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Abstract

Customer feedback is invaluable to companies
as they refine their products. Monitoring cus-
tomer feedback can be automated with As-
pect Level Sentiment Classification (ALSC)
which allows analyzing specific aspects of the
products in reviews. Large Language Models
(LLMs) are the heart of many state-of-the-art
ALSC solutions, but they perform poorly in
some scenarios requiring Coreference Resolu-
tion (CR). In this work, we propose a frame-
work to improve an LLM’s performance on
CR-containing reviews by fine-tuning on highly
inferential tasks. We show that the perfor-
mance improvement is likely attributed to the
improved model CR ability. We release a new
dataset1 that focuses on CR in ALSC, and share
code2 for the experiments.

1 Introduction

To understand an end user’s perspective on a prod-
uct, it is common to consider reviews on online
platforms. A company can look for the customers’
perspective on a certain aspect of the product. For
instance, a laptop company might look for reviews
concerning "battery." Aspect Level Sentiment Clas-
sification (ALSC) analyzes reviews for sentiments
of specific aspects, like the "battery" aspect in ear-
lier example (Yan et al., 2021). ALSC is a sub-task
of a wider body of work called Aspect Based Sen-
timent Analysis (ABSA) (Liu, 2012), which aims
to extract aspects and their associated sentiments.
State-of-the-art ALSC solutions often use Large
Language Models (LLMs) (Zhang et al., 2022).

Reviews often use pronouns, which can make
coreference resolution (CR) in LLMs necessary
to infer the sentiment associated with the aspect.
Hence, LLMs used for ALSC need strong CR abil-
ity, and can fail otherwise. For instance, the sen-

1https://borealisdata.ca/dataset.xhtml?
persistentId=doi:10.5683/SP3/HSKJEY

2https://github.com/dhruvmullick/absa-cs

Table 1: Cases where the T5 ALSC model fails due to
its poor coreference resolution ability.

Sentence Aspect Sentiment Polarity
Predicted Gold

He ate food at the restau-
rant, it was deserted

restaurant neutral negative
food negative neutral

He ate food at the restau-
rant, it was dark

restaurant neutral negative
food negative neutral

tence - "He ate food at the restaurant, it was de-
serted." requires the LLM to understand that the
definite pronoun "it" refers to the "restaurant" (an-
tecedent), because of the context ("deserted"). Ta-
ble 1 shows four examples where the state-of-the-
art T5 ALSC model (Zhang et al., 2021) fails due
to its poor CR ability. We find that ~15% of this T5
model’s errors are on cases requiring CR ability.

LLMs are also known to have performance and
stability issues (Phang et al., 2018). To remedy
these, instead of directly training on the task of in-
terest (target task), it can be beneficial to first train
on an auxiliary task (Pruksachatkun et al., 2020).
Certain auxiliary tasks can contribute to both im-
proved performance and stability of the target task
(Phang et al., 2018). Using auxiliary training, our
work shows a way to improve an LLM’s perfor-
mance on English ALSC reviews requiring CR.

In our work, we: a) show that an LLM trained
for ALSC makes more errors when evaluated only
on reviews requiring CR ability, compared to when
handling typical ALSC reviews (8.7% mean F1);
b) demonstrate that our framework for handling
CR-containing reviews can improve ALSC model’s
CR ability (16% mean F1); c) show that this im-
proved CR ability can improve ALSC performance
for reviews requiring CR ability (5% mean F1).
d) release annotated variants of existing datasets
which can be used to benchmark a model’s ALSC
performance on CR cases.

https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/HSKJEY
https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/HSKJEY
https://github.com/dhruvmullick/absa-cs
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2 Experimental Setup

2.1 Data

Original ALSC Datasets We consider English
ALSC datasets: SemEval Restaurant (Rest16) (Pon-
tiki et al., 2016) and MAMS (Jiang et al., 2019),
both of which contain reviews from a similar restau-
rant domain. Inspired by Yan et al. (2021), ALSC
reviews are processed into an input format suit-
able for our LLM - "[sentence]. aspect: [aspect]".
The ground truth output is "positive", "negative" or
"neutral". For example, "$20 for good sushi cannot
be beaten. aspect: sushi" has the ground truth as
"positive". We clean datasets as per Appendix C.

CR Cases We identify reviews in the Rest16 and
MAMS datasets that contain definite pronouns, and
henceforth call these sentences Pronoun cases.

Limiting ourselves to the ALSC task described
above, we say that a review is a CR case if its senti-
ment requires proper coreference resolution for cor-
rect classification. Specifically, the aspect should
be an antecedent of a definite pronoun which is
associated with a sentiment polarity. For example,
"He ate food at the restaurant, it was deserted." with
aspect: "restaurant" is a CR case. Here, "restau-
rant" is the antecedent of "it" which is associated
with "deserted" and has negative connotations. CR
cases are manually selected from Pronoun cases.

ALSC-CR Dataset Our dataset is composed of
the original ALSC datasets (Rest16 and MAMS).
The testing, however, is done only using CR cases,
and we use a combination of Pronoun and Non-
Pronoun cases for validation and train sets. Table 2
presents the dataset composition. Better perfor-
mance on the test dataset will indicate a superior
ability to handle CR cases in ALSC.

The train, validation and test sets are of similar,
but not identical, distributions. Due to the limited
number of CR cases, it is not possible to have train
and validation sets composed entirely of CR cases.
More details can be found in Appendix D.

2.2 Auxiliary Tasks

We use highly inferential tasks for auxiliary train-
ing in our experiments as they generally provide
higher improvements for various NLP target tasks
(Pruksachatkun et al., 2020). We select two com-
monsense tasks - Commongen (Lin et al., 2020)
and CosmosQA (Huang et al., 2019), as common-
sense reasoning helps with CR (Liu et al., 2017).

SQuAD (Rajpurkar et al., 2016) is selected be-
cause it is a non-commonsense question answering
(QA) task. Its performance is contrasted with Cos-
mosQA, checking if it is the QA or the common-
sense ability which improves CR. Quora Question
Prediction (Wang et al., 2018) (QQP) is selected as
it benefits performance on the Stanford Sentiment
Treebank (SST) task which is similar to ALSC
(Wang et al., 2019). Even if auxiliary tasks aren’t
designed for CR, they can impart CR ability to the
model. For the QA example - “Context: Alice can’t
come. She is old”; “Question: Who is old?”, an-
swer is “Alice”. Answering this requires CR and
teaches the model CR ability.

Commongen is a generative commonsense task
involving sentence generation from a list of con-
cepts (train size = 67,389). It tests: 1) ability to
construct grammatical sentences adhering to com-
monsense; 2) reasoning with unseen concept com-
binations. For example: input - "concepts = [dog,
frisbee, catch]"; output - "A dog leaps to catch a
frisbee."

CosmosQA is a QA task where answering ques-
tions requires commonsense (train size = 25,262).
For each question, there are four options, and the
model should output the correct option number.

SQuAD is an extractive QA task where the cor-
rect answer to the question is present exactly in the
passage (train size = 87,599).

QQP task involves checking if two Quora ques-
tions are semantically equivalent. We cap the train
size at 50,000 to match the other datasets.

3 Experiments and Results

We ran experiments for three purposes: a) to show
there is drop in ALSC performance for reviews re-
quiring CR ability; b) to show we can alleviate this
performance drop by auxiliary fine-tuning; c) to
provide additional evidence that change in perfor-
mance on CR cases is due to improved CR ability.

Inspired by state-of-the-art performance in
Zhang et al. (2021), we used the T5 LLM (Raf-
fel et al., 2019). Our baseline model is a T5 trained
on ALSC-CR, but not fine-tuned on auxiliary tasks.

The T5 model was trained in various settings
using training prompts/input prefixes (Appendix
F). Wording of prompts has limited impact on the
outcome so we did not experiment with the wording
(Raffel et al., 2019). Rather, we relied on prior
work for task prompts (Lin et al., 2020; Lourie
et al., 2021; Raffel et al., 2019). For ALSC and
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Table 2: ALSC-CR composition. Note that CR cases are types of Pronoun cases.

PartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartition SizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSize DatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDataset Data TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData Type
Pronoun Cases Non-Pronoun Cases

MAMS Rest16 CR Cases Non-CR Pronoun Cases
Train 12,434 D D D D D
Validation 889 D D D D D
Test 346 D D D ✗ ✗

Definite Pronoun Resolution (DPR) (Rahman and
Ng, 2012) (Sec. 3.3), we created prompts as we did
not find examples in prior work (see Appendix F).

All experiments were run with at least 10 random
seeds, and Yuen-Welch test was used for testing
statistical significance.

3.1 Model Performance on ALSC Without
Auxiliary Fine Tuning

To check LLM performance on CR cases, we eval-
uated the T5 model on regular ALSC data (ALSC-
Regular), which does not consist solely of CR cases.
ALSC-Regular and ALSC-CR are equal sized and
have an identical proportion of Rest16 and MAMS.
We also evaluated the T5 model on ALSC-CR, to
get the model’s performance solely on CR cases.

By comparing T5 model’s performance on the
two ALSC datasets, we show that unspecialized
LLMs face a significant performance problem
while handling reviews requiring CR ability. Re-
sults are shown in Table 3, where evaluation on
ALSC-CR shows a drop in performance of ~8.7%
mean F1, as well as an increase of 0.6 F1 standard
deviation indicating a poorer model convergence.

Table 3: T5 model evaluated on ALSC datasets. Best
score bolded. Performances on the datasets are statisti-
cally significantly different (p-value=9.03e− 05).

Dataset Mean F1 (± Std. Dev)
ALSC-Regular 79.71 (± 1.99)
ALSC-CR 71.07 (± 2.60)

3.2 Fine Tuning With Auxiliary Tasks

As a solution to poor performance on ALSC-CR
(Section 3.1), we experimented with various auxil-
iary tasks mentioned in Section 2.2.

We trained T5 model on the auxiliary task first to
incorporate auxiliary task knowledge. This model
is then trained and evaluated on ALSC-CR, our tar-
get task. We experimented with different auxiliary
dataset sizes as the size has little correlation with
the target task performance (Wang et al., 2019).

The model’s performance on ALSC-CR with
different auxiliary tasks is compared to baseline
model’s ALSC-CR performance to see if auxil-
iary tasks were beneficial. Results are shown in
Table 4. We find that the lower ALSC-CR perfor-
mance (compared to ALSC-Regular) can be alle-
viated by auxiliary training with Commongen and
QQP, which lead to statistically significant improve-
ments of ~5% mean F1. Auxiliary training with
CosmosQA and SQuAD does not lead to statisti-
cally significant improvement in any case.

Prior work (Pruksachatkun et al., 2020) showed
a general improvement in a model’s target task
performance when fine-tuned with highly inferen-
tial tasks. Apart from being highly inferential, be-
cause Commongen is a generative commonsense
task, it is ideal for imparting commonsense knowl-
edge to a generative LLM like T5. On the other
hand, CosmosQA being a discriminative task is
unlikely to impart as much commonsense knowl-
edge into a generative system (Lin et al., 2020).
As being highly inferential is helpful for target
tasks, the SQuAD extractive QA task, would not
result in as significant an improvement. When used
for auxiliary training, QQP shows a high improve-
ment in the SST target task (Wang et al., 2019)
which involves similar sentiment analysis, explain-
ing QQP’s improved performance on ALSC-CR.

While auxiliary training on DPR appears promis-
ing, its dataset (train size = 1500) is much smaller
than for other tasks. For completeness we did train
using DPR but the mean F1 = 72.77 was not statis-
tically significantly different from the baseline.

Similar to Wang et al. (2019), we do not find cor-
relation between auxiliary task size and target per-
formance. This lack of correlation may be due to
the fact that small datasets might not teach the task
sufficiently (Raffel et al., 2019). On the other hand,
large auxiliary datasets can cause catastrophic for-
getting of the LLM’s original objective (Wang et al.,
2019). This original objective is generally benefi-
cial for target tasks. Despite this lack of correlation,
we have demonstrated a framework for improving
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Table 4: Mean F1 (± Std. Dev) performance on ALSC-CR on different fractions of aux dataset. * denotes statistically
significant difference from baseline. Table’s best scores bolded, 2nd best underlined.

Aux. Task Aux. Dataset Fraction
0.1 0.2 0.5 1.0

Commongen 75.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.72 (± 1.14) * 72.46 (± 2.21) 71.04 (± 3.50) 71.45 (± 1.91)
CosmosQA 71.79 (± 1.55) 71.45 (± 3.02) 72.60 (± 1.85) 73.12 (± 2.15)
SQuAD 72.02 (± 1.88) 72.60 (± 2.07) 71.47 (± 3.24) 72.08 (± 2.25)
QQP 72.49 (± 2.79) 71.85 (± 2.98) 76.10 (± 1.26) * 71.30 (± 2.19)
N/A (Baseline) 71.07 (± 2.60)

any target task’s performance on CR cases.
We show a pronoun error analysis in Appendix E

to better understand the ALSC-CR improvements.

3.3 Evaluating Coreference Ability

Performing well on ALSC-CR requires strong CR
ability, as CR associates the aspect with its senti-
ment. To verify that the improvement in Section 3.2
is attributable to the ALSC model’s improved CR
ability, we estimate the CR ability by evaluating
on DPR. Since we have an ALSC model for each
random seed used for training (Section 3.2), we run
DPR evaluation on the ALSC random seed model
with the highest ALSC-CR val set performance.

DPR involves predicting the antecedent of a
given pronoun. This is precisely the ability re-
quired for good performance on ALSC-CR (which
contains only definite pronoun cases), making DPR
ideal to measure the CR ability of models. Other
CR datasets like OntoNotes (Hovy et al., 2006),
Winograd Schema Challenge (WSC) (Levesque
et al., 2012) and WinoGrande (Sakaguchi et al.,
2021) are not as suitable as DPR because DPR
only focuses on definite pronouns, which is the
ability we are interested in. Similarly, DPR is also
the only CR dataset suitable for auxiliary training,
but the size makes this infeasible as discussed in
Section 3.2.

We use a DPR variant for generative models
where input is of the form: "Humans were afraid
of robots as *they* were strong.", and the objective
is to predict what the highlighted pronoun (*they*)
is referring to (Raffel et al., 2019).

Evaluating ALSC models on DPR (Table 5) con-
firms that the ALSC-CR performance gains may be
attributable to the improved CR ability of the model
due to auxiliary fine-tuning. Experiments show that
Commongen and QQP fine-tuned models show a
drastically improved (and statistically significant)
CR ability of up to ~16%. This explains their im-
proved ALSC-CR performance. Using CosmosQA,
we see a statistically significant ~5% deterioration

in CR ability which does not lead to statistically
significant changes in ALSC-CR performance.

Table 5: CR ability of top performing models (Sec 3.2)
measured using DPR. Statistically significant improve-
ment(*) and deterioration(†) from baseline marked. Best
bolded, 2nd best underlined.

Aux Task Aux Frac. Mean F1 (± Std. Dev)
N/A (Baseline) 0 59.28 (± 8.82)
Commongen 0.1 75.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.77 (± 1.68)*
CosmosQA 1.0 54.55 (± 7.19)†

SQuAD 0.2 62.91 (± 6.77)
QQP 0.5 76.36 (± 2.16)*

4 Related Work

Prior work notes CR to be important to ABSA and
similar tasks (Kobayashi and Malon, 2022; Atkin-
son and Escudero, 2022). Ding and Liu (2010) use
aspect sentiments for performing CR, demonstrat-
ing a correlation between CR and sentiment classi-
fication. De Clercq and Hoste (2020); De Bruyne
et al. (2022) examine CR for detecting aspects from
related reviews or images, for the reviews lacking
explicit aspects. Instead, we consider an LLM’s
intra-sentence CR ability, considering only reviews
with explicit aspects as having an aspect is criti-
cal to ALSC. Mai and Zhang (2020) use CR in
aspect extraction, but only for identifying dupli-
cate references among proposed aspects. Vargh-
ese and Jayasree (2013) use CR to solve their de-
pendency parser’s inability to correctly associate
opinion words with pronouns. In our work, we con-
sider the CR problem in end-to-end state-of-the-art
ALSC LLM models. Chen et al. (2020) improve
BERT LLM’s CR ability for opinion-mining, using
a method relying on external knowledge bases.

5 Conclusion

Since real-world reviews vary widely, we need
ALSC models which can handle various kinds of
reviews, including those requiring CR. Although
LLMs generally perform well on ALSC, our ex-
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periments provide evidence that LLMs can have
poor performance on ALSC reviews requiring CR
ability. We show that this problem can be alleviated
by fine-tuning with certain auxiliary tasks before
fine-tuning on the target tasks. Our framework for
evaluating and improving an LLM’s performance
on CR cases can be applied for other tasks as well.
Such a framework is critical for developing any
model deployed in the real world. In the future,
we will explore if auxiliary training can reduce the
target task training that is needed for CR cases.

Limitations

• Even though we have successfully demon-
strated a framework to handle CR-containing
reviews by using auxiliary fine-tuning, we
have not found which auxiliary tasks to defini-
tively use for target tasks other than ALSC.
The auxiliary task must be found using the
framework proposed in our work.

• Our test set is composed of ~350 manually
identified examples are guaranteed to require
CR ability. However, it is common for ALSC
datasets to be small. The bench-marking
datasets Twitter, Lap14, Rest16 and Rest15
all have ~500-600 aspects for analysis (Zhang
et al., 2019) which is close to our dataset. To
reduce the variability due to a relatively small
test set, we use multiple random seeds for ro-
bustness (Clark et al., 2020).

Due to the specific problem we are targeting,
it is difficult to create more examples than
this using existing sources. During qualita-
tive analysis, we had considered many ALSC
datasets (SemEval datasets, Twitter, MAMS)
but found that the CR problem was most pro-
nounced in the restaurant domain (Rest16,
MAMS). Example: laptop reviews rarely use
explicit aspects (Pontiki et al., 2014), leading
to few CR cases in Lap14 dataset.

• Ours is the first work to demonstrate this CR
problem in language models, thus there are
few benchmarks against which we can com-
pare our solution.

• We use the T5-large LLM for our experiments
which requires a significant amount of compu-
tational resources for training. This leads to a
high cost both financially and environmentally
(Strubell et al., 2019).
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A Hyperparameters

Learning rates for both auxiliary fine-tuning and
ALSC training steps are picked from {5e− 4, 1e−
4, 5e−5} and {1e−3, 5e−4, 1e−4} respectively,
after running for three random seeds and selecting
the rates giving max F1 score for their respective
validation dataset. For auxiliary fine-tuning, the
learning rates for all auxiliary tasks were found to
be 1e− 4, except for SQuAD with Aux Fraction as
1.0 for which we found learning rate as 5e− 5. For
ALSC target task training, the learning rate was
found to be 5e− 4 in all cases except when using
Commongen task for fine tuning with Aux Fraction
as 0.1 for which we found learning rate as 1e− 4.

Batch size for training is taken as 16 to maxi-
mize GPU utilization. We train for 30 epochs to
allow for convergence, while using an early stop-
ping mechanism.

B Model Details

For our LLM, we use the T5-large implementation
on Huggingface.3

C Dataset Cleanup

Following existing work (Tang et al., 2016; Tian
et al., 2021) we disregard reviews with no aspects,
and also the aspects labeled as having "conflict"
sentiment polarity to prevent a class imbalance
problem due to low count of "conflict" class.

D Dataset Details

Here we present some more details of the ALSC-
CR dataset. The aspect polarity distribution is pre-
sented in Table 6. Note that it is possible to have
multiple pronouns in each of the CR cases.

The sentiment distribution of ALSC-CR test set
is shown in Table 7.

For constructing ALSC-CR, we use standard
ALSC datasets (MAMS and Rest16). MAMS’s
original train set along with data from Rest16 train
set is used for training. For validation, we use the
original validation sets from MAMS and Rest16,
in addition to Pronoun cases from MAMS test and
Rest16. The composition of the validation dataset
is such that we use minimal Pronoun cases for vali-
dation while having sufficient CR cases for testing.
Details of the composition of ALSC-CR are shown
in Table 9.

3https://huggingface.co/t5-large
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Table 6: Sentiment polarity distribution in ALSC-CR
dataset

Partition Polarity
Positive Negative Neutral

Train 4,279 3,065 5,090
Validation 337 222 330
Test 178 122 46

Table 7: Pronoun distribution in ALSC-CR test set,
which has only CR cases

Pronoun Count
it 132
which 59
they 54
he 24
who 19
she 17
their 14
them 12
its 10
his 10
there 10
him 5
her 5
hers 0

E Error Analysis by Pronoun

We analyze the errors and improvements seen for
individual pronouns (in reviews) when ALSC-CR
is evaluated with different ALSC models. Since a
few pronouns have very low counts as per Table 7,
we only analyze the ones which have count greater
than 15.

For all pronouns analyzed, we find improve-
ments in prediction accuracy for the models fine-
tuned with auxiliary tasks, compared to the baseline
model which has no auxiliary fine-tuning. Results
are shown in Table 8.

F Training Prompts

We present the training prompts used in Table 10.

G Visualising Auxiliary Training Results

In Figure 1, we visually show the performance
of auxiliary trained models on ALSC-CR (same
results as Table 4). We can see that there is little
correlation between the auxiliary dataset fraction
and the mean F1 performance, making it necessary
to explore various fraction settings.

H Training Details

For fine tuning the T5-large model, we use 1
NVIDIA V100 GPU, 6 CPU cores with 4 GB mem-

Table 8: Error Analysis of ALSC models by pronoun
distribution. Model Accuracy% presented by Pronoun.
Highest scores bolded. 2nd highest underlined. Pro-
nouns with count less than 15 (as per Table 7) are not
analyzed.

Pronoun Baseline Commongen 0.1 QQP 0.5
it 65.91 68.18 71.21
which 74.58 83.05 77.97
they 72.22 79.63 77.78
he 70.83 75.0 70.83
who 84.21 94.74 94.74
she 88.24 94.12 88.24
their 64.29 78.57 78.57
them 75.0 75.0 75.0
its 80.0 70.0 90.0
his 100.0 100.0 100.0
there 60.0 70.0 60.0
him 60.0 60.0 60.0
her 100.0 100.0 80.0
hers N/A N/A N/A

Figure 1: Performance of ALSC models with aux train-
ing on ALSC-CR dataset.
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Table 9: Detailed ALSC-CR dataset composition.

Partition Size Composition
Train 12,434 MAMS Train (#count = 11,186) + Rest16 Train (Non Pronoun) (#count = 1,248)

Val 889 15% of (MAMS Test (Pronoun) + Rest16 Train/Val/Test (Pronoun)) + 50% of (MAMS Val +
Rest Val (Non Pronoun)) [Here, MAMS #count = 746, Rest16 #count = 143]

Test 346 MAMS Test (CR) (#count = 124) + Rest16 Train/Val/Test (CR cases) (#count = 222)

Table 10: Details of T5 training prompts used for auxiliary and target tasks.

Task Training Prompt
ALSC-CR get sentiment: [sentence, aspect]
ALSC-Regular get sentiment: [sentence, aspect]
DPR Get antecedent: [sentence]
Commongen generate a sentence with: [concepts]
CosmosQA question: [question] answer_0: [ans_0] answer_1: [ans_1] answer_2: [ans_2] answer_3: [ans_3] context: [context]
SQuAD question: [question] context: [context]
QQP qqp question1: [question_1] question2: [question_2]


