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Abstract

The paper presents two multilingual coref-
erence resolution systems submitted for the
CRAC Shared Task 2023. The DFKI-Adapt
system achieves 61.86 F1 score on the shared
task test data, outperforming the official base-
line by 4.9 F1 points. This system uses a com-
bination of different features and training set-
tings, including character embeddings, adapter
modules, joint pre-training and loss-based re-
training. We provide evaluation for each of
the settings on 12 different datasets and com-
pare the results. The other submission DFKI-
MPrompt uses a novel approach that involves
prompting for mention generation. Although
the scores achieved by this model are lower
compared to the baseline, the method shows a
new way of approaching the coreference task
and provides good results with just five epochs
of training.

1 Introduction

Coreference resolution is a task of finding all men-
tions referring to the same physical or abstract en-
tity in the given piece of text. E.g., in sentences

“I’ve never been to London before. But I heard it is
a lovely place” the words London and it both refer
to the real-world entity the city of London, and are
called an antecedent and an anaphor respectively.
Coreference resolution includes two sub-tasks that
can be done either in a pipeline manner, or jointly:
mention detection and mention clustering. They are
quite challenging: (i) antecedents can be split; (ii)
mentions can be discontinuous; (iii) one needs to
consider the semantics of the context; (iv) there are
long-distance coreference relations, etc. Corefer-
ence resolution contributes to the correct automatic
text understanding, and is important for many NLP
tasks, including text summarization and paraphras-
ing, information extraction, machine translation,
question answering, etc.

*Equal contribution

The CRAC-2023 shared task (Žabokrtský et al.,
2023) focuses on multilingual coreference resolu-
tion. However, the majority of language models
are still being created for English, e.g., about 70%
of the oral papers at ACL 2021 presented mod-
els evaluated only on English (Ruder et al., 2022).
The problem is that many languages, even some of
the big ones, do not have enough labeled training
data, especially for specific tasks. Another issue
is that training a separate model for each separate
language when the task stays the same can be too
time- and resource-consuming, especially when
the model is large. A typical solution to this is
transfer learning, when a model trained on some
language(s) or task(s) is adapted to work for an-
other one. In this paper we present our approach
to transfer learning for multilingual coreference
resolution.

Our first submission DFKI-Adapt presents a
novel approach which combines joint pre-training,
combined datasets for related languages, loss-based
re-training, character embeddings and adapters.
Our second submission DFKI-MPrompt integrates
prompting. Prompting is a way of eliciting the de-
sired output from a large language model (LLM).
It was first introduced by Brown et al. (2020). The
main motivation behind prompting is to avoid com-
putationally expensive fine-tuning of LLMs, as they
contain billions of parameters. Moreover, such
models already incorporate lots of various knowl-
edge, therefore we can simply add demonstrations
to our input to help the model "understand" what
we want and produce the desired output.

To summarize, our contributions are as follows.

• We investigate how to combine the existing
data, features and fine-tuning approaches to
improve the baseline results without larger
models or additional data.

• We check if knowledge accumulated in large
multilingual language models can be extracted
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using prompt fine-tuning to perform mention
detection, and if this method can compete with
the state-of-the-art one.

• Some of the approaches we try have never
been used for the given task before, and can
be of interest for the community.

2 Related work

In this section we outline the main achievements in
the area of multilingual coreference resolution, and
present the approaches that are similar to our work.

Most progress in the area of multilingual coref-
erence resolution was made due to the introduction
of shared tasks. SemEval-2010 Task 1 (Recasens
et al., 2010) was designed to evaluate and compare
methods of coreference resolution in six languages
(Catalan, Dutch, English, German, Italian, and
Spanish) and used four different metrics: MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998),
CEAF (Luo, 2005) and BLANC (Recasens and
Hovy, 2011). There were six systems submitted
for this task, all of them rely on feature extraction
and machine learning algorithms, like maximum
entropy, decision trees, support vector machines
(SVM), etc. Only two systems, UBIU (Zhekova
and Kübler, 2010) and SUCRE (Kobdani and
Schütze, 2010) work for all the languages.

CoNLL-2012 (Pradhan et al., 2012) was dedi-
cated to predicting coreference in the OntoNotes
corpus (Pradhan et al., 2007) which includes data in
English, Chinese, and Arabic. The evaluation met-
rics included metrics used for SemEval-2010 and a
CoNLL score representing an unweighted average
of MUC, B3 and entity based CEAF. There were
16 systems submitted for CoNLL-2012. The major-
ity of them combine machine learning approaches
mentioned earlier with the rule-based ones. The
latter are typically used for mention detection. The
best performing systems also heavily rely on fea-
ture engineering. As far as we can judge, most of
the systems assume training a separate model for
each language.

In contrast to the previous shared tasks, CRAC-
2022 (Žabokrtský et al., 2022) offered much more
data in different languages. The CorefUD 1.0
collection (Nedoluzhko et al., 2022) included 13
datasets in Czech, English, Polish, French, Rus-
sian, German, Catalan, Spanish, Lithuanian and
Hungarian which were harmonized to the same
annotation scheme and data format. The primary

evaluation metric was the CoNLL score. The or-
ganizers offered a strong Transformer-based base-
line (Pražák et al., 2021), which was also used for
the current shared task. There were eight systems
submitted.The absolute majority use deep learn-
ing approaches and rely on large pre-trained mod-
els. Importantly, most of the systems present cross-
lingual models trained on all the multilingual data.

It is actually difficult to compare all these models
in terms of numbers and judge how much progress
has been made since SemEval-2010 for multilin-
gual coreference resolution. First, the models were
trained on quite different data. Second, despite the
unification of the annotations, the definition of a
mention varies across the datasets. Third, the eval-
uation criteria are also different, in the first place
for mention boundaries detection.

Our DFKI-Adapt system uses a combination of
different settings that includes pre-trained adapters.
As far as we know, adapters (Houlsby et al., 2019;
Rebuffi et al., 2017) have not been well researched
for multilingual coreference resolution. Adapters
represent a small amount of additional parame-
ters that can be added as trainable task-specific
weights at each layer of the transformer architec-
ture (Vaswani et al., 2017). They have been success-
ful on a variety tasks including speech recognition
(Hou et al., 2021), cross-lingual transfer (Parovic
et al., 2022) and classification tasks (Lee et al.,
2022; Anikina, 2023; Metheniti et al., 2023) but
there is very little research on using adapters for
coreference resolution and the only work that we
are aware of uses parallel data for training (Tang
and Hardmeier, 2023).

The idea of prompting LLMs for the task of
coreference resolution is relatively new. There are
not so many papers on this topic. E.g., Perez
et al. (2021) do few-shot prompting to resolve
anaphora that requires commonsense knowledge
using the Winograd Schema Challenge (WSC) cor-
pus (Levesque et al., 2012). Min et al. (2022) per-
form similar experiments on the WSC and Wino-
Grande (Sakaguchi et al., 2021) data, and Yang
et al. (2022) - on ECB+ (Cybulska and Vossen,
2014). Le et al. (2022) and Agrawal et al.
(2022) try prompting for coreference resolution
in scientific protocols and medical domain, respec-
tively. Lin et al. (2022) experiment with few- and
zero-shot anaphora resolution in the multilingual
XWinograd corpus (Tikhonov and Ryabinin, 2021).
In contrast to our approach, all these models do not
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perform prompt fine-tuning, instead they typically
include a few demonstrations into their prompts
(therefore few-shot) and use much larger models,
like XGLM (Lin et al., 2022), GPT-2 (Radford
et al., 2019), GPT-3 (Brown et al., 2020) or In-
structGPT (Ouyang et al., 2022). Moreover, we use
prompting only for mention generation. A some-
what similar approach but without prompting was
presented by Kalyanpur et al. (2020), who used the
T5 model (Raffel et al., 2020) to generate semantic
roles when doing frame-semantic parsing.

3 Data

All our experiments are done using an officially
provided public version of the CorefUD 1.1 data,
which extends CorefUD 1.0 with new datasets in
Hungarian, Norwegian and Turkish. In total, this
version of CorefUD consists of 17 datasets in 12
languages. The datasets vary a lot in their sizes (see
Table 7 in the Appendix B). Moreover, they repre-
sent different language families and subgroups with
very different grammars and vocabularies. Also,
the datasets differ in how markables are defined,
e.g., some datasets omit singletons, others may an-
notate verbal phrases, if they are antecedents of
anaphoric noun phrases (Žabokrtský et al., 2022).
All this makes it very challenging to build a single
model working well for all the given languages.

Intuitively, the quality of mention extraction and
subsequent coreference resolution depends not only
on the training data size, but also on length and
complexity of the sentences and mentions, the num-
ber of mentions (including nested) in a sentence,
the amount of unique named entities, etc. To get an
idea about difficulty of the task, we collected some
basic statistical facts about the relevant data prop-
erties. This information can be found in Table 8 in
the Appendix B.

4 Multilingual coreference resolution
with DFKI-Adapt

Our submission DFKI-Adapt is based on the base-
line provided by the organizers but extended in
different ways to accommodate the multi-lingual
nature of the task. The DFKI-Adapt system in-
tegrates character embeddings, joint pre-training
and fine-tuning on the datasets of the related lan-
guages. It also includes additional re-training on
the documents with the higher loss and uses adapter
modules that were pre-trained for each dataset.

The goal of the DFKI-Adapt submission is to

demonstrate how one could get a substantial im-
provement over the baseline (+4.9 F1 points on the
test and +9.07 F1 on the development partitions)
without any additional data or larger models, just
by leveraging the existing annotations. All exper-
iments are performed with standard multilingual
BERT and the official CRAC data. The follow-
ing sections introduce our baselines, the experi-
ments with individual settings and the final results
achieved by DFKI-Adapt. Since the test data are
not publicly available our evaluation is performed
on the CRAC development set. The evaluation re-
sults on 12 datasets for different languages1 are
summarized in Table 1. The more detailed analy-
sis with different coreference evaluation metrics is
reported in Tables 3-6 in the Appendix A.

4.1 Baselines

We consider three different baselines for our sys-
tem. Firstly, we use the official baseline of the
shared task which was published by the organizers
(CRAC-baseline). Secondly, we train a single joint
coreference model based on multilingual BERT
and use it to predict coreference chains for each
dataset (mbert-joined). Thirdly, we train a separate
model for each language and dataset present in the
shared task (mbert-separate). The results in Table 1
demonstrate that mbert-joined consistently outper-
forms mbert-separate indicating that joint training
on the combination of all datasets is a good strategy
for coreference resolution. The main baseline to
which we compare different settings in the follow-
ing sections is the official CRAC-baseline.

4.2 Adapters

We add adapters to multilingual BERT and then
fine-tune them for each dataset separately. Then
we load the pre-trained adapters and train a new
coreference resolution model for each dataset from
scratch but with the pre-trained adapter weights. In
one setting, task-adapters-frozen, we do not fur-
ther train the adapters, while the rest of the model
is being tuned on the coreference resolution task.
In another setting, task-adapters-tuned, we con-
tinue training the adapters together with the rest of
the model. According to the experimental results

1For some languages several datasets were available and
we selected a single dataset for each language as a representa-
tive. Although the differences between the datasets can also
occur within a single language, we evaluated one dataset per
language given the limited time, resources and the goal of com-
paring different languages rather than the datasets. Further
details can be found in the Appendix A.



22

Dataset
mbert-
joined

mbert-
separate

char-
embed

joined-
pre-
training

combined-
datasets

loss-re-
training

task-
adapters-
frozen

task-
adapters-
tuned

DFKI-
Adapt

CRAC-
baseline

ca_ancora 68.97 65.06 66.56 68.72 66.29 65.59 66.19 61.99 68.34 65.60
cs_pdt 66.35 65.30 67.45 68.32 66.62 65.36 66.35 61.18 68.60 65.66
en_gum 65.80 52.01 54.05 62.41 35.25 51.38 51.49 47.54 69.63 66.87
fr_democrat 59.74 58.85 58.88 60.97 61.09 57.81 57.88 52.50 62.34 57.22
de_potsdamcc 65.77 58.92 55.16 62.03 67.12 59.77 64.28 60.27 69.29 56.07
hu_szegedkoref 59.78 59.98 59.53 62.29 60.42 60.13 57.39 53.70 62.60 58.96
lt_lcc 71.22 69.09 69.55 73.18 75.76 69.47 68.05 64.95 73.08 66.96
no_bokmaal 69.81 68.47 69.11 72.26 69.09 67.65 68.83 64.53 72.45 58.44
pl_pcc 65.41 63.64 65.32 66.38 66.21 63.74 64.30 59.44 65.89 64.17
ru_rucor 62.08 62.11 63.84 66.54 64.58 63.26 61.73 57.97 67.50 63.04
es_ancora 67.00 66.37 67.99 69.82 66.64 66.29 66.99 62.53 70.07 67.00
tr_itcc 31.66 31.35 17.98 30.80 33.88 23.28 20.68 6.91 37.80 16.15

Table 1: CoNLL F1 scores on the development data. The best performing setting is in bold

shown in Table 1, for task-adapters-frozen the re-
sults differ significantly between the datasets. E.g.,
we can see that the model trained on the German
data gives an improvement of +8.21 F1 points com-
pared to the CRAC-baseline and for Turkish the
improvement is +4.53 F1 points. Polish and Czech
also have small gains in performance when using
pre-trained adapters (+0.13 and +0.69 F1 points
correspondingly). However, Hungarian has a drop
of -1.57 F1 points compared to the CRAC baseline.

We also observe that using pre-trained adapters
and then freezing them consistently outperforms
the version with tunable adapters. Compared to the
CRAC baseline the latter model underperforms by
4.39 F1 points on average. We notice that using
language-specific pre-trained adapters gives model
a "warm start" and it starts with a slightly better
performance, e.g., the ratio of the correctly pre-
dicted to gold mention spans is higher than if we
start training the model from scratch, without any
pre-trained adapters.

4.3 Character embeddings
For character embeddings we consider 273 charac-
ters which include the alphabet letters of all rele-
vant languages plus some additional symbols such
as currency or copyright signs. A symbol has to
occur more than 5 times in the training set in order
to be included in our list of the frequent characters.
After making the character list we run bi-LSTM to
encode every token in the data.

Then in the coreference resolution model we add
an extra layer that projects character embeddings
from 300 to 100 dimensions and concatenate the
character embeddings of the start and the end of
each span with the corresponding BERT embed-

dings. We observe that adding character embed-
dings gives a small boost in performance compared
to the CRAC baseline (+0.77 F1 points on average).
Interestingly, the only two languages which show a
decrease in performance are German and English,
all other languages show some improvement and
the largest gains are attributed to Norwegian +10.67
F1 and Lithuanian +2.59 F1.

4.4 Joined pre-training
As discussed in Section 3, the available datasets are
quite different. However, since in all the cases the
task is to identify and cluster coreferent mentions
we believe that patterns relevant for coreference
resolution in one language may prove to be helpful
for another. Hence, we pre-train one multilingual
BERT model on all datasets combined together and
then we continue fine-tuning this model on each
language separately. We restrict the number of the
pre-training steps to 100,000 and leave all other
hyper-parameters unchanged. This setting with the
joined pre-training is beneficial for all languages
and it brings an average improvement of +4.8 F1
points on the development data compared to the
CRAC baseline.

4.5 Combined datasets
In the combined-datasets setting we test whether
combining the training sets of the related languages
can boost the performance. E.g., for Spanish we
combine it with the training sets for other Romance
languages that include Catalan and French, and for
Czech we combine both datasets for this language
(cs_pdt and cs_pcedt) together with the annotations
for Polish and Russian. Note that we do not adjust
for any differences in the dataset size and do not
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balance the amount of samples that might have
negatively impacted the performance in some of
the cases (e.g., Spanish and Catalan data have more
than 1,000 documents each, whereas French has
only 50 documents).

The results in Table 1 show that combining the
datasets of the related languages is a good approach
in many cases, although it seems to help some lan-
guages more than the others (e.g., it brings +11.05
F1 points for de_potsdamcc but only +0.96 F1 for
cs_pdt). We notice that this method is especially
beneficial for those cases where we have a rela-
tively small number of annotated documents (e.g.,
French with only 50 documents in the training set
and Lithuanian with 80). Also, perhaps due to the
differences in the annotation format, for some lan-
guages we notice a significant drop in performance
when we train on the combined datasets. E.g., the
model trained on the en_gum data combined with
en_parcorfull, de_potsdamcc and de_parcorfull
datasets shows poor performance in our experi-
ments, achieving only 35.25 F1. Further ablation
studies and error analysis are needed to find the
exact cause of this issue.

In some cases finding datasets in related lan-
guages is not possible and we combine the cor-
pora based on other linguistic similarities, e.g.,
both Hungarian and Turkish are agglutinative lan-
guages and both of them benefit from the combined
datasets (see Table 1).

4.6 Loss-based re-training

In the loss-re-training setting we store the loss as-
sociated with each document per epoch and at the
end of each epoch we sort the documents by their
corresponding losses and take the 10% of the most
difficult documents (i.e., the ones with the highest
loss) to continue additional training. This means
that we effectively fine-tune our models on particu-
larly difficult instances.

This approach brings an average improvement of
+0.63% F1 points across all datasets, as shown in
Table 1, but the gains differ between the languages.
E.g., the lt_lcc and tr_itcc data show substantial im-
provements with the loss-based re-training: +2.51
and +7.13 F1 points respectively. However, some
datasets (e.g., es_ancora, cs_pdt and en_gum) show
worse performance.

The discrepancy is potentially caused by the im-
balance in the amount of the available training data
between the datasets. The datasets with the fewer

documents (e.g., tr_itcc with 19 and lt_lcc with
80) seem to benefit from the loss-based re-training
while other datasets with relatively large amount of
documents do not benefit from it (e.g., es_ancora
with 1,080 documents or cs_pdt with 2,533). In
the future we would like to explore this fine-tuning
approach in more detail and apply it to different
low-resource settings using various metrics to order
and select difficult documents (e.g., ordering them
by entropy or surprisal).

4.7 DFKI-Adapt

Our submission DFKI-Adapt combines the best-
performing configurations as described above. It
includes joined-pre-training for 100,000 steps to-
gether with the combined-datasets setting for fine-
tuning on the combined training data for the related
languages. It also integrates character embeddings
as in the char-embedding configuration. Addition-
ally, we fine-tune each model on the 10% of the
most difficult documents per dataset (as in loss-
re-training) and we also include the pre-trained
adapter modules as in task-adapters-frozen.

DFKI-Adapt consistently outperforms all three
baselines (mbert-joined, mbert-separate and
CRAC-baseline) and for most of the languages it
gives the best performance on the development set,
although for some datasets (e.g., pl_pcc and lt_lcc)
other configurations such as joined-pre-training
or combined-datasets perform slightly better than
DFKI-Adapt (see Table 1 for comparison). On the
official test set our DFKI-Adapt system achieves
61.86 CoNLL F1 score (+4.89 F1 points compared
to the CRAC baseline) and on the development set
it achieves 68.06 CoNLL F1 score (+9.07 F1 points
compared to the baseline).

All our models are trained on either NVIDIA
RTX A6000 with 48 GB memory or NVIDIA
A100-SXM4 with 40 GB memory. We use the
hyper-parameter settings as defined in the baseline
configuration file2 and train the models for the same
amount of epochs. For the models that use adapters
we set the BERT learning rate to 1e-05 and the
task learning rate to 2e-4. We set the dropout rate
to 0.4 and the mention loss coefficient to 0. For
optimizing the network we employ AdamW and a
linear schedule with warm-up.

2See https://github.com/ondfa/coref-multiling/
for the configuration details and the hyper-parameter settings.

https://github.com/ondfa/coref-multiling/
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5 Multilingual coreference resolution
with DFKI-MPrompt

In this section we first present our approach to men-
tion identification as generation, then explain how
we adapt the baseline to work with the mentions
generated by our model. We discuss the results
obtained by our system, analyse the mistakes and
outline possible improvements.

5.1 Mention generation

The absolute majority of modern coreference res-
olution models, including the baseline provided
for this shared task, use span ranking with prun-
ing to identify mentions. As pointed out in Sec-
tion 3, the results depend on many factors, such
as how the markables are defined in the dataset,
the dataset size, domain and language, etc. E.g.,
the baseline3 reaches up to 85.16 F1 in mention
identification on the no_nynorsk and only about
54.65 F1 on the tr_itcc development data. Cor-
rect mention identification is crucial for successful
coreference resolution. The same baseline achieves
the F1 score of only 38.17 in coreference resolution
on the de_parcorfull development data, if it has to
predict the mentions. However, if the gold men-
tions are given, the F1 score reaches 91.90 points
on the same data.

Motivated by the recent success of prompting
LLMs for various downstream NLP tasks, we de-
cide to try casting mention identification problem
as a generation task using a simple prefix prompt.
Theoretically, mention generation offers certain
advantages in comparison with the span-ranking
approach, e.g., (a) no pruning is required; (b) it
is possible to generate discontinuous and nested
mentions; (c) both input and output are in natural
language and therefore are easy to analyze for a
human. Moreover, as far as we are aware, no one
has tried mention generation as a way to identify
mentions for coreference resolution before.

We use a family of multilingual T5 models (Xue
et al., 2021), namely mT5-base and mT5-large
with 580M and 1.2B parameters, respectively. We
omit the demonstrations in our prompt, as they can
make the input quite lengthy, and are unlikely to
work with relatively small models. Instead, we
use a prefix consisting of five tunable embeddings
prepended to our input. This method was first pre-

3We consider the version trained on all the available mul-
tilingual train data in CorefUD 1.1 with singletons excluded
from evaluation.

sented by Li and Liang (2021). For all our exper-
iments we employ the Openprompt library (Ding
et al., 2022), which we locally extend so that it
works with multilingual T5 models.

Our task is formulated as follows. Given an
input string consisting of one sentence, the desired
output should include all mentions contained in
the given sentence together with their start and end
indices in brackets. Generated mentions should
be separated from each other with a delimiter (a
vertical bar). To help the model generate indices,
we modify the input by adding the corresponding
index to each token, like Kalyanpur et al. (2020) do.
Example 5.1 shows the approach. Both the model
and the input embeddings stay frozen, and only
prefix embeddings, which are added to the input
under the hood, get updated during the prompt
training. The prompt itself is given in Example 5.2.

Example 5.1. Model input and output
Input: 0 já 1 Jsem 2 prý 3 v 4 USA 5 a 6 hry 7
skončily 8 , 9 uvedl 10 de 11 Merode 12 .
Output: já (0-0) | de Merode (10-11) | hry (6-6) | v
USA (3-4)

Example 5.2. Prompt
0 já 1 Jsem 2 prý 3 v 4 USA 5 a 6 hry 7 skončily
8 , 9 uvedl 10 de 11 Merode 12 . Find all valid
mentions: [MASK]

The total number of training and development
examples makes up 178,028 and 24,404 sentences,
respectively. Sentences without mentions are omit-
ted. As discontinuous mentions represent only a
tiny portion of all the mentions, we omit them as
well. We set the maximum input length to 256 to-
kens, and expect the generated output also to be
no longer than that. The training is done on one
NVIDIA GeForce GTX TITAN X GPU with 12
GB memory on all the available multilingual train-
ing data for five epochs with the batch size 1, the
AdamW optimizer, learning rate of 5e-5 and a lin-
ear schedule with warm-up. It takes about a week
to complete the training.

As we do not have access to the gold test data,
we evaluate our mention generation approach on
the development partition. The results in terms of
recall, precision and F1 are presented in Table 2.
The table also includes mention detection scores
achieved by the baseline. We see that the base-
line results are more than +10 points higher on the
combined data, with our approach showing better
F1 only for the de_parcorfull and tr_itcc corpora.
However, baseline scores are not directly compa-
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rable with the scores reached using the prompting
approach. To calculate the baseline’s scores we
use the predicted clusters with all singleton clusters
removed. To be fair, we also exclude all gold sin-
gleton clusters from the evaluation. In contrast to
that, our mention generation is done before coref-
erence resolution. Thus, it is impossible to remove
any singletons, as no clusters exist yet.

Table 2 shows that our method allows to get
decent results, with mT5-large typically produc-
ing much better scores than mT5-base. As ex-
pected, better scores are normally achieved for
larger datasets. However, there are some excep-
tions, e.g., the F1 score is 72.92 for de_potsdamcc
and only 62.46 for cs_pdt, which have 4,061 and
142,951 continuous mentions in the training data,
respectively. This points at the fact that some
datasets contain "easier" mentions than others. In-
terestingly, the precision is always higher than re-
call, except for two parcorfull corpora. This may be
an indication that the definition of a mention used
to annotate them differs a lot from those applied to
other datasets.

To better understand the results and find some
possible space for improvement, we analysed the
mistakes made by our approach. First, as expected,
we discovered that shorter mentions in shorter sen-
tences are more likely to be generated correctly -
the average length of correctly generated and miss-
ing (not generated) mentions makes 2.03 and 5.86
tokens, respectively. The average length of sen-
tences in which all mentions were identified cor-
rectly is about 11.67 tokens, while the sentences
in which at least one mention was generated in-
correctly (either a mention itself, or its indices, or
both) contain 23.41 tokens on average. Second,
among 21,133 wrong outputs (a) 379 (1.79%) do
not have brackets with indices, and only four in-
stances among them are correct mention strings;
(b) 752 (3.56%) have a wrong delimiter, thus rep-
resenting merged outputs, of which only 29 are
fully correct, five are correct but have wrong in-
dices, and 544 are wrong mentions with correct
indices. Example B.1 in the Appendix B illustrates
the problem. As for the rest 20,002 wrong outputs
(i.e. cases consisting of one mention and one index
pair), we found out that 245 (1.22%) of them have
wrong indices, and 5,690 (28.45%) - wrong men-
tion strings. Other 14,067 (70.33%) outputs have
both wrong mentions and wrong indices. Finally,
we detected that the average length of outputs with

correct indices but wrong strings varies from 10.85
to 13.03 tokens, which shows that the model is
still capable to deal with longer mentions. More
information on that can be found in Appendix B.

Based on the error analysis, we would suggest
the following modifications of the approach. First,
simplification of the desired output seems to be
promising. Our current output pattern is quite chal-
lenging, instead, we can ask the model to produce
only the indices of mentions, like ‘10-11’, or a di-
rect substring of the input string, like ‘10 de 11
Merode’. This would probably help to deal with
missing spaces before punctuation marks, which
make a large part of all mistakes. Next, we be-
lieve that training the prompt for more epochs, as
well as tuning some other hyperparameters, like the
number of prefix tokens, may lead to performance
improvements. Experiments with other types of
templates and a better prompt engineering may
also be beneficial. Finally, it is possible to group
the datasets depending on the mention definitions,
train several prompts, and do prompt ensembling.

5.2 Coreference resolution

As we have a separate module to identify the men-
tions, we slightly change the baseline so that it
performs only coreference resolution. This means
that the model does not need to create spans, as-
sign scores to them and do the pruning, because the
mentions are already known. We re-train the base-
line on gold mentions (including singletons) with
all the default hyperparameters, and then evaluate
it on mentions generated with our prefix prompt.
While the original baseline reaches 66.78 CoNLL
score on the combined development data, adding
our prompt-based module to it causes about -7
points drop in performance. This is not unex-
pected, as mention identification results achieved
by our method were in general worse than those
produced by the baseline. Only for three datasets
the CoNLL scores were higher, and for two out of
these three our approach also demonstrated better
mention identification results in comparison with
the baseline. All scores can be found in Table 9
in the Appendix B. On average, according to the
official leaderboard, our model reaches the CoNLL
scores of 57.22 and 53.76 on the development and
test data, respectively. In both cases it takes the
last place on the list of eight (development) and ten
(test) submissions. Still, we find the scores decent,
considering how little effort our method takes.
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Data
num mT5-base mT5-large baseline
men R P F1 R P F1 F1

all 108,006 55.42 72.56 62.84 63.53 75.80 69.13 79.90
ca_ancora 7,280 46.11 67.48 54.79 54.52 71.23 61.77 81.55
cs_pcedt 23,784 56.90 67.16 61.61 63.23 71.13 66.95 80.90
cs_pdt 20,955 47.79 71.34 57.24 54.12 73.83 62.46 78.76
en_gum 5,508 61.86 80.54 69.97 71.10 81.98 76.15 80.24
en_parcorfull 79 69.62 27.36 39.29 70.89 25.34 37.33 58.13
fr_democrat 7,032 61.52 78.21 68.87 72.16 80.01 75.88 78.63
de_parcorfull 93 65.59 44.20 52.81 72.04 44.67 55.14 53.89
de_potsdamcc 558 56.99 70.20 62.91 69.00 77.31 72.92 73.47
hu_korkor 448 47.54 66.15 55.32 54.91 68.72 61.04 70.85
hu_szegedkoref 1,458 54.87 61.73 58.10 60.84 66.10 63.36 68.23
lt_lcc 366 48.09 55.17 53.39 55.46 63.04 59.01 77.06
no_bokmaal 6,446 65.54 80.80 72.38 76.79 85.23 80.79 84.07
no_nynorsk 5,193 67.24 79.76 72.97 77.89 83.83 80.75 85.16
pl_pcc 18,857 56.77 75.88 64.95 66.27 79.03 72.09 77.49
ru_rucor 2,297 68.35 78.70 73.16 75.49 80.61 77.97 83.43
es_ancora 7,161 46.64 66.91 54.97 54.11 71.83 61.72 82.56
tr_itcc 491 58.45 75.13 65.75 65.38 76.98 70.70 54.65

Table 2: Mention identification results. All stands for all the development data taken together (not the average).

6 Conclusion

In this paper we presented our systems for multilin-
gual coreference resolution.

Our DFKI-Adapt submission leverages the ex-
isting data in different ways including joint pre-
training, integrating adapters, adding character em-
beddings and loss-based re-training. It achieves
61.86 F1 on the official test set and 68.06 F1 on
the development set. We provide a comparison of
different settings for 12 languages from the CRAC
shared task. Based on our analysis, joined pre-
training with further fine-tuning on the respective
dataset is the most beneficial setting per se but the
largest gains can be achieved with the combination
of different settings as implemented in the DFKI-
Adapt system. Our experiments also show that
while injecting the pre-trained adapter weights can
be helpful for many languages, these pre-trained
weights should not be further updated during train-
ing. In the future we would like to experiment
more with the language-specific vs. task-specific
adapters and test whether cross-lingual transfer via
adapters could further improve the performance on
the coreference resolution task.

Our second submission DFKI-MPrompt relies
on a novel prompt-based approach for mention
identification. It generates all possible mention
strings together with their indices, given a sentence.
Although the obtained scores were lower than base-
line scores for the majority of the datasets, our
method still has some potential. First, it can be

improved by applying a better template, more opti-
mal hyperparameters and a larger model. Second,
it could be used as an additional tool helping span-
based mention-ranking state-of-the-art models find
mentions that are especially challenging for them,
like split antecedents or discontinuous mentions.
As a possible next step we plan experiments to
check if our approach is capable of such a task.

Limitations

We believe that our DFKI-Adapt system could be
further improved by adding more adapter weights
and experimenting with the cross-lingual transfer
learning. The current system uses adapters as a
way of additional pre-training of the encoder but
it would be interesting to see whether adapters for
different languages can also benefit each other, sim-
ilarly to the combined_datasets setting.

Casting mention identification as a prompt-based
generation task also has its limitations. Using
prompting, good results (sometimes even better
than state-of-the-art) can be typically obtained with
very large models that are not always freely avail-
able and require lots of computational resources.
Even with relatively small models, like T5, prompt-
tuning/inference may take several days, if one does
not have access to powerful GPUs. This makes the
process of finding the optimal prompt and hyperpa-
rameters very time-consuming.
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A DFKI-Adapt vs. other configurations

Tables 3-6 present the evaluation results on the
development data for 12 languages. The CoNLL
score is compared with the scores achieved by sep-
arate metrics, namely MUC, B3 and CEAFE.

B Mention generation

B.1 Data statistics

Tables 7 and 8 present the main statistical facts
about the CorefUD 1.1 data that help explain men-
tion identification results. Table 7 illustrates the
differences between the datasets in terms of size
by providing information about the number of doc-
uments, sentences and tokens in the training and
development partitions of separate corpora.

Table 8 gives for each dataset information about
sentence lengths, number of continuous and discon-
tinuous mentions, average number of mentions in a
sentence, and average mention lengths. We see that
the sentences in CorefUD 1.1 may be of different
length and contain different number of mentions.
On average, a sentence consists of 21 tokens, the
shortest sentences (14.93 tokens on average) can be
found in the tr_itcc dataset, and the longest (34.06
tokens on average) - in es_ancora. The total num-
ber of continuous and discontinuous mentions in
all the training data makes up 794,643 and 5,543,
respectively. Typically, a sentence includes 4.46
mentions, and the number of mentions in a sen-
tence correlates with its length, e.g., in es_ancora
a sentence contains 5.32 mentions on average, and
in tr_itcc - only 1.80 mentions. Some sentences
do not contain any mentions. Normally, a mention
consists of 3.32 tokens, the longest mentions (4.98
tokens on average) occur in es_ancora, the shortest
(1.53 tokens on average) - in the lt_lcc dataset.

B.2 Coreference resolution results

Table 9 presents coreference resolution results for
all the development partitions of separate datasets.
Note that we also evaluate our approach on the
combined data (all). In contrast to this, the offi-
cial leaderboard shows the averaged score based
on separate results. Table 9 shows precision, recall
and F1 (CoNLL) score produced by two versions
of the baseline model. The predicted mentions sec-
tion contains the results achieved by the original
baseline trained on all the available training data.
The gold mentions part - the points produced by
baseline trained on all the gold mentions, given

gold development mentions. Finally, the generated
mentions section shows the scores reached by the
baseline trained on the gold mentions when eval-
uated on the mentions generated by our mention
identification module.

B.3 Mention generation errors
Example B.1 shows a typical error case. First, the
generated mentions can not be separated, because
the delimiter "|," is wrong. Second, one of the two
gold mentions, namely ", fundador de la aerolínea
Spantax" starts with a comma, which the model
fails to generate. However, despite the missing
comma, the indices (4-9) corresponding to this
mention are generated correctly.

Example B.1. Generated merged output
’Rodolfo Bay Wright, fundador de la aerolínea
Spantax (1-9) |, fundador de la aerolínea Span-
tax (4-9)’
Gold output

’Rodolfo Bay Wright, fundador de la aerolínea
Spantax (1-9) | , fundador de la aerolínea Spantax
(4-9)’

We additionally analysed cases where the gen-
erated mention strings were wrong but the indices
correct. It turned out that mT5 tends to skip spaces
before punctuation marks, while gold mentions
have them, e.g., the model generates ‘Eugene, Ore-
gon’ instead of ‘Eugene , Oregon’. Moreover, we
found out that many mentions in the gold data may
start and/or end with a comma, like ‘, Juan José
Ibarretxe ,’, which was obviously confusing for the
model.
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Setting
es_ancora de_potsdamcc tr_itcc

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 74.65 67.03 66.20 67.00 69.06 64.22 64.02 65.77 41.91 23.76 29.32 31.66
mbert-separate 71.87 64.14 63.09 66.37 63.52 58.03 55.22 58.92 41.48 22.64 29.94 31.35
char-embedding 73.42 66.03 64.52 67.99 61.98 54.88 48.63 55.16 26.89 10.83 16.20 17.98
joined-pre-training 74.97 68.00 66.50 69.82 66.67 59.99 59.44 62.03 43.30 21.06 28.03 30.80
combined-datasets 72.37 64.69 62.85 66.64 71.72 65.67 63.99 67.12 45.14 25.23 31.26 33.88
loss-re-training 71.87 64.34 62.67 66.29 64.98 58.03 56.28 59.77 36.28 15.87 17.68 23.28
task-adapters-frozen 72.67 64.90 63.38 66.99 67.08 62.14 63.63 64.28 30.47 12.38 19.20 20.68
task-adapters-tuned 68.69 60.28 58.61 62.53 65.02 57.45 58.33 60.27 7.51 3.79 9.45 6.91
DFKI-Adapt 75.26 68.21 66.74 70.07 72.99 67.46 67.40 69.29 50.64 29.69 33.06 37.80
CRAC-baseline - - - 67.00 - - - 56.07 - - - 16.15

Table 3: Coreference resolution results on the development data for Spanish, German and Turkish

Setting
pl_pcc cs_pdt hu_szegedkoref

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 72.44 63.48 60.30 65.41 71.21 64.12 63.72 66.35 61.91 57.62 59.80 59.78
mbert-separate 71.38 61.60 57.93 63.64 70.76 63.50 61.63 65.30 62.56 57.81 59.56 59.98
char-embedding 72.77 63.23 59.97 65.32 72.31 65.53 64.52 67.45 61.57 57.36 59.67 59.53
joined-pre-training 73.63 64.28 61.25 66.38 73.11 66.59 65.26 68.32 64.43 60.14 62.29 62.29
combined-datasets 73.31 64.09 61.24 66.21 71.86 64.75 63.25 66.62 62.55 57.91 60.78 60.42
loss-re-training 71.33 61.64 58.26 63.74 70.80 63.50 61.78 65.36 62.43 57.79 60.17 60.13
task-adapters-frozen 71.47 61.89 59.53 64.30 71.58 64.44 63.04 66.35 59.36 54.49 58.31 57.39
task-adapters-tuned 67.75 57.12 53.45 59.44 66.76 58.92 57.86 61.18 55.37 51.15 54.59 53.70
DFKI-Adapt 73.20 63.63 60.86 65.89 73.33 66.78 65.68 68.60 65.49 60.37 61.95 62.60
CRAC-baseline - - - 64.17 - - - 65.66 - - - 58.96

Table 4: Coreference resolution results on the development data for Polish, Czech and Hungarian

Setting
ca_ancora fr_democrat en_gum

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 74.30 65.87 66.74 68.97 71.41 51.74 56.05 59.74 77.66 63.28 56.45 65.80
mbert-separate 71.20 62.06 61.93 65.06 69.95 50.11 56.50 58.85 65.91 49.89 40.22 52.01
char-embedding 72.47 63.58 63.62 66.56 69.72 50.37 56.55 58.88 67.64 52.05 42.46 54.05
joined-pre-training 74.23 65.89 66.05 68.72 72.06 52.32 58.54 60.97 74.72 61.68 50.82 62.41
combined-datasets 72.27 63.30 63.31 66.29 72.43 52.27 58.56 61.09 42.01 32.46 31.27 35.25
loss-re-training 71.63 62.48 62.66 65.59 69.60 49.37 54.45 57.81 65.56 50.11 38.47 51.38
task-adapters-frozen 71.96 63.21 63.40 66.19 69.41 48.82 55.41 57.88 65.27 49.97 39.24 51.49
task-adapters-tuned 68.70 58.70 58.57 61.99 65.17 43.29 49.04 52.50 60.51 44.99 37.12 47.54
DFKI-Adapt 74.01 65.45 65.56 68.34 72.74 54.47 59.80 62.34 80.43 68.38 60.08 69.63
CRAC-baseline - - - 65.60 - - - 57.22 - - - 66.87

Table 5: Coreference resolution results on the development data for Catalan, French and English

Setting
lt_lcc ru_rucor no_bokmaal

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 73.44 69.55 70.68 71.22 74.63 54.16 57.46 62.08 80.10 66.54 62.79 69.81
mbert-separate 69.92 66.49 70.86 69.09 73.83 55.23 57.27 62.11 77.07 67.31 61.04 68.47
char-embedding 71.08 66.91 70.66 69.55 75.24 56.65 59.64 63.84 78.00 67.33 61.99 69.11
joined-pre-training 75.49 71.88 72.17 73.18 77.28 59.43 62.92 66.54 81.32 71.09 64.36 72.26
combined-datasets 77.33 73.85 76.12 75.76 75.58 57.23 60.93 64.58 78.19 67.80 61.28 69.09
loss-re-training 71.25 67.59 69.58 69.47 74.60 55.91 59.27 63.26 76.92 66.26 59.76 67.65
task-adapters-frozen 70.97 66.82 66.37 68.05 73.52 54.46 57.20 61.73 77.81 66.85 61.83 68.83
task-adapters-tuned 66.92 62.62 65.32 64.95 69.18 51.08 53.65 57.97 74.46 62.70 56.44 64.53
DFKI-Adapt 74.79 71.39 73.06 73.08 78.77 60.32 63.40 67.50 81.39 70.95 65.01 72.45
CRAC-baseline - - - 66.96 - - - 63.04 - - - 58.44

Table 6: Coreference resolution results on the development data for Lithuanian, Russian and Norwegian
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Data
train dev

#doc #sent #tok #doc #sent #tok
all 9,595 194,460 3,899,182 1,325 26,698 547,869
ca_ancora 1,011 10,638 337,876 131 1,443 49,695
cs_pcedt 1,875 39,832 964,606 337 6,960 169,211
cs_pdt 2,533 38,725 670,889 316 5,228 90,645
en_gum 151 8,548 147,949 22 1,117 19,654
en_parcorfull 15 457 8,765 2 48 1,155
fr_democrat 50 10,382 228,100 46 1,192 28,279
de_parcorfull 15 457 8,649 2 48 1,098
de_potsdamcc 142 1,817 26,677 17 216 3,376
hu_korkor 76 1,086 21,063 9 130 2,715
hu_szegedkoref 320 7,138 104,428 40 846 12,355
lt_lcc 80 1,330 30,082 10 213 3,385
no_bokmaal 284 13,071 203,220 31 1,317 21,658
no_nynorsk 336 10,320 172,764 28 1,158 17,977
pl_pcc 1,463 28,722 431,999 183 3,573 53,999
ru_rucor 145 7,969 123,599 18 1,286 21,139
es_ancora 1,080 11,336 373,402 131 1,367 46,668
tr_itcc 19 3,532 45,114 2 556 4,860

Table 7: Number of documents, sentences and tokens in CorefUD 1.1

Data
Sent len num num # cont in sent men

max min avg cont disc max min avg len
all 405 1 21.00 794,643 5,543 156 0 4.46 3.32
ca_ancora 239 2 32.61 48,705 1 27 1 4.81 4.94
cs_pcedt 134 1 25.27 138,713 1,044 22 0 3.85 3.83
cs_pdt 195 1 18.25 142,951 1,958 25 0 3.99 3.22
en_gum 110 1 18.32 41,649 0 40 1 5.21 3.05
en_parcorfull 58 4 20.09 717 5 11 0 2.13 2.02
fr_democrat 125 1 22.34 63,562 0 40 1 6.25 2.37
de_parcorfull 60 4 20.67 749 2 11 1 2.33 1.94
de_potsdamcc 54 2 16.35 4,061 265 13 0 2.72 2.76
hu_korkor 79 5 19.85 3,167 19 16 0 3.12 2.46
hu_szegedkoref 123 2 15.89 12,555 45 19 0 2.23 1.75
lt_lcc 88 2 23.56 3,723 0 15 1 3.09 1.53
no_bokmaal 88 1 15.86 61,183 339 28 0 4.80 2.94
no_nynorsk 120 1 16.97 51,450 211 34 1 5.07 3.10
pl_pcc 405 1 15.46 149,057 1,618 156 0 5.38 2.87
ru_rucor 129 1 20.24 12,576 36 34 0 2.47 1.64
es_ancora 119 2 34.06 57,223 0 23 1 5.32 4.98
tr_itcc 82 2 14.93 2,602 0 11 1 1.80 1.94

Table 8: Sentence and mention properties in training data
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Data
predicted mentions gold mentions generated mentions

R P F1 (CoNLL) R P F1 (CoNLL) R P F1 (CoNLL)
all 61.14 73.73 66.78 75.05 82.22 78.42 50.56 72.76 59.58
ca_ancora 62.92 75.76 68.72 78.13 85.35 81.57 45.08 73.11 55.73
cs_pcedt 62.65 74.50 68.01 78.53 87.17 82.59 54.52 75.62 63.32
cs_pdt 58.64 75.91 66.10 74.38 81.43 77.70 44.63 74.52 55.76
en_gum 58.55 73.27 65.02 70.70 76.60 73.45 53.92 72.17 61.55
en_parcorful 65.61 38.18 48.16 90.98 91.96 91.05 65.23 35.38 45.54
fr_democrat 57.99 65.32 60.89 66.19 69.74 67.20 52.72 62.82 56.53
de_parcorfull 42.06 35.15 38.17 91.13 92.82 91.90 67.48 52.76 58.86
de_potsdamcc 58.81 70.72 64.16 71.65 82.51 76.56 65.02 68.25 66.38
hu_korkor 47.73 65.38 55.11 68.26 75.13 71.45 38.88 56.64 46.06
hu_szegedkoref 56.11 65.34 60.34 80.57 85.86 83.12 47.13 59.82 52.71
lt_lcc 65.85 80.70 72.47 89.84 92.72 91.17 55.10 73.40 62.94
no_bokmaal 66.83 76.47 71.13 69.73 77.20 72.97 60.24 74.30 66.16
no_nynorsk 67.93 75.28 71.07 70.58 76.58 73.10 63.56 74.39 68.18
pl_pcc 61.39 70.63 65.64 70.84 77.22 72.43 52.99 68.75 59.79
ru_rucor 60.91 67.73 63.26 69.07 80.78 73.81 52.18 69.33 58.92
es_ancora 62.80 77.36 69.31 76.86 86.18 81.25 46.14 76.06 57.41
tr_itcc 27.91 40.70 30.82 59.03 68.74 61.47 30.30 51.98 36.84

Table 9: Baseline’s coreference resolution results on the development data


