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Abstract

This paper describes our proposed models in
the BabyLM Challenge (Warstadt et al., 2023).
The goal of this shared task is to pretrain mod-
els efficiently using a developmentally plausi-
ble corpus. To simulate the increasing complex-
ity of Child-Directed Speech (CDS) sentences,
we employed curriculum learning and trained
models with data reordered based on three met-
rics for sentence complexity. Among all the
models, the best performing one was trained
with data ordered by the max-dependency, al-
though the models trained with curriculum
learning did not outperform the baseline model
without curriculum learning.

1 Introduction

Successful recent large language models (LLMs)
are trained on extensive datasets, leading to a gap
between the training data of models and the in-
puts that children receive during language acqui-
sition. English-speaking children hear less than
100M words until the age of 12, while Chinchilla,
one of the recent LLMs, uses 1.4 trillion words
for training (Wertz et al., 2022). Training models
with human-like input data can improve LLM data
efficiency and shed light on efficient language ac-
quisition in children with limited data. Thus, the
BabyLM Challenge (Warstadt et al., 2023) aims
to pretrain models on a developmentally plausible
corpus, including Age-Ordered CDS (Huebner and
Willits, 2021). We used a dataset of ∼10M words,
approximating the input that children receive until
2–3 years 1.

In model training, reordering data in a mean-
ingful way (e.g., from easy to difficult samples),
known as curriculum learning (Bengio et al., 2009),
is suggested to enhance performance. In human
language acquisition, mothers adjust their speech
when addressing their children, using shorter and

1According to Gilkerson et al. (2017), children are exposed
to adult 12,300 words within a 12-hour day.

simpler sentences (Snow, 1972; Newport et al.,
1977; Fernald et al., 1989). Notably, Snow (1972)
and Fernald et al. (1989) report that the mean length
of utterance and the use of nominal compounds
increase as children age, suggesting that language-
acquiring children receive easy inputs initially and
gradually encounter more complexity as they grow.
Thus, reordering data by sentence difficulty may
improve model performance.

In this paper, we train models on data re-
ordered by sentence difficulty and evaluate them
on three designated datasets. The difficulty met-
rics include the number of subword tokens, that
of constituents and max-dependency. The max-
dependency yielded the highest scores, but cur-
riculum learning did not outperform the baseline
model.

2 Corpora and preprocessing

We used the BabyLM strict-small train/dev dataset
(Warstadt et al., 2023). First, we split the cor-
pora into sentences using the sentencizer from
spaCy2. Next, we deleted sentences that were
non-English, titles, and longer than 300 charac-
ters. For identifying non-English sentences, we
used FastText (Joulin et al., 2017). Some corpora
in the datasets contain much upper-case-only or
lower-case-only data. Therefore we trained Moses
truecaser (Koehn et al., 2007) using other training
corpora, then true-cased all data. After true-casing,
we tokenized all data. We trained the tokenizer
from scratch using RobertaTokenizer (Liu et al.,
2019) with the preprocessed training dataset.

3 Models

3.1 Baseline model

Our models are based on the RoBERTa-base (Liu
et al., 2019). We trained them on randomly shuf-

2https://spacy.io
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fled data from scratch. Their hyperparameters are
shown in Appendix A.2.

3.2 Curriculum learning model

We employed curriculum learning in our baseline
models. Training data were sorted by a particular
difficulty metric. We focused on sentence complex-
ity and used three metrics, the number of subword
tokens (Ntoken), that of constituency (Nconst.),
and maximum depth of dependency tree (Max-
dep.). We split the data into several blocks and
trained models on them in order with particular
steps. Note that we adjusted the number of steps
in each block to be proportional to the number of
subwords in each block.

4 Experiments

To find optimal settings for curriculum learning,
we begin with investigating which difficulty met-
rics are better and how many blocks of data should
be split into for this task. To explore the effect
of curriculum learning, we then compare the base-
line model, which is trained on randomly shuffled
data, with the curriculum learning models. We
use parsers from spaCy to calculate the number of
constituents and max-dependency.

4.1 Evaluation

We evaluated our models with the shared
evaluation datasets (Gao et al., 2021). These
consist of BLiMP (Warstadt et al., 2020a),
(Super)GLUE (Wang et al., 2018) and
MSGS (Warstadt et al., 2020b). BLiMP is
used for zero-shot evaluation, and it includes
supplement tasks that are specifically made
for BabyLM. We report its accuracy. GLUE
and MSGS are used for fine-tuning evaluation.
We report F1 score for GLUE and Matthews
Correlation Coefficient (MCC) for MSGS.

4.2 Results

Difficulty metrics We compare the models
trained on the sorted data with the three difficulty
metrics (See section 3.2). The bottom of Table 1
shows the performance of curriculum learning mod-
els in the different difficulty metrics. The results
suggest that the difficulty metrics affect the perfor-
mance of the models. Notably, the model trained
on the data sorted by Max-dep. achieved slightly
higher performance than the other metrics.

Model Curr. BLiMP GLUE MSGS Avg.

Baseline 69.23 65.74 −0.57 44.80
+cleaning 70.46 66.40 6.86 47.91

Ntoken ✓ 68.37 64.96 −5.56 42.59
Nconst. ✓ 65.90 64.71 −2.73 42.63
Max-dep. ✓ 68.27 65.90 3.26 45.81

Table 1: Performance of models. The models at the top
are baseline models with and without data preprocessing.
Those at the bottom are curriculum learning models in
different difficulty metrics. ✓in Curr. denotes whether
curriculum learning is applied to the models.

Model n BLiMP GLUE MSGS Avg.

Max-dep.

3 68.70 65.06 0.37 44.71
4 68.27 65.90 3.26 45.81
6 67.85 64.97 9.56 47.46
8 67.93 65.05 0.33 44.44

Table 2: Performance of models with different split
blocks. n indicates the number of blocks.

Number of blocks We compare the models
trained on the data split into {3, 4, 6, 8} blocks.
As difficulty metrics, we use Max-dep., which
achieves the highest score among the three mod-
els at the bottom of Table 1. Table 2 indicates the
performance of models with different split blocks.
This result shows that there is no significant differ-
ence between the models with different split blocks,
suggesting that scores will not be improved by the
simple increase or decrease in the number of split
blocks.

Baseline model vs. Curriculum learning model
Finally, we compare the curriculum learning
model 3, in which difficulty metrics are Max-dep.
and the number of blocks is 4, with the baseline
model. The top of Table 1 shows that the baseline
model obtains higher scores than the curriculum
learning model. This result implies that at least
the curriculum learning settings attempted in this
work are inadequate in facilitating higher model
performance. Investigating other effective training
settings would be interesting for future work; e.g.,
warmup, optimizers.

5 Conclusion

In summary, our participation in the BabyLM Chal-
lenge centered on curriculum learning based on
the three metrics of sentence complexity. While

3The model is available at https://huggingface.co/
akari000/roberta-dependency-max-4split
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the max-dependency demonstrated slightly higher
performance scores than the other metrics, it did
not outperform the baseline model without curricu-
lum learning on the BLiMP dataset. These findings
suggest the complexity of language acquisition and
the need to improve the experimental setting in fu-
ture research to enhance the models’ performance.
To enhance the validity of our research as a future
work, we need to use multiple random seeds to
train the model to verify how much those affect the
results.
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A Appendix

A.1 Difficulty Metrics
Number of constituents The number of con-
stituents was counted using the Berkley Neural
Parser (Kitaev and Klein, 2018) in spaCy. This
parser uses a self-attentive encoder in place of
LSTM along with a chart decoder. This parser
outputs POS tags and surface strings in brackets as
in (1), and we count the number of phrasal nodes
(e.g., NP) in the outputs. In this case, the number
of constituents is counted as 4.

(1) (S (NP (DT That)) (VP (MD might) (VP
(VB be) (ADJP (JJR better)))) (. .))

Max-dependency We count max-dependency us-
ing the dependency parser in spaCy, which is a
transition-based system by Honnibal and John-
son (2015) along with Nivre and Nilsson (2005)’s
pseudo-projective dependency transformation. We
count the number of dependent nodes from the root
and choose the maximum depth as the value of
max-dependency. For example, the dependency
tree in (2) is an example of parsing by the depen-
dency parser. In this case, the longest dependency
is either ‘told → happened → had’ or ‘told → hap-
pened → what’. Given that the root is counted as
0, the max-dependency of this sentence is 2.

(2)

Hans told him what had happened.

ROOT

nsubj dobj

ccomp

nsubj

aux

A.2 Hyperparameters
We arranged the number of instances that we input
into our models for all steps to 28,800k instances.
Other hyperparameters are shown in Table 3.

A.3 Detailed results
We show the details of the results for each task.
Table 4 – 6 shows the accuracies for all measures
in BLiMP and GLUE. Table 7 shows the F1 scors
for all measures in GLUE, where we use macro-F1,
and Table 8 shows the MCC scores for all measures
in MSGS.

Model

architecture roberta-base
vocab size 50,265
hidden size 768
heads 12
layers 12
dropout 0.1
layer norm eps 1e-12

Optimizer

algorithm AdamW
learning rates 3e-4
betas (0.9, 0.999)
weight decay 0.1
clip norm 0.0

Scheduler
type cosine
warmup updates 5000

Training
gradient accumulation 4
line by line true
NGPU 4

Table 3: Hyperparameters of the models
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Model Curr. n
Anaphor Agr.

Binding Control/Raising
D-N

Ellipsis
Agr. Structure Agr.

Baseline model - 86.09 73.68 67.84 68.03 95.57 73.44
+cleaning - 91.82 74.32 74.16 73.75 96.29 77.19

Ntoken ✓ 4 88.45 75.24 73.67 73.75 95.47 74.19
Nconst. ✓ 4 83.44 72.50 73.75 71.74 91.45 75.17

Max-dep.

✓ 3 90.85 73.82 73.76 72.45 95.62 79.68
✓ 4 91.21 74.98 73.49 71.06 95.48 78.58
✓ 6 87.68 71.59 73.79 68.43 93.86 76.21
✓ 8 91.26 72.25 73.43 67.21 94.55 74.54

Model Curr. n
Filler Irregular Island NPI

Quantifiers
S-V

Gap Forms Effects Licensing Agr.

Baseline model - 75.26 90.69 37.56 52.73 74.86 78.14
+cleaning - 76.39 90.99 44.96 56.71 73.98 82.48

Ntoken ✓ 4 74.93 89.57 38.08 55.10 72.41 81.43
Nconst. ✓ 4 77.65 74.66 39.57 61.75 65.10 76.50

Max-dep.

✓ 3 71.49 87.48 35.24 57.91 72.05 81.70
✓ 4 71.88 88.80 33.15 53.72 71.95 83.04
✓ 6 71.94 89.87 26.76 60.04 69.91 81.43
✓ 8 72.08 91.40 28.70 58.56 75.94 78.34

Table 4: Accuracies for all measures in BLiMP

Model Curr. n Hypernym
QA Congruence QA Congruence Subj.-Aux. Turn

(easy) (tricky) Inversion Taking

Baseline model - 49.53 60.94 43.03 84.24 65.36
+cleaning - 49.19 67.19 39.39 68.72 60.36

Ntoken ✓ 4 48.72 59.38 40.00 64.85 57.14
Nconst. ✓ 4 48.02 54.69 29.70 67.14 57.50

Max-dep.

✓ 3 48.84 68.75 36.97 63.09 58.21
✓ 4 46.98 65.63 39.39 63.77 57.50
✓ 6 47.91 67.19 43.03 63.53 60.36
✓ 8 51.40 60.94 37.58 63.38 63.21

Table 5: Accuracies for all measures in BLiMP supplement task
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Model Curr. n CoLA SST-2 MRPC QQP MNLI MNLI-mm

Baseline model - 72.91 87.01 64.97 80.61 70.04 71.13
+cleaning - 76.84 88.39 69.49 82.32 72.19 74.06

Ntoken ✓ 4 76.15 87.60 64.41 82.31 72.14 71.79
Nconst. ✓ 4 73.01 87.01 66.67 82.74 70.41 72.14

Max-dep.

✓ 3 75.17 87.40 70.62 83.46 72.90 73.01
✓ 4 75.17 87.20 67.23 82.75 72.37 73.50
✓ 6 75.47 87.60 70.06 82.13 72.04 73.98
✓ 8 75.47 88.39 66.67 83.14 71.96 73.22

Model Curr. n QNLI RTE BoolQ MultiRC WSC

Baseline model - 69.25 51.52 65.15 60.35 61.45
+cleaning - 71.26 52.53 66.67 58.71 63.86

Ntoken ✓ 4 66.01 52.53 65.98 59.26 61.45
Nconst. ✓ 4 64.92 56.57 66.11 59.15 61.45

Max-dep.

✓ 3 71.00 48.48 66.11 60.46 61.45
✓ 4 70.25 52.53 65.98 61.34 61.45
✓ 6 70.73 46.46 64.04 59.04 61.45
✓ 8 70.21 57.58 66.39 59.26 61.45

Table 6: Accuracies for all measures in GLUE task

Model Curr. n CoLA SST-2 MRPC QQP MNLI MNLI-mm

Baseline model - 82.92 87.36 74.80 76.27 - -
+cleaning - 84.58 88.45 80.58 79.78 - -

Ntoken ✓ 4 83.77 87.52 76.92 79.10 - -
Nconst. ✓ 4 82.22 87.36 77.90 79.36 - -

Max-dep.

✓ 3 83.96 87.64 80.88 80.38 - -
✓ 4 83.77 87.67 78.68 79.96 - -
✓ 6 83.66 87.67 80.87 79.12 - -
✓ 8 83.85 88.54 78.07 79.93 - -

Model Curr. n QNLI RTE BoolQ MultiRC WSC

Baseline model - 72.89 45.45 74.65 57.31 20.00
+cleaning - 74.47 47.19 76.11 54.63 11.76

Ntoken ✓ 4 71.36 52.53 73.72 59.74 00.00
Nconst. ✓ 4 71.44 59.05 75.57 49.53 00.00

Max-dep.

✓ 3 74.82 45.16 75.52 57.18 00.00
✓ 4 74.46 53.47 74.11 60.99 00.00
✓ 6 72.16 51.38 74.61 55.26 00.00
✓ 8 72.51 55.32 75.92 51.31 00.00

Table 7: F1 scores for all measures in GLUE task
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Model Curr. n
CR LC MV RP SC

(Control) (Control) (Control) (Control) (Control)

Baseline model - 64.29 99.98 92.47 75.34 73.65
+cleaning - 76.34 100.00 99.64 99.91 27.19

Ntoken ✓ 4 66.43 100.00 96.66 90.15 53.17
Nconst. ✓ 4 64.76 100.00 97.11 96.48 49.27

Max-dep.

✓ 3 81.61 100.00 99.59 99.98 24.81
✓ 4 77.71 100.00 99.23 100.00 52.80
✓ 6 67.47 100.00 99.37 92.35 74.47
✓ 8 55.99 100.00 98.98 99.82 38.54

Model Curr. n CR_LC CR_TP MV_LC MV_RTP SC_LC SC_RP

Baseline model - -70.37 -69.93 -100.00 -81.71 -57.74 -32.27
+cleaning - 33.37 -65.21 -99.54 -79.93 -59.83 -56.48

Ntoken ✓ 4 -92.54 -44.48 -100.00 -89.32 -78.91 -62.35
Nconst. ✓ 4 -47.57 -98.28 -98.55 -85.35 -52.81 -55.07

Max-dep.

✓ 3 -39.21 -73.38 -100.00 -83.32 -48.79 -57.24
✓ 4 -32.06 -62.60 -100.00 -77.70 -59.96 -61.52
✓ 6 20.13 -65.46 -100.00 -86.16 -32.50 -64.47
✓ 8 -17.58 -63.82 -100.00 -99.03 -47.53 -61.69

Table 8: MCC scores for all measures in MSGS

Models Curr. n Perplexity

Baseline model – 14.58
+cleaning – 19.80

Ntoken ✓ 4 25.74
Nconst. ✓ 4 32.20

Max-dep.

✓ 3 24.42
✓ 4 27.35
✓ 6 38.61
✓ 8 40.16

Table 9: Perplexity for all measures
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