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Abstract

In this paper, we demonstrate the benefits of
jointly using Masked Latent Semantic Model-
ing (MLSM) and traditional Masked Language
Modeling (MLM) as the pre-training objective
of masked language models. The core idea
behind MLSM is to modify the pre-training
objective in a way which ensures that the lan-
guage models predict a (latent) semantic dis-
tribution for the masked tokens – instead of
outputting their exact identity as in MLM. Lan-
guage models pre-trained with MLSM behave
more favorable in terms of fine-tuneability to-
wards downstream tasks, however, their perfor-
mance lags behind MLM pre-trained language
models in evaluations that investigate the lin-
guistic capabilities. In an attempt to combine
the strengths of the two different pre-training
paradigms, we propose their joint use in a multi-
task learning setting. Our evaluations that we
performed using the BabyLM evaluation frame-
work (Warstadt et al., 2023) demonstrate the
synergistic effects of the joint use of the two
different kinds of pre-training objectives.

1 Introduction

Albeit being effective and easy to implement in
practice, the highly stochastic batch-based masked
language modeling (MLM) objective frequently
used for pre-training language models, such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), is not sample efficient and works
in a rather unnatural way from a human cogni-
tive perspective. This is caused by the fact that
traditional MLM expects the neural models to re-
cover the exact identity of the masked (sub)words
within an input sequence. In an attempt to over-
come the unnaturalness of MLM, (Berend, 2023)
has recently proposed masked latent semantic mod-
eling (MLSM), a sample efficient alternative to
traditional masked language modeling.

MLSM differs from MLM in that its objective
is to recover the semantic distribution of masked
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(b) MLSM objective

Figure 1: Comparisons of the probability distributions
used in MLM (a) and MLSM (b) pre-training.

(sub)tokens over an unsupervised inventory of la-
tent semantic properties — as opposed to that of a
one-hot distribution over the entire vocabulary of
the language model. This kind of pre-training is
arguably more plausible from a human cognitive
perspective, i.e., traditional MLM acts as if there
was a single proper substitute for a special [MASK]
token (the one that got masked), whereas from a
human perspective multiple viable tokens – tokens
that share some common semantic properties – can
substitute a masked token.

For instance, in the sentence ’She picked a deli-
cious [MASK].’, human subjects would agree that
any word referring to an edible concept is a viable
substitute for the last word of the sentence. In Fig-
ure 1, we illustrate the different kinds of outputs
that the MLM (Figure 1a) and the MLSM (Fig-
ure 1b) objectives could produce for some masked
token such as the one in the above example.

Even though (Berend, 2023) has demonstrated
the improved sample efficiency of MLSM, lan-
guage models pre-trained with it perform poorly
in evaluations that test the linguistic capabilities
of language models. In this paper, we extend the
results from (Berend, 2023) in several important
aspects. On the one hand, – instead of using a
medium-sized BERT model – we pre-train base-
sized DeBERTa (He et al., 2021) models, illustrat-
ing that the MLSM pre-training objective gener-
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alizes across different model types and sizes. On
the other hand, we investigate the added value of
a multi-task learning setting during pre-training,
in which the use of MLSM objective is coupled
with traditional MLM. Our empirical results show
vast improvements in the performance of the pre-
trained language models using the joint objective.
We release our source code1 and pre-trained models
that we created using the strict2 and strict-small3

datasets provided as part of the BabyLM shared
task (Warstadt et al., 2023).

2 Methodology

In this section, we introduce the pre-training train-
ing objectives that we conducted experiments with.

2.1 Standard Masked Language Modeling
During MLM pre-training, we expect the masked
language model to output a probability distribution
over its entire vocabulary and the objective is to
return one-hot distributions corresponding to the
actually masked token, similar to what is illustrated
in Figure 1a. The loss function for this kind of pre-
training is the categorical cross entropy.

2.2 Knowledge distillation (KD)
During knowledge distillation (KD), we expect the
language model to output such a probability distri-
bution over its entire vocabulary that tries to mimic
the output distribution of viable masked token sub-
stitutes, produced by another language model that
is (partially) pre-trained using the standard MLM
objective. This setting, hence, is basically a two
phase pre-training, in which the first phase is a reg-
ular pre-training, followed by a knowledge distilla-
tion phase, during which we calculate the Kullback-
Leibler divergence between the probability distri-
bution outputted by the language model from the
first phase and the model that is being trained.

In this two phase setting, we have the option to
reinitalize the model weights, or to make a copy
of the (partially) pre-trained model from the first
phase, and start KD pre-training with the weights of
the MLM pre-trained model in a transfer learning
setting. As our preliminary experiments suggested
that this latter form of continued pre-training is
more beneficial, we opted for that variant of KD.

1https://github.com/SzegedAI/MLSM
2https://huggingface.co/SzegedAI/

babylm-strict-mlsm
3https://huggingface.co/SzegedAI/

babylm-strict-small-mlsm

2.3 Masked Latent Semantic Modeling
We also utilize Masked Latent Semantic Modeling
(Berend, 2023). MLSM is based on an efficient
unsupervised method for determining the context-
sensitive latent semantic distribution of any token.
We use this as the target distribution that the lan-
guage model needs to recover during a pre-training
as illustrated in Figure 1b.

MLSM is similar to knowledge distillation in
that it also relies on a (partially) pre-trained model,
however, the mechanism in which it gets utilized
differs rather substantially. The partially pre-
trained model was not only used for providing the
training signal, but also for initializing the weights
of MLSM pre-trained models.

The MLSM approach is based on the observation
that (sub)tokens with overlapping semantic content
tend to have an overlapping set of non-zero coordi-
nates in their sparse contextualized representation,
which can be obtained by performing sparse cod-
ing on the hidden representations of transformer
architectures (Berend, 2020). We incorporate this
property of sparse token representations into pre-
training, i.e., we devise such distributions of latent
semantic properties of masked tokens that are based
on the sparsity structure of the sparse representa-
tions during the second phase of pre-training.

Suppose that the language model from the first
phase of pre-training produces hidden vectors
h(l) ∈ Rd by its lth layer for a particular token
within its context. We then construct a collection
of hidden representations as H(l) ∈ Rd×n, and,
as a preparatory step for the second phase of pre-
training, we jointly optimize for a dictionary matrix
D ∈ Rd×k and αH(l) ∈ Rd×n, such that

min
D,α

H(l)

1

2
∥H(l) −DαH(l)∥2F + λ∥αH(l)∥1,

where the norm of the columns vectors in D do not
exceed 1, and the sparse linear coefficients in α are
non-negative, with the regularization coefficient λ
controlling the sparsity level of α.

Once the dictionary matrix D is determined, we
can obtain sparse contextualized representation for
any token described by h(l) via solving

min
α∈Rk

≥0

1

2
∥h(l) −Dα∥22 + λ∥α∥1. (1)

As such, the determination of (1) can provide use-
ful signal during the second phase of pre-training,
i.e., by determining the sparse α representation for
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the token which was assigned h(l) by the language
model from the first phase of pre-training, we can
obtain its latent semantic profile via investigating
its non-zero coefficients. Due to the non-negativity
of α, it can be conveniently transformed into a
probability distribution of semantic profiles via ℓ1-
normalization, each coordinate corresponding to
a (latent) semantic property as illustrated in Fig-
ure 1b.

Similar to KD pre-training, MLSM also employs
the Kullback-Leibler divergence as its objective for
comparing the expected semantic distribution and
the model output. A major difference between
KD and MLSM though is that for the former, the
domain of the target distribution is the entire vocab-
ulary, whereas for MLSM, there are k many latent
semantic properties to consider.

2.4 Joint training objectives

We relied on standard MLM on its own as one
of our baseline approaches, as well as in conjunc-
tion with other pre-training objectives, in order to
assess its added value as a joint self-supervised
pre-training task. In the case MLM was used as an
additional pre-training task, the losses of the differ-
ent pre-training paradigms were added together and
backpropagation was performed over the joint loss.
When using MLM as an additional loss, we add
the +MLM suffix to the pre-training approach that
we augment it with. For instance, KD+MLM refers to
such a pre-trained model that we obtained by rely-
ing on the joint objective of knowledge distillation
and MLM.

3 Experiments and results

We performed our experimental evaluation based
on the BabyLM Challenge environment (Warstadt
et al., 2023), the goal of which is to provide a uni-
fied framework for pre-training language models
based on moderate amounts of texts, inspired by
children language acquisition (Saffran et al., 2001;
Gilkerson et al., 2017; Dupoux, 2018). The size
and the contents of the pre-training dataset released
as part of the BabyLM Challenge is guided by the
amount and types of texts children are typically
exposed to by reaching preadolescence.

That is, the size of the pre-training corpus is
limited in either 100 million (strict) or 10 mil-
lion (strict-small) tokens, and the released text is
mostly composed of transcribed speech. The con-
crete subcorpora of the challenge are the CHILDES

(Macwhinney, 2000), dialogue portion of the
British National Corpus (BNC), Children’s Book
Test (cbt; Hill et al., 2016), Children’s Stories
Text Corpus, Standardized Project Gutenberg Cor-
pus (Gerlach and Font-Clos, 2020), OpenSubti-
tles (Lison and Tiedemann, 2016), QCRI Educa-
tional Domain Corpus (qed; (Abdelali et al., 2014)),
Wikipedia, Simple Wikipedia and the Switchboard
Dialog Act Corpus (Stolcke et al., 2000).

The evaluation framework contains a collection
of supervised fine-tuning and zero-shot evaluations
for assessing the utility and the linguistic capabili-
ties of the pre-trained language models.

3.1 Training a tokenizer
As the goal of the BabyLM Challenge is to create
an environment in which language models are not
exposed to colossal amounts of pre-training text,
all components of the trained language models con-
formed to the standardized pre-training data. To
this end, we first trained a unigram tokenizer (Kudo,
2018) over the corresponding BabyLM strict/strict-
small dataset, that comprised of roughly 100/10
million (whitespace separated) tokens. The vocab-
ulary size we employed is 25000.

As increased vocabulary size can potentially
yield better downstream performance (e.g., one
of the potential reasons why RoBERTa (Liu et al.,
2019) often performs better than BERT (Devlin
et al., 2019) is due to its increased vocabulary size),
we also attempted to train a unigram tokenizer with
50000 subtokens as well. Our preliminary results,
however, showed vastly degraded performance for
the increased vocabulary size.

For this reason, we continued our experiments
with the tokenizers with 25000 cased entries, which
was likely more beneficial compared to the one
with twice the number of subtokens, as the training
corpus itself was intentionally limited in its size,
and the increased vocabulary was too large for the
relatively small number of unique tokens in the
pre-training corpora.

3.2 Pre-training
We used almost identical hyperparameters to
(Berend, 2023). That is, we employed a batch size
of 128 and a gradient accumulation over 8 batches,
yielding an effective batch size of 1024. The learn-
ing rate for pre-training was set to 1e−4 with linear
scheduling.

We employed the kind of two-phase pre-training
introduced earlier in Section 2, i.e., we first pre-
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KD KD+MLM MLM MLSM MLSM+MLM

anaphor agreement 0.801 0.893 0.801 0.476 0.718
argument structure 0.760 0.797 0.779 0.700 0.762
binding 0.655 0.645 0.660 0.680 0.654
control raising 0.763 0.771 0.766 0.706 0.770
determiner noun agreement 0.969 0.969 0.969 0.847 0.969
ellipsis 0.908 0.936 0.924 0.690 0.930
filler gap 0.826 0.850 0.850 0.714 0.850
hypernym 0.492 0.510 0.480 0.503 0.480
irregular forms 0.850 0.907 0.949 0.794 0.948
island effects 0.669 0.754 0.782 0.629 0.773
npi licensing 0.732 0.781 0.759 0.628 0.768
qa congruence easy 0.625 0.672 0.688 0.438 0.688
qa congruence tricky 0.358 0.394 0.467 0.442 0.424
quantifiers 0.733 0.752 0.768 0.484 0.754
subject aux inversion 0.929 0.949 0.951 0.808 0.951
subject verb agreement 0.893 0.904 0.893 0.764 0.903
turn taking 0.557 0.604 0.643 0.571 0.611

Average 0.736 0.770 0.772 0.640 0.762

(a) strict

KD+MLM MLM MLSM+MLM

0.880 0.829 0.831
0.765 0.739 0.737
0.684 0.661 0.676
0.737 0.728 0.757
0.948 0.933 0.939
0.830 0.819 0.827
0.781 0.768 0.777
0.477 0.495 0.479
0.910 0.896 0.902
0.630 0.650 0.685
0.719 0.712 0.743
0.734 0.688 0.703
0.370 0.364 0.333
0.706 0.728 0.733
0.863 0.827 0.830
0.852 0.816 0.825
0.525 0.521 0.521

0.730 0.716 0.724

(b) strict-small

Table 1: BLiMP results for the models pre-trained on the strict (a) and the strict-small (b) corpora.

trained a model using standard MLM, then used
this model for initializing the second-phase model,
the pre-training objective of which can poten-
tially differ from MLM. We performed 20,000 and
80,000 update steps during the first and second
phases, respectively.

As such, we had a total of 100,000 update steps,
which together with the fact that we had an effec-
tive batch size of 1024, means that we considered
approximately 100,000,000 sequences during pre-
training. This resulted in 17 and 166 epochs when
using the strict and the strict-small pre-training cor-
pora, respectively. We performed pre-training on
NVIDIA A6000 or V100 GPUs (depending on their
availability). One pre-training took approximately
5 days to finish.

For the strict scenario, we report results when
using the different pre-training paradigms on their
own and in conjunction with MLM. As our ex-
periments revealed a superior performance for the
joint pre-training with MLM, we only consider
those models that jointly use one of the pre-training
paradigms and MLM during the second phase of
pre-training for the strict-small case.

When applying MLSM, we set the number of
latent semantic properties to one tenth of the size
of the vocabulary, i.e., we had k = 2500. For the
joint objectives (KL+MLM and MLSM+MLM),
we weighted the two loss terms equally by simply
adding the two loss terms together. Investigating
different weighting of the MLM term could have

been an interesting, but computationally demand-
ing ablation experiment to conduct.

3.3 Quantitative evaluation

We next report our experimental results towards
zero-shot (§3.3.1) and fine-tuning (§3.3.2) evalua-
tion, using the BabyLM evaluation framework.4

3.3.1 Zero-shot results on BLiMP
The BabyLM framework uses the BLiMP dataset
(Warstadt et al., 2020a) for assessing the linguistic
capabilities of language models. BLiMP contains
English sentence pairs that differ in their linguistic
acceptability regarding a variety of grammatical
concepts and the task is to select the correct sen-
tence based on the pre-trained model.

To decide which sentence is linguistically
more acceptable, the pseudo-log-likelihood (PLL;
Salazar et al., 2020) scores of the sentences are
calculated, and the sentence with the higher PLL
is considered grammatically acceptable. The
BabyLM evaluation framework focuses on 17
grammatical phenomena, the results of which are
included in Table 1.

Table 1a reveals that the MLSM pre-trained
model performs poorly on BLiMP. This is not sur-
prising, as PLL is based on the predictions over the
vocabulary of the model, however, MLSM totally
neglect the kind of objective that is related to the
vocabulary of the model, making the PLL values

4https://github.com/babylm/
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Figure 2: Pairwise comparison of BLiMP task per-
formances between the MLSM (x-axis) and the
MLSM+MLM (y-axis) pre-trained models.

calculated by MLSM-only models less useful for
approximating linguistic acceptability.

The model pre-trained with the joint MLSM ob-
jective (MLSM+MLM), however, performs 0.122
points better on average (0.640→0.762), nearly as
good as the model pre-trained with MLM alone
(0.772). The additional use of MLM also improves
the BLiMP performance of knowledge distillation
by 0.034 points on average (0.736→0.770).

Table 1b reveals that when using the reduced
amount of strict-small pre-training corpus, the
MLSM+MLM pre-trained model in fact outper-
forms the purely MLM pre-trained model variant.

We depict the added value of using the joint
MLSM+MLM objective over the MLSM only
objective when conducting pre-training on the
100 million token strict corpus in Figure 2. Each of
the 17 sub-task is visualized by a point in the figure,
with its x and y coordinates displaying the perfor-
mance of the pre-trained model that was based on
the MLSM and MLSM+MLM objectives. The
dashed line indicates chance performance, and the
diagonal line helps in identifying the added value
of joint pre-training, i.e., the further away a point
above the diagonal line is, the bigger positive im-
pact the joint pre-training had towards the evalua-
tion on the subtask represented by the given point.

During the second phase of pre-training, we eval-
uated intermediate checkpoints. Figure 3a and Fig-
ure 3b illustrates the average BLiMP performance
of the models pre-trained with varying strategies
and at different readiness levels for using the strict
and the strict-small pre-training corpora, respec-
tively. The x-axis indicates the number of addi-
tional update steps performed during the second
phase of the pre-training.
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Figure 3: Average BLiMP performances as a function
of the number of update steps performed in the second
phase of pre-training.

The MLSM curve in Figure 3a shows that
the masked language modeling capabilities of an
MLSM-only pre-trained model fade out quickly, as
the average BLiMP performance drops drastically
already at the first investigated checkpoint, i.e., at
16,000 additional MLSM update steps performed
on a model that had gone through 20,000 steps of
first phase MLM pre-training.

Figure 3a further reveals that there is a
large performance gap between the MLSM and
MLSM+MLM pre-trained models at every check-
point, with the performance of MLSM+MLM be-
ing nearly as good or better than that of the purely
MLM pre-trained model. As the size of the pre-
training corpus gets reduced from 100 million to
10 million tokens, the average BLiMP performance
of the alternatively pre-trained models becomes fa-
vorable compared to the MLM-only models as it is
illustrated in Figure 3b.

3.3.2 Fine-tuning results
The BabyLM evaluation framework also includes
supervised learning tasks from the GLUE (Wang
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KD KD+MLM MLM MLSM MLSM+MLM

BoolQ 0.6943 0.6885 0.6936 0.6857 0.6826
CoLA 0.4551 0.4687 0.4962 0.4758 0.4854
MNLI 0.7620 0.7669 0.7695 0.7558 0.7704
MNLI-mm 0.7641 0.7761 0.7779 0.7687 0.7808
MRPC 0.8263 0.8406 0.8496 0.8325 0.8339
MultiRC 0.5578 0.6114 0.6238 0.6309 0.5983
QNLI 0.8350 0.8409 0.8447 0.8427 0.8438
QQP 0.8366 0.8451 0.8492 0.8421 0.8428
RTE 0.5985 0.6010 0.6010 0.6010 0.5808
SST2 0.8907 0.8922 0.8927 0.8952 0.8907
WSC 0.6024 0.5964 0.5843 0.6024 0.6054

(a) strict

KD+MLM MLM MLSM+MLM

0.6843 0.6729 0.6670
0.3889 0.3794 0.4171
0.7503 0.7426 0.7542
0.7506 0.7527 0.7535
0.7645 0.7766 0.7653
0.580 0.6076 0.5676
0.8205 0.8261 0.8237
0.8343 0.8346 0.8351
0.5404 0.5556 0.5202
0.8903 0.8937 0.8917
0.5813 0.5964 0.6084

(b) strict-small

Table 2: (Super)GLUE results for the models pre-trained on the strict (a) and the strict-small (b) corpora. Metrics
are reported as accuracy, except for CoLA (Matthew Correlation Coefficient), MRPC (F1) and QQP (F1).

et al., 2019b) and SuperGLUE (Wang et al.,
2019a) benchmarks and selected subtasks of MSGS
(Mixed Signals Generalization Set; Warstadt et al.,
2020b). The original datasets are filtered to those
cases that include words that are present at least
twice in the 10 million token strict-small training
corpus. Unless stated otherwise, we report perfor-
mance metrics in the form of accuracy.

We made no modifications in the hyperparam-
eters of the official evaluation framework, apart
from reducing the batch size from 64 to 32, which
was necessary for avoiding out-of-memory error on
the NVIDIA 2080Ti GPUs that accommodated our
fine-tuning experiments. In order to account for the
high variability in fine-tuning results, we repeated
all experiments involving fine-tuning four times
with different random seeds and report the average
of the scores that we obtained. Due to the com-
putational need of fine-tuning, we only evaluated
the intermediate checkpoints at the 20%, 60% and
100% readiness levels, i.e., after 16000, 48000 and
80000 additional second phase pre-training steps.

(Super)GLUE Vocabulary-filtered versions of
11 different subtasks from (Super)GLUE are in-
cluded in the BabyLM evaluation environment.
The individual results obtained by the differently
pre-trained DeBERTa models are listed in Table 2.
Fine-tuning MLSM+MLM models again yielded
better results compared to the MLSM models, how-
ever, the performance gap is not that pronounced
as it was for BLiMP. The average fine-tuning per-
formance of MLSM+MLM pre-trained model is
on par with the one that got pre-trained with tra-
ditional MLM considering the models pre-trained

over the 100 million corpus.
Figure 4 displays the fine-tuning performance

of the intermediate model checkpoints of second
phase pre-training. Figure 4a reveals that when
using the 100 million token training corpus, the
intermediate checkpoints of the MLSM+MLM
and MLM models have similar fine-tuning perfor-
mances averaged over the (Super)GLUE tasks, with
a slight advantage towards MLSM+MLM.

For the smaller training corpus in Figure 4b, the
advantage of MLSM+MLM pre-trained model is
more notable, confirming that jointly using MLSM
with MLM offers better sample efficiency.

MSGS MSGS (Warstadt et al., 2020b) is a sen-
tence classification challenge set that contains train-
ing instances towards different linguistic categories
and surface form features of sentences. Control
tasks are ’regular’ training and evaluation splits in
the sense that there is no purposefully encoded spu-
rious correlation in the training dataset that is not
present in the test set. The challenge tasks, how-
ever, are designed with the intention of conflating
two properties with each other in the training set
in a way that the given relation do not hold for
the test instances. This way, one can measure to
what extent the model was able to learn and rely on
the actual target contept to be learned as opposed
to the deliberately included surface level spruious
correlation in the training data.

Table 3 contains the results for the control tasks
as well as for the challenging cases with the pur-
posefully malignant training data in which a surface
form characteristic goes along with the linguistic
properties to be tested. The different kinds of test
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KD KD+MLM MLM MLSM MLSM+MLM

CR (control) 0.7521 0.7609 0.7739 0.7842 0.7940
LC (control) 1.0 1.0 1.0 1.0 1.0
MV (control) 0.9999 0.9994 0.9997 0.9996 0.9995
RTP (control) 0.6905 0.8738 0.9117 0.9344 0.8785
SC (control) 0.7603 0.7786 0.7940 0.7130 0.7794

CR_LC -0.4572 -0.6195 -0.6733 -0.6766 -0.5380
CR_RTP -0.7686 -0.6571 -0.7805 -0.6051 -0.7613
MV_LC -0.5329 -0.3928 -0.7954 -0.8370 -0.8558
MV_RTP -0.0097 0.0729 -0.2217 -0.1047 -0.0385
SC_LC -0.2849 -0.2673 -0.3011 -0.3087 -0.3223
SC_RP -0.5758 -0.5601 -0.5039 -0.5346 -0.5173

(a) strict

KD+MLM MLM MLSM+MLM

0.6311 0.6872 0.7351
1.0 1.0 1.0

0.9988 0.9956 0.9985
0.8579 0.9857 0.8963
0.6657 0.6829 0.7845

-0.2261 -0.4080 -0.0729
-0.6850 -0.8230 -0.6516
-0.9055 -0.9522 -0.9465
-0.2882 -0.5484 -0.3947
-0.0300 -0.2715 -0.1664
-0.5290 -0.5681 -0.5275

(b) strict-small

Table 3: MSGS results for the models pre-trained on the strict (a) and the strict-small (b) corpora.
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(b) Models pre-trained using the 10M token strict-small corpus

Figure 4: Average SuperGLUE performances as a func-
tion of the number of update steps performed in the
second phase of pre-training.

cases are separated by an underscore. The five lin-
guistic categories (and their combined challenge
tasks) in the BabyLM evaluation framework are
the control raising (CR), lexical content (LC), main
verb (MV), relative token position (RTP) and SC
(syntactic category) classes. The challenge sets are
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(b) Models pre-trained using the 10M token strict-small corpus

Figure 5: Average MSGS performances expressed in
Matthew Correlation Coefficient as a function of the
number of update steps performed in the second phase
of pre-training.

referenced as X_Y, where both X and Y corresponds
to one of the above categories and they indicate the
two categories that are purposefully conflated in
the training, but not in the test set.

The performance of the differently pre-trained
models on MSGS is similar to the previously re-
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(d) Models pre-trained using the 10M token strict-small corpus

Figure 6: Pairwise performance comparison of best performing fully pre-trained models. MLSM+MLM per-
formances are along the y-axis, the x-axis contains the performance of an alternatively pre-trained model. The
fine-tuning performance on the unambiguous control tasks and the challenge tasks are denoted by squares and
circles, respectively. For the task located above the main diagonal line, MLSM+MLM pre-trained models delivered
better fine-tuning performance than the alternatively pre-trained model. The error bars correspond to the standard
deviations of the Matthew Correlation Coefficient evaluation scores calculated over four experiments.

ported BLiMP and (Super)GLUE evaluations, i.e.,
MLSM+MLM pre-trained models perform well
not only at the end of pre-training, but also across
all the intermediate checkpoints as illustrated by
Figure 5. The added value of MLSM+MLM pre-
training is the most pronounced when the number
of additional update steps is low. For the MSGS
evaluation, we can see the largest average perfor-
mance gain of MLSM+MLM when pre-training
was conducted over the 10 million token strict-
small training corpus (Figure 5b). The performance
gains are already apparent (and actually the most
pronounced) after performing only 16000 addi-
tional training steps.

Figure 6 contains scatter plots in which the
MSGS fine-tuning performance of the best per-
forming pre-trained models can be assessed on the
individual tasks. The further a marker above the

dashed diagonal line, the larger added value the use
of the MLSM+MLM pre-trained model had over an
alternatively pre-trained model for the given task.
In case a point is located under the main diagonal,
MLSM+MLM pre-trained model performed worse
than a differently pre-trained model. The majority
of the points are located above the diagonal line
in each subplot, often by a large margin, confirm-
ing the additional benefits of jointly pre-training
with masked latent semantic modeling and masked
language modeling.

4 Conclusions

Even though MLSM is a cognitively more appeal-
ing pre-training objective than MLM, models ex-
clusively pre-trained with MLSM fail at assigning
reliable pseudo-log-likelihood scores to sequences
(§3.3.1). To this end, we experimented with the
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coupled use of MLSM loss and the traditional
MLM objective.

Our empirical results suggest that the joint use
of masked latent semantic modeling and traditional
masked language modeling can boost the perfor-
mance of the pre-trained language models. This is
especially the case for tasks that directly assess the
linguistic capabilities of the pre-trained models that
were obtained by relying on limited corpus size, i.e.,
the 10 million token strict-small dataset. Our abla-
tion experiments also revealed that the advantages
of MLSM pre-training are more pronounced during
the earlier phase of pre-training.
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