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Abstract

Taking inspiration from human children learn-
ing, we pose a question: can a “baby language
model” gradually internalize a concept by ex-
posing itself to the concept in unlimited, often-
times irrelevant contexts, and what this means
to limited pretraining resource (both data-wise
and GPU-wise).

Throughout the study, we restrict our experi-
ments to two data-limited settings, 10M and
100M tokens, which are respectively 1/3000
and 1/300 to what were available to the train-
ing of RoBERTa. Our best performing training
recipe performs within 1.2% of RoBERTa, and
on-par with BERT, on the BLiMP zero-shot
linguistic knowledge benchmark, using 1/300
RoBERTa’s pretraining data and can be trained
on only 1 GPU in 4 days, trained for only 1
epoch.

1 Introduction

In recent years, the success of pretrained language
models has relied on scaling up both parameter
counts and the size of the datasets that models
are exposed to, in order to improve performance.
According to (Warstadt et al., 2023), the number
of words that the modestly-sized language model,
Chinchilla (Hoffmann et al., 2022) goes through
(1.4 trillion words), is equivalent to over 10000
words for every one word a 13-year-old child has
heard in their entire life.

In this work, we take a contextualization per-
spective to rethink, why can a human child build
up their understanding of the world with an expo-
sure to merely 2M-7M words per year (Gilkerson
et al., 2017), and without largely changing the cur-
rent pretraining techniques, how can we facilitate
the learning of a language model to imitate such
behaviors to the greatest extent.

With many nuanced experimental findings, our
main findings can be summarized analogically as
one trick:

“Learning to solve math problems in a history
class”.

Metaphorically, exposing a language model to
datasets of different domains is like sending a kid
to a kindergarden that teaches classes of diverse
content. Taking the learning of math as an example,
a child does not only do math in a math class, nor
is their math capability only aroused when they
see a math test paper. They do math in a math
class, at home, and during playing time. If a child
is good at math in a math class, they theoretically
should be able to demonstrate their math abilities
any time when presented with a real-life scenario
that requires these skills.

We argue that such ability should also apply
to language models, and find that, exposing a
language model to knowledges of a domain sur-
rounded by knowledges of that same domain, poses
a “contextualization trap”. This induces over-
fitting to contexts, over-attendance to spuriously
relevant tokens, and thus under-exploitation of se-
mantics signals in the limited data available.

In fact, if a language model can recover masked
Wikipedia texts surrounded by Wikipedia texts, it
should be no worse at recovering them when it is
“watching” cartoons.

We find that, designing training recipes solely
based on this inspiration largely improves pretrain-
ing performance, enabling a baby language model
to achieve similar performance to RoBERTa on
zero-shot linguistic knowledge tasks, and competi-
tive SuperGLUE performance, with less than 1/300
of its pretraining data.

2 Method: Contextualizer

To exploit the limited data available, we propose
Contextualizer, a framework to create more (the-
oretically unlimited) contexts that a fixed input is
surrounded by.
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(4a) Context-fixed Padding:
Shuffle the padded (3) and
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(3) Noisy padding:
First Portion

(4b) Context-augmented Padding:
Shuffle unpadded (1) then re-pad

(1) Original Inputs

Math History Politics Physics Break (Padding Tokens)

Figure 1: Concept of Contextualizer. Assume we build a training set with four datasets of different domains (say
math, history, politics, and physics), each with one input. Clean Padding splits every input to different chunks, then
pads the end of each input with padding tokens, and does not allow mixing components of different inputs to a same
chunk. Noisy Padding, on the other hand, allows different inputs to be padded to the same chunk. Context-fixed
Padding simply takes the chunks padded by Noisy Padding and does a round of shuffling. Context-augmented
Padding shuffles the original inputs every time and re-pads them, allowing original inputs to be truncated at diverse
positions and joint with different contexts. In our best training configuration, we do (4b) 40 times.

2.1 Recipes

We have designed two recipes to facilitate
Contextualizer. 1) Contextclean. Aligning with
the process of children learning, one would expect
that teaching a concept to a baby for the first time re-
quires exposing them to the concept in a "clean con-
text", i.e., the context that the concept’s supposed
to be in. 2) Contextnoisy. After a model/baby
has attained certain level of knowledge, we con-
sider augmenting this knowledge by practicing the
knowledge in different contexts. As a further intu-
itive example, after a baby has remembered a quote
from some cartoon character, they can repeat this
sentence in a standalone manner in any context,
and this does not require locating this sentence in a
context with (max sequence length - quote length)
of relevant cartoon dialogues any more.

Apart from intuitions from children learning,
the spirit of the recipes has also seen its empiri-
cal ground in previous research. For one, research
on shortcut learning (Geirhos et al., 2020) has at-
tributed vulnerability of a model’s prediction partly
to its overfitting towards spurious correlation. Tak-
ing Tweet toxicity classification as an example, a

model can easily learn its over-reliance on @ as
an indicator for toxicity, because of the frequent
appearance of @user in toxic tweets. Such vulner-
ability has hindered a real understanding towards
the semantics of a large amount of tokens. Our con-
textualization method has largely removed learning
shortcuts, by truncating complete inputs at diverse
positions, making tokens in the input unseen from
one another from time to time, while co-occurring
with unlimited contexts from other inputs (be them
relevant or irrelevant). This improves the model’s
robustness against irrelevant noise, while training
its intra-input attentions to be activated by real rel-
evant tokens.

2.2 Implementation Details

As discussed, we process data into Contextclean

and Contextnoisy on a high level. However, un-
der the category of Contextnoisy, we have de-
signed three settings, namely, Noisy Padding, fol-
lowed by either Context-fixed Padding and Context-
augmented Padding (Figure 1). As we will show
in later experiments, these techniques show large
behavioral and performance gap.
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Contextclean The concept of Contextclean is
very straightforward and only facilitated by one
setting: Clean Padding (Figure 1). Taking the orig-
inal inputs, Clean Padding truncates and allocates
each original input to different chunks, and extends
each input with [pad] tokens, if the last portion of
the input is shorter than the max chunk length by
itself.

Contextnoisy Contextnoisy, on the other hand, is
facilitated by three settings. As opposed to Clean
Padding, techniques in Contextnoisy allow text
from different original inputs to appear in a same
chunk. 1) "Noisy Padding: First Portion" is used
to create the first portion of noisy training set, in a
dataset curriculum order (will be discussed later).
In this setting, datasets are first concatenated in
a pre-defined easy-to-difficult order. At the end
of each input, the next input will follow immedi-
ately, instead of starting a new chunk. 2) Later
portions of the training set are created by two op-
tions: 2a) Context-fixed Padding directly takes
the first portion created by noisy padding, and shuf-
fles them on a chunk level. This will only enable
different chunks to appear in different batches in
later training, but will not re-pad different contexts
in a same chunk. In other words, content in a
chunk always stays the same, but is just shuffled
to different indexes in the training set portion. 2b)
Context-augmented Padding is the most noisy
setting (and most beneficial, as will be shown). At
each operation, it shuffles the original input order
again, and conducts Noisy Padding. In other words,
Context-augmented Padding is in essence Noisy
Padding without the dataset curriculum scheme.
Using Context-augmented Padding, we can theoret-
ically create n! training data examples by exhaust-
ing the order permutation of the original inputs,
where n is the number of original inputs. As we
will show, this technique leads to the most perfor-
mance gain, by allowing the model/baby to revisit
the same knowledge in many contexts, with dif-
ferent amounts of clean context available, and to
develop different ‘perspectives’ to understand the
same knowledge.

Datasets Our 10M and 100M datasets come
from the two tracks of the BabyLM Challenge
(Warstadt et al., 2023), including data sam-
pled from CHILDES, Switchboard, OpenSubtitles,
BNC, QED, CBT, Children Stories, Gutenberg,
Simple Wikipedia, and Wikipedia, covering chil-

dren speech, transcribed text, children stories, and
Wikipedia data. In order to further imitate human
learning, we apply a rough dataset-level curricu-
lum for clean padding and the first portion of noisy
padding, by manually arranging the order of im-
porting the 10 datasets.

Notably, we did not apply any annotations or or-
dering to input-level data, but only arranged the
training set at the dataset level following com-
monsense understanding (such as children speech
datasets at the beginning, followed by children sto-
ries, and lastly Wikipedia datasets), further con-
firmed by manual inspection of linguistic statistics.

We leverage the TCT toolkit (Simig et al., 2022)
to generate these statistics. For every dataset, we
first compute the statistics on sentence level-inputs,
and then average all outputs on the dataset level.
As a further note, sentence-level statistics are just
used to compute dataset-level statistics to roughly
confirm our dataset order, and none of these statis-
tics provides signals to the training inputs in
any form. Also, there is no evidence that apply-
ing dataset-level curriculum in the first portion is
useful to our method, but we would like to provide
a starting point for future studies to combine our
method with more human-like data orders.

Table 1 presents statistics of four of the repre-
sentative properties: Age of Acquisition (Mean),
Age of Acquisition (Max), Flesch Reading Ease,
and Flesch-Kincaid Grade Level. We also ran com-
putations on Word per Sentence, Average Word
Length - syllables, Average Word Length - letters,
type-token ratio computed over all words, lexical
diversity, mean meaningfulness, etc. We find that,
albeit we cannot find a dataset order that makes
all linguistic statistics monotonically decrease or
increase, statistics computed on all linguistic prop-
erties display a strong correlation. These statistics
also align with one’s common sense.

Following these inspections, the final data or-
der is determined to be: CHILDES, Switchboard,
OpenSubtitles, BNC, QED, CBT, Children Stories,
Gutenberg, Simple Wikipedia, and Wikipedia. For
Contextclean and the first portion of Contextnoisy,
all datasets are concatenated in this order before
processing. They are then shuffled before creating
later portions of Contextnoisy.

2.3 Other technical Details

Tokenizer For 10M and 100M settings, we train
separate BPE tokenizers (Sennrich et al., 2016)
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CHILDES Switchboard OpenSub. BNC QED CBT Child.
Stories Gutenberg Sim.

Wiki. Wiki.

Age of Acquisition (Mean) 4.38 4.69 4.76 4.72 5.01 4.89 4.84 5.49 5.84 5.79
Age of Acquisition (Max) 5.43 6.80 6.66 6.94 7.88 8.62 9.58 9.38 9.99 11.37
Flesch Reading Ease 105.41 101.19 94.83 96.88 85.61 84.51 83.00 79.07 58.51 62.68
Flesch-Kincaid Grade Level -0.28 1.03 1.53 2.15 3.86 6.19 6.80 4.35 7.67 9.30

Table 1: Dataset-level statistics of selected linguistic features, computed with TCT toolkit (Simig et al., 2022).
These statistics align well with common sense, and confirm our manual dataset order.

from scratch with a fixed vocabulary size of 50k,
in line with the original RoBERTa. We find that a
vocabulary size of 10k and 30k degrades the perfor-
mance of most BLiMP tasks (except on Irregular
Forms, noticeably) in inital experiments with 10M
datasets.

Arch./Size/Init. We use the architecture and pa-
rameter size of RoBERTa-base (Liu et al., 2019),
and initialize the models with random weights.

Training Cost We fix the computation cost for
models under the same track to be roughly the
same. For 10M track, every model takes around
6-8 hours on a single RTX 3090; and for 100M
track, every model takes around 3-4 days. The only
factor that brings this around 10% - 20% training
time difference is whether we add a round or two
of Contextclean before or after the training with
Contextnoisy. We will explain how we decide the
computation cost in experiment setting section.

Chunk Length For 10M track, we set the max
sequence length of each padded input to be 64
(i.e., max length of input chunks), and for 100M
track, we set it to 128. We find that a max chunk
length of 128 degrades the performance of mod-
els trained on 10M corpus on BLiMP tasks. No-
tably, in initial tokenization before post-processing
with Contextualizer, we do not impose any
max sequence length, and keep every token avail-
able before context augmentation padding with
Contextualizer, i.e., the “max sequence length”
only applies to padding complete inputs to chunks.

We hypothesize that there exists a training
stability-oriented scaling law between corpus size
and max sequence length to be padded to, due to
the difficulty of learning robust long-range depen-
dencies with limited amount of training examples.

Training Objectives We stick to MLM objective
with 15% masking rate, and use dynamic masking
(Liu et al., 2019). For all stratigies we use, we
conduct random masking on the tokenized inputs
on the fly (in training loop instead of before).

Interestingly, in initial experiments, we find that
using reconstruction loss instead of MLM loss im-
proves performance of checkpoints in early phase
of training, and the isotropy of the embeddings
encoded (Xiao et al., 2023) (also better zero-shot
performance on sts-b). However, the gap could be
bridged in later training. We leave further explo-
ration of this phenomenon for future work.

We have also tried combining mlm loss and un-
supervised contrastive loss (Gao et al., 2021b), and
find unstable improvements (better on tasks related
to representation - such as QQP and NLI tasks, and
opposite otherwise). We have also tried masking
rate curriculum and contrastive loss weighting cur-
riculum, and find unstable improvements as well.

Therefore, we decide to only use a MLM loss
with a static masking rate to focus on the study of
contextualization.

Other Dataset Pre-processing We include a few
extra pre-processing steps for all experiments. For
Contextclean, we filter all original tokenized inputs
that have only 2 tokens ([cls] and [sep] tokens) to
make sure that the processed chunks later are not
empty strings with only [cls], [sep] and the rest
being all [pad] tokens. For Contextnoisy, we only
keep original tokenized inputs with at least 5 tokens
before conducting noisy padding. This is because
inputs with too few tokens are not self-contained.
For instance, predicting “[cls] Hello! [sep]” with
“hello” masked would only provide signals for the
model’s prediction to converge to token frequency-
based probability distribution of the corpus (Chang
and Bergen, 2022), and it is not useful for our noisy-
context strategy. In terms of the datasets, we find
that the Gutenberg dataset provided officially by
BabyLM contains nextline splits in every paragraph
once each line reaches certain length, and it is not
ideal - because after tokenization, this would give
unwanted [sep] tokens within a complete sentence
that is not supposed to be split. Thus, we remove
all nextline splits within same paragraphs. We find
performance gains in initial experiments for all pre-
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Task→
Model ↓

Anaph.
Agr.

Agr.
Struct. Bndg. Ctrl./

Raise.
D-N
Agr. Ell. F-G.

Irreg.
Forms

Island
Effects

NPI
Lic. Qnts. S-V

Agr.
Main
Avg.

Baseline 89.50 71.30 71.00 67.10 93.10 83.80 68.00 89.60 54.50 66.30 70.30 76.20 75.06
1-40 n (ours) 96.01 78.84 76.68 74.52 96.45 91.97 76.13 90.48 70.67 71.99 65.20 83.41 81.03
40-1 n (ours) 97.49* 79.58 79.98* 78.26 96.80 92.73** 83.94* 94.50* 78.18 81.22 73.31** 90.35 85.53
40-1 cnc (ours) 97.55* 80.15* 77.06 80.11 96.57 92.26** 84.97* 90.53 80.12** 83.71* 73.80** 89.63 85.54
BERT 97.03 79.62 81.23 81.02 96.83 89.03 81.85 94.30 79.56 84.97 69.91 91.80 85.60
RoBERTa 97.70 83.04 79.21 81.90 97.28 92.15 89.39 95.67 79.67 82.58 70.40 91.47 86.70

Table 2: BLiMP Results of 100M recipes. Bold Numbers represent the best performance among our training
recipes. Underlined Numbers represent second best. * denotes that the performance outperforms either BERT or
RoBERTa. ** denotes that the performance outperforms both BERT and RoBERTa. Notably, our performances on
Ellipsis, Island Effects, and Quantifiers outperform both BERT and RoBERTa, using respectively under 1/40 and
1/300 of their training data.

processing steps stated above.

Experiment Settings We conduct experiments
with combinations of the above described
Contextualizer data processing settings.

As stated, we fix the computation cost of exper-
iments in the same track to be roughly the same.
The exact cost is decided to align with the epoch
number used in RoBERTa. We calculated that
RoBERTa was roughly trained for 40 epochs on
their training set. Therefore, for the noisy training
set created by Context-fixed Padding, we train the
model for 40 epochs (in result tables, we call this
setting “1-40”). Then to align with this computa-
tion cost for context-augmented experiments, we
perform Context-augmented Padding for 39 times
on top of Noisy Padding first portion, creating a
noisy training set 40 times larger than the context-
fixed training set, and train it for only 1 epoch (we
refer to this as "40-1" in result tables). Further-
more, we consider adding a round or two of Clean
Padding data before or after the noisy data. This
typically brings around 10% to 20% computation
cost difference, since clean padding data has more
examples (For instance, if we have 10 original in-
puts, each with 10 tokens, they could fit in one
single chunk using Noisy Padding under a max
chunk length of 128, but would create 10 chunks,
using Clean Padding).

Concretely, “1-40 n” in result tables means: we
train the model only on 1 portion of noisy data
for 40 epochs. This is achieved by doing Noisy
Padding to create one portion of data, and just shuf-
fle this portion in the rest of the 39 epochs (essen-
tially 39 times of “context-fixed padding”). On
the other hand, "40-1 n" means that we create the
first portion of data, and create 39 more portions
with context-augmented padding, training on this
40-times larger training set for 1 epoch. “c” in the

result tables denotes the number of clean data con-
catenated before and after noisy data. For instance,
“1-40 ccn” denotes first training on clean data twice,
then 1 portion of noisy data for 40 epochs.

3 Results

We evaluate our models on BLiMP, SuperGLUE
and MSGS tasks (Warstadt et al., 2020a; Wang
et al., 2019; Warstadt et al., 2020b; Gao et al.,
2021a). Notably, we use the versions processed
by BabyLM, where each word has appeared in the
10M training set at least twice.

3.1 BLiMP Results

100M Track For the 100M track (Table 2), we
can clearly see the benefits brought by Context-
augmented Padding (40-1 n), outperforming its
Context-fixed Padding counterpart (1-40 n) by a
large margin on the zero-shot BLiMP benchmark,
and outperforming BabyLM official baseline for
over 10 absolute percentage points. The model
trained with Context-augmented Padding outper-
forms Context-fixed Padding on all BLiMP tasks,
showing no trade-offs in introducing more noise
from mixing contexts in the same inputs in the
100M setting.

Adding a round of clean data before and after
noisy data (40-1 cnc) improves tasks like Agree-
ment Structure, Control/Raising, Island Effects,
and NPI Licensing, but degrades the model’s perfor-
mance largely on Irregular Forms, leading to only
a small gain on average performance of all tasks.
We hypothesize that there might exist a better data
shuffling strategy when combining noisy and clean
data, such as doing another round of training set-
level shuffling after concatenating clean and noisy
data. We leave this for future work.

Notably, our best performing models are on-
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Model CoLA SST-2 MRPC QQP MNLI MNLI-mm QNLI RTE BoolQ MuiltiRC WSC Main Avg.

Strict-Small (10M Track)

Baseline 25.80 87.00 79.20 73.70 73.20 74.00 77.00 61.60 66.30 61.40 61.40 67.33
1-40 cnc (Ours) 38.70 89.76 79.55 84.19 73.61 74.89 83.01 52.53 66.39 61.23 61.45 69.58

Strict (100M Track)

Baseline 45.30 88.60 80.50 78.50 68.70 78.00 82.30 51.50 59.90 61.30 61.40 68.73
40-1 cnc (Ours) 56.09 90.55 83.74 85.63 77.92 78.36 83.60 53.54 68.46 64.40 59.04 72.85

Model CR LC MV RP SC CR-LC CR-RTP MV-LC MV-RTP SC-LC SC-RP Main Avg.

Strict-Small (10M Track)

Baseline 43.10 100.0 97.70 76.70 86.20 -28.30 -77.70 -99.30 -79.40 16.30 -45.00 8.21
1-40 cnc (Ours) 75.68 100.00 99.93 99.96 85.67 -46.28 -89.12 -100.00 -62.37 13.40 -37.24 12.69

Strict (100M Track)

Baseline 74.7 100.0 99.9 100.0 59.2 -89.0 -91.2 -99.8 -15.3 -57.7 -39.2 3.78
40-1 cnc (Ours) 96.48 100.00 100.00 100.00 96.68 88.03 71.76 -32.02 30.91 21.97 -35.93 57.99

Table 3: SuperGLUE and MSGS results for 10M track and 100M track, comparing our selected models and
baselines. Except CoLA (MCC), MRPC (F1) and QQP (F1), all other scores are Accuracy.

par with BERT, and is within a 1.2% gap with
RoBERTa, using 1/40 and 1/300 of their train-
ing data respectively. This validates that, us-
ing Context-augmented Padding, we can create
more pseudo-data that behaves closely like the real
data. In our case, by running Context-augmented
Padding 39 times, we actually create a 4B-token
dataset using the 100M-token dataset. This is on-
par with the training set with BERT, and actually
gives us a model that behaves on-par with BERT
on BLiMP. Given enough compute resource, we
would expect running the augmentation 299 times
would give us a model that performs more on-par
with RoBERTa.

10M Track We find that, the best strategy for
10M deviates from the best strategy for 100M.
We suggest this is because Context-Augmented
padding dilutes the impact of informative datasets
such as Wikipedia with noise (children mum-
bling, onomatopoeia data) from datasets such as
CHILDES. Therefore, the decision for the optimal
10M strategy has been more difficult and nuanced.
We leave the full 10M BLiMP results of 7 strate-
gies that we have explored in Appendix A, and
only present the SuperGLUE and MSGS results for
one representative strategy (1-40 cnc, created by
Context-fixed Padding) in the next section.

3.2 SuperGLUE and MSGS Results

Table 3 presents the results of SuperGLUE and
MSGS tasks. Due to compute constraints, we
only compare one of our models in each track
with the BabyLM baselines. Our hyperparameter
search space only concerns learning rate and batch

size, with the rest of hyperparameters following
BabyLM’s offical repo. With limited compute re-
source (evaluating all fine-tuning tasks once takes
around 13-15 hours on 2 RTX 3090s), we have only
explored the combinations of {5e−5, 64}, {3e−5,
32} and {2e− 5, 16}, instead of exhaustive permu-
tations of them. This follows the empirical intuition
that, smaller batch sizes lead to more unstable opti-
mization, and should be paired with small learning
rates. We find that smaller learning rates and batch
sizes generally work better for small datasets like
CoLA, MultiRC and RTE.

For 100M track, our model outperforms baseline
models on all SuperGLUE and MSGS tasks. On av-
erage, our model outperforms baselines by 4.1 and
54.2 absolute percentage points on SuperGLUE
and MSGS respectively.

For 10M track, our methods also provide com-
petitive results, outperforming baselines by 2.3 and
4.5 absolute percentage points on SuperGLUE and
MSGS respectively.

This again confirms the universal effectiveness
of our recipe pool, and also provides support for
our hypothesis when evaluating BLiMP that, 10M
datasets seem to work less well with our method
compared to 100M dataset, because of the less self-
contained original inputs provided by informative
datasets like Wikipedia.

3.3 BabyLM challenge

The resultant models are submitted as part of
the BabyLM challenge. Considering all results,
we submitted the 1-40 cnc model for 10M track,
and 40-1 cnc model for 100M track, and named
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Tasks →
Models ↓ BLiMP BLiMP-sup SuperGLUE MSGS Weighted Avg.

Contextualizer-RoBERTa-base-10M-v1 79.24 62.30 69.58 12.69 60.54
Contextualizer-RoBERTa-base-100 85.54 63.35 72.85 57.99 72.96

Table 4: Results on Dynabench Leaderboard. Notably, the BabyLM official evaluation has further included 5
BLiMP supplementary tasks, denoted as BLiMP-sup here.

them Contextualizer-RoBERTa-base-10M-v11

and Contextualizer-RoBERTa-base-100M2.
Table 4 presents the official BabyLM Challenge

results of our two models on the Dynabench Leader-
board.

4 Inner-workings Analysis

As simple as learning the same things repeatedly
in different, oftentimes irrelevant contexts is, our
method achieves surprising results without chang-
ing other technical details. It is a natural question
to wonder how the method has facilitated better
learning.

As partly discussed in the Recipe section, we hy-
pothesize that the inner-working of this method is
largely relevant to mitigating shortcut learning, and
spurious correlation. For instance, if the same data
keeps being displayed to the models throughout
all epochs, the model might tend to overfit to the
co-occurrence of words in certain inputs, or even
simply remember the sequence.

For instance, without our method, if a padded
input “[cls] Figure 1 is an example figure for the
concept. [cls] This is a completely irrelevant sen-
tence.” is seen by the model 40 times, the model
might incorrectly learn a rule that “example” is two
tokens before “for”, or even depends on “irrelevant”
in the irrelevant chunk padded to the same input,
due to stochasticity in optimization, instead of re-
lying “example” on the information in “Figure 1”
and “for the concept”.

By contrast, our method makes sure 1) an input
is padded with a different input in every portion,
so it will not be padded with the same “This is
a completely random sentence.” and seen by the
model multiple times. This way, the model learns
to focus attention within one document, instead of
“peeking” tokens in other text chunks that happen
to be padded into the same input with them. 2) an
input is cropped at different positions in different
portions of the data, making sure the model utilize

1Dynabench ID: 1450
2Dynabench ID: 1343

information in a flexible way, instead of building
over-reliance on certain shortcuts. As an example,
in one portion, it might be "an example figure for
the concept. [cls] sentences from dataset 1"; and
in a different portion, it might be "sentences from
dataset 5 [cls] Figure 1 is an example".

We have conducted a proof-of-concept exper-
iment to support this hypothesis. We take the
100M 1-40 n and 40-1 n models respectively. Note
that the 1-40n model sees the same padded inputs
40 times, and is theoretically prone to shortcut
learning; while the 40-1 n model is expected to
learn more actual dependencies among tokens, as
it keeps seeing the different combinations of in-
puts. Note that they are both trained with 15%
masking probability. We take the padded training
set that is exposed to the 1-40 model, and mask
{50%, 85%, 95%} tokens in every input respec-
tively, we then compare the mlm loss produced
by both models. Masking more than 50% of to-
kens should have already made most documents
lose its semantics. If the mlm loss produced by
1-40 n model is much lower than 40-1 n model, we
can conclude that, it presents certain levels of over-
fitting and shortcut learning, shown by its ability to
recover more tokens, with very broken evidence.

Mask Prob.→
Model ↓ 50% 85% 95%

1-40 n 2.20 4.53 6.23
40-1 n 2.67 4.69 5.81

Table 5: Memory Analysis. Both models are trained
with 15% mask probability. We get the mlm losses with
different mask probabilities on data exposed to 1-40 n
model in training.

As Table 5 shows, this pattern clearly holds. For
50% and 85%, 1-40n model produces much lower
mlm losses, showing its imposed memory on the
corpus.

However, when the masking rate is increased
to 95%, the 40-1 n model produces a lower loss.
We speculate that this is because with 95% tokens
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masked (leaving around 6 tokens in every 128-
token input), the documents are extremely broken,
and knowledge about basic grammar depending on
these ∼ 6 tokens are beneficial to recover parts
of the tokens. Therefore, 40-1 n shows its robust
grammar understanding towards more ubiquitous
grammar phenomena.

5 Discussions

Due to limited time and compute resources, we
position this work as a humble first step in studying
contextualization as a data augmentation method
for more human-like learning. We have proved the
effectiveness of this context augmentation frame-
work with its strong zero-shot linguistic knowledge
performance gain, and leave design of other de-
tails such as the optimal way to tokenize, process
and train the [cls] token for better performance on
downstream fine-tuning tasks, as future work.

Moreover, while this work is largely restricted
to studying pretraining of encoder models because
of limited compute resources, we envision that the
general findings are transferable to, or at least worth
attention in several settings, including:

1) Multilingual Models. In the training of multi-
lingual models, does practicing multiple languages
in the same input chunk improve performance not
only in code-switching scenarios, but also reflect
in all languages individually? Does this perfor-
mance manifest differently in low-resource lan-
guages, than in high-resource languages?

2) Generative LLMs. Does doing multiple in-
structions at the same time not only improve a
LLM’s multi-tasking abilities, but also improve
abilities of individual tasks? How will this affect
hallucinations?

Limitations

As discussed, our work is restricted to the study
of encoder models. However, we envision cer-
tain transferability of our conclusions to encoder-
decoder models and decoder-only models, and
leave these for future work.

Moreover, again due to compute constraints, we
have not been able to study the scaling law between
model size and the number of times to augment the
data with our Context-augmented Padding opera-
tion. We envision this to be very interesting, and
SOTA-result-promising, as discussed in § 3.1.
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A 10M BLiMP results

The decision for which strategy to use for 10M
track has been more nuanced and difficult. As
shown in Table 6, we could see that Context-
augmented Padding models (40-1) still outperform
their Context-fixed Padding counterparts (1-40).
However, this gap is not as large as the results in
100M, which as we discussed in main sections,
is probably because of that, there exists much
less self-contained data to resist against the noise
brought by less semantic data (like children mum-
bling).

As shown in Table 2, using pure noisy data (en-
tries with only "n" but no "c"), Context-augmented
Padding (40-1 n) still outperforms Context-fixed
Padding (1-40 n). However, when combining Clean
Padding data, it seems to be detrimental to Context-
augmented Padding data, while is consistently con-
tributing to Context-fixed Padding data. We hy-
pothesize that, mixing Clean data and Noisy data
in essence is a context-augmenting operation itself.
And as we discussed, for 10M track, a moderate
amount of noisy context, instead of too much, is
better.

We have also run some experiments on fine-
tuning tasks on all model entries, and decided to use
"1-40 cnc" for our final submission. Even though
"40-1 n" provides the best BLiMP scores, it seems
to rely on tasks with unstable behaviours such as
irregular forms and quantifiers.
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Task→
Model ↓

Anaph.
Agr.

Agr.
Struct. Bndg. Ctrl./

Raise.
D-N
Agr. Ell. F-G.

Irreg.
Forms

Island
Effects

NPI
Lic. Qnts. S-V

Agr.
Main
Avg.

Baseline 81.50 67.10 67.30 67.90 90.80 76.40 63.50 87.40 39.90 55.90 70.50 65.40 69.47
1-40 n 90.18 74.73 69.07 71.90 94.59 86.49 72.74 88.40 59.60 67.70 69.45 84.17 77.42
1-40 cn 91.62 76.13 69.83 71.23 94.51 89.03 77.30 82.29 58.67 67.04 72.21 83.96 77.82
40-1 n 92.02 76.02 70.66 73.07 95.66 82.39 77.48 93.13 61.47 66.75 81.43 85.56 79.64
40-1 cn 93.15 76.33 70.73 73.93 96.96 82.91 77.90 87.74 63.23 66.50 77.77 87.35 79.54
40-1 ccn 92.38 77.30 70.97 74.61 95.48 82.56 78.20 86.77 62.03 62.92 71.90 87.05 78.51
1-40 cnc 92.79 76.33 71.64 72.56 95.65 89.15 75 4.99 87.63 61.47 69.78 72.46 86.43 79.24
40-1 cnc 94.12 74.48 67.60 71.45 95.12 82.79 76.38 91.55 58.67 74.05 82.17 83.34 79.31

Table 6: BLiMP Results of 10M recipes. Clearly, while all of our strategies outperform the baseline by a large
margin, results are more nuanced and it is not that straightforward to see which strategy is the best.
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