mean sentence length in the CHILDES cor-
pus is 4.5 tokens. This adds plausibility to the fact
that spoken language contains simpler syntactic
structures.

4.4 Age-of-Acquisition Prediction Results
We find that some of the results for AoA predic-
tions are statistically insignificant. In particular, we
see that the models are unable to predict AoA for
Overall and Nouns categories. Out of the results
that are statistically significant, ADD is able to pre-
dict predicates more accurately than the NONCL

model and functions words more accurately than
the RANDOM model. DISPERSION and DENSITY

models have higher accuracy on function words
predictions than ADD model.

4.5 Difficulties
Overall, there are fewer instances where the models
are able to exceed the CL baseline on SuperGLUE
tasks. However, the hardest tasks, whereby models
achieved the lowest scores are mostly BLiMP tasks.
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Model CoLA (MCC) SST-2 MRPC (F1) QQP (F1) MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC
NONCL baseline 69.48 83.27 65.35 69.65 58.07 57.89 56.74 55.22 60.40 48.63 58.63
RANDOM baseline 68.92 83.14 63.65 71.30 57.76 58.84 58.30 50.84 64.08 52.39 61.45

ADD 68.56 83.07 62.90 70.56 58.56 58.94 57.58 55.89 62.52 50.38 61.45
DISPERSION 68.53 82.94 63.09 70.28 58.33 59.44 57.98 52.86 62.84 49.65 61.45
DPW 68.92 82.15 63.65 69.66 58.36 59.30 58.18 53.87 62.38 50.16 61.45
DENSITY 69.12 82.94 57.63 70.27 58.94 57.69 57.60 51.18 62.89 50.93 57.83
RARITY 67.71 82.87 59.32 73.79 58.31 57.89 56.39 51.18 62.24 51.92 61.45
TTR 69.09 82.35 60.83 73.53 58.61 59.20 55.89 53.20 57.81 48.67 60.24

Table 3: Table showing SuperGLUE results of models. All results are average performance accuracy over three runs.
Matthews correlation is reported for CoLA; F1 scores are reported for MRPC and QQP; the rest are accuracy scores.
Bold values are results that are the best-performing model for the given task. These values are also statistically
significant, tested using Welch’s t-test (p < 0.05).

Model Overall (591 words) Nouns (322 words) Predicates (167 words) Function words (102 words)

NONCL baseline 2.053 1.970 1.867 2.619
RANDOM baseline 2.050 1.968 1.850 2.640

ADD 2.051 1.970 1.851* 2.637*
DISPERSION 2.053 1.973 1.854 2.632*
DPW 2.051 1.971 1.847 2.640
DENSITY 2.051 1.970 1.852 2.632*
RARITY 2.049 1.969 1.845 2.637
TTR 2.052 1.969 1.862 2.626

Table 4: Table showing Age-of-Acquisition prediction results of models. The scores are mean absolute deviation in
months across Leave-One-Out (LOO) cross-validation folds. Lower MAD scores denotes higher accuracy. Values*
are results that are significant, tested using Welch’s t-test (p < 0.005).

Namely, NPI (lowest = 18.91), FILLER GAP, and
QUANTIFIERS (lowest = 33.08), as can be seen
in Table 2).

As noted by Warstadt et al. (2020a), tasks such as
NPI licensing and Quantifiers require in-depth se-
mantic knowledge. LMs seem to lack such knowl-
edge, as they tend to make errors that produce con-
tradictory language and show a lack of understand-
ing of assumptions and ideas (Marvin and Linzen,
2018). Interestingly, upon inspecting the predic-
tions made by the models, it appears that there is a
strong preference for constructions that contain the
adverb "ever". In fact, all the predictions made by
the models incorporated this adverb. The predic-
tions for the Quantifier task also exhibit consistent
patterns of ungrammatically. For instance, they do
not seem to know superlative quantifiers cannot be
embedded under negation.

Table 5 provides examples that illustrate these
judgements. Taken together, this effectively shows
the models have not been able to generalise condi-
tions for NPI licensing, which is, that NPIs prefer
not to occur in positive sentences and are restricted
to specific contexts, primarily negative environ-
ments. In addition, the models seem to have also
not learned that NPI licensing environments ex-

ist and can take the form of negation and negative
quantifiers. Similarly, the model has not learned the
required knowledge for resolving the right quanti-
fier constructions.

In this light, solely relying on CL with varying
kinds of lexical complexity for forming curricula
may not be sufficient. Additional efforts are re-
quired to explicitly introduce language models with
the knowledge necessary for completing both se-
mantic and syntax tasks successfully. This draws
questions to LMs’ abilities to generalise syntactical
patterns in language. Whilst this 10M-word corpus
might be sufficient for humans acquiring language,
LMs perhaps require more targeted training and
additional data.

5 Conclusion

In this work, we investigated different CL curricula.
We find that linguistically-motivated curriculum
formation produces better results than (1) a non-CL
pretrained model, and (2) a CL model trained on a
randomly formed curriculum. In addition, we pro-
vide an analysis of the impact of linguistic curricu-
lum on evaluation tasks. The findings underscore
the potential of leveraging linguistic principles to
address the challenges posed by sequential learn-
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ID Prediction
npi_licensing_9 "Should Mitchell ever know Eva?"
npi_licensing_43 "Sharon has ever climbed down a hill."
quantifiers_62 "There weren’t most gates looking like most photographs."

Table 5: Example BLiMP predictions made by the models

ing tasks and pave the way for further research in
this promising direction. One possible direction to
explore is the adaptive CL approach, which dynam-
ically adjusts the curriculum based on the model’s
learning progress and task complexities. This could
involve incorporating feedback mechanisms to fine-
tune the curriculum during training for optimal task
mastery. With this work as a foundation, we hope
it can provide insights to linguistically-oriented
pertaining works.

6 Limitations

We would like to point out that more advanced fea-
tures, such as discourse features and additional se-
mantic features provided by Lee et al. (2021) form
promising areas of exploration. Arguably, includ-
ing these features will paint a more representative
of linguistic complexity. However, as a starting
point, we frame our work to first isolate each "di-
mensionality" of linguistic complexity, and explore
each one’s effect in pretraining independently.
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A Additional Results

Results on the supplement BLiMP tasks and MSGS
tasks are shown in Table 6 and Table 7, respectively.
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HYPERNYM QA CONGRUENCE EASY QA CONGRUENCE TRICKY SUBJECT AUX INVERSION TURN TAKING

NONCL baseline 50.85 27.60 32.73 62.63 51.31
RANDOM baseline 50.85 34.90 28.69 59.32 50.00

ADD 49.42 37.50 29.09 67.16 46.43
DISPERSION 50.81 28.65 30.30 64.16 50.95
DPW 50.58 30.73 28.69 57.37 48.10
DENSITY 49.92 32.81 30.71 65.37 47.98
RARITY 50.54 34.38 28.08 61.77 49.40
TTR 50.50 31.25 32.32 61.06 50.83

Table 6: Table showing results of supplement BLiMP tasks. All results are average performance accuracy over three
runs. Bold values are results that are the best performance achieved average for the given task. These values are
also statistically significantly better than the baseline CL model tested with Welch’s t-test (p < 0.05).

CR_CTRL LC_CTRL MV_CTRL RP_CTRL SC_CTRL CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP
NONCL 59.64 79.23 82.98 98.85 60.58 54.61 23.22 29.39 23.92 40.82 35.40
RANDOM 59.78 93.15 82.34 99.75 60.21 51.90 24.95 23.59 26.22 40.82 34.69

ADD 61.19 98.30 76.38 99.75 60.18 48.78 23.43 22.81 22.81 40.84 30.09
DISPERSION 58.34 93.07 79.17 99.72 59.35 50.91 24.69 22.67 23.48 40.84 31.64
DPW 59.12 87.27 79.97 99.64 59.25 42.76 23.68 23.41 25.26 40.82 37.18
DENSITY 59.39 88.63 75.69 99.75 61.39 50.98 26.02 22.66 24.53 40.80 33.75
RARITY 58.70 92.71 76.71 99.82 59.96 49.84 24.49 27.18 25.62 40.82 35.10
TTR 59.17 85.87 81.26 99.09 59.20 46.57 27.83 28.82 26.92 40.84 39.42

Table 7: Results of MSGS evaluation. All results are Matthews correlation coefficients (MCCs). All results are
average performance accuracy over three runs. Bold values are results that are average MCC for the given task.
These values are also statistically significantly better than the baseline CL model tested with Welch’s t-test (p <
0.05).
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