@inproceedings{skachkova-etal-2023-multilingual,
title = "Multilingual coreference resolution: Adapt and Generate",
author = "Skachkova, Natalia and
Anikina, Tatiana and
Mokhova, Anna",
editor = "{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
Ogrodniczuk, Maciej",
booktitle = "Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.crac-sharedtask.2",
doi = "10.18653/v1/2023.crac-sharedtask.2",
pages = "19--33",
abstract = "The paper presents two multilingual coreference resolution systems submitted for the CRAC Shared Task 2023. The DFKI-Adapt system achieves 61.86 F1 score on the shared task test data, outperforming the official baseline by 4.9 F1 points. This system uses a combination of different features and training settings, including character embeddings, adapter modules, joint pre-training and loss-based re-training. We provide evaluation for each of the settings on 12 different datasets and compare the results. The other submission DFKI-MPrompt uses a novel approach that involves prompting for mention generation. Although the scores achieved by this model are lower compared to the baseline, the method shows a new way of approaching the coreference task and provides good results with just five epochs of training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="skachkova-etal-2023-multilingual">
<titleInfo>
<title>Multilingual coreference resolution: Adapt and Generate</title>
</titleInfo>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Skachkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Anikina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Mokhova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Žabokrtský</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents two multilingual coreference resolution systems submitted for the CRAC Shared Task 2023. The DFKI-Adapt system achieves 61.86 F1 score on the shared task test data, outperforming the official baseline by 4.9 F1 points. This system uses a combination of different features and training settings, including character embeddings, adapter modules, joint pre-training and loss-based re-training. We provide evaluation for each of the settings on 12 different datasets and compare the results. The other submission DFKI-MPrompt uses a novel approach that involves prompting for mention generation. Although the scores achieved by this model are lower compared to the baseline, the method shows a new way of approaching the coreference task and provides good results with just five epochs of training.</abstract>
<identifier type="citekey">skachkova-etal-2023-multilingual</identifier>
<identifier type="doi">10.18653/v1/2023.crac-sharedtask.2</identifier>
<location>
<url>https://aclanthology.org/2023.crac-sharedtask.2</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>19</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual coreference resolution: Adapt and Generate
%A Skachkova, Natalia
%A Anikina, Tatiana
%A Mokhova, Anna
%Y Žabokrtský, Zdeněk
%Y Ogrodniczuk, Maciej
%S Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F skachkova-etal-2023-multilingual
%X The paper presents two multilingual coreference resolution systems submitted for the CRAC Shared Task 2023. The DFKI-Adapt system achieves 61.86 F1 score on the shared task test data, outperforming the official baseline by 4.9 F1 points. This system uses a combination of different features and training settings, including character embeddings, adapter modules, joint pre-training and loss-based re-training. We provide evaluation for each of the settings on 12 different datasets and compare the results. The other submission DFKI-MPrompt uses a novel approach that involves prompting for mention generation. Although the scores achieved by this model are lower compared to the baseline, the method shows a new way of approaching the coreference task and provides good results with just five epochs of training.
%R 10.18653/v1/2023.crac-sharedtask.2
%U https://aclanthology.org/2023.crac-sharedtask.2
%U https://doi.org/10.18653/v1/2023.crac-sharedtask.2
%P 19-33
Markdown (Informal)
[Multilingual coreference resolution: Adapt and Generate](https://aclanthology.org/2023.crac-sharedtask.2) (Skachkova et al., CRAC-WS 2023)
ACL