@inproceedings{pamay-arslan-etal-2023-neural,
title = "Neural End-to-End Coreference Resolution using Morphological Information",
author = {Pamay Arslan, Tu{\u{g}}ba and
Acar, Kutay and
Eryi{\u{g}}it, G{\"u}l{\c{s}}en},
editor = "{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
Ogrodniczuk, Maciej",
booktitle = "Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.crac-sharedtask.3",
doi = "10.18653/v1/2023.crac-sharedtask.3",
pages = "34--40",
abstract = "In morphologically rich languages, words consist of morphemes containing deeper information in morphology, and thus such languages may necessitate the use of morpheme-level representations as well as word representations. This study introduces a neural multilingual end-to-end coreference resolution system by incorporating morphological information in transformer-based word embeddings on the baseline model. This proposed model participated in the Sixth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2023). Including morphological information explicitly into the coreference resolution improves the performance, especially in morphologically rich languages (e.g., Catalan, Hungarian, and Turkish). The introduced model outperforms the baseline system by 2.57 percentage points on average by obtaining 59.53{\%} CoNLL F-score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pamay-arslan-etal-2023-neural">
<titleInfo>
<title>Neural End-to-End Coreference Resolution using Morphological Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tuğba</namePart>
<namePart type="family">Pamay Arslan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kutay</namePart>
<namePart type="family">Acar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gülşen</namePart>
<namePart type="family">Eryiğit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Žabokrtský</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In morphologically rich languages, words consist of morphemes containing deeper information in morphology, and thus such languages may necessitate the use of morpheme-level representations as well as word representations. This study introduces a neural multilingual end-to-end coreference resolution system by incorporating morphological information in transformer-based word embeddings on the baseline model. This proposed model participated in the Sixth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2023). Including morphological information explicitly into the coreference resolution improves the performance, especially in morphologically rich languages (e.g., Catalan, Hungarian, and Turkish). The introduced model outperforms the baseline system by 2.57 percentage points on average by obtaining 59.53% CoNLL F-score.</abstract>
<identifier type="citekey">pamay-arslan-etal-2023-neural</identifier>
<identifier type="doi">10.18653/v1/2023.crac-sharedtask.3</identifier>
<location>
<url>https://aclanthology.org/2023.crac-sharedtask.3</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>34</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural End-to-End Coreference Resolution using Morphological Information
%A Pamay Arslan, Tuğba
%A Acar, Kutay
%A Eryiğit, Gülşen
%Y Žabokrtský, Zdeněk
%Y Ogrodniczuk, Maciej
%S Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F pamay-arslan-etal-2023-neural
%X In morphologically rich languages, words consist of morphemes containing deeper information in morphology, and thus such languages may necessitate the use of morpheme-level representations as well as word representations. This study introduces a neural multilingual end-to-end coreference resolution system by incorporating morphological information in transformer-based word embeddings on the baseline model. This proposed model participated in the Sixth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2023). Including morphological information explicitly into the coreference resolution improves the performance, especially in morphologically rich languages (e.g., Catalan, Hungarian, and Turkish). The introduced model outperforms the baseline system by 2.57 percentage points on average by obtaining 59.53% CoNLL F-score.
%R 10.18653/v1/2023.crac-sharedtask.3
%U https://aclanthology.org/2023.crac-sharedtask.3
%U https://doi.org/10.18653/v1/2023.crac-sharedtask.3
%P 34-40
Markdown (Informal)
[Neural End-to-End Coreference Resolution using Morphological Information](https://aclanthology.org/2023.crac-sharedtask.3) (Pamay Arslan et al., CRAC-WS 2023)
ACL