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Abstract
Our submission to the CRAC 2023 shared task,
described herein, is an adapted entity-ranking
model jointly trained on all 17 datasets span-
ning 12 languages. Our model outperforms
the shared task baselines by a difference in F1
score of +8.47, achieving an ultimate F1 score
of 65.43 and fourth place in the shared task.
We explore design decisions related to data pre-
processing, the pretrained encoder, and data
mixing.

1 Introduction

The goal of the CRAC 2023 shared task (Žabokrt-
ský et al., 2023) is to evaluate coreference reso-
lution models on the CorefUD 1.1 collection of
datasets (Novák et al., 2022). In this paper, we
describe our submission to the task, which is an
adaptation of the entity-ranking model described
in Toshniwal et al. (2020) with some exploration
of the design decisions needed to apply this model
to multiple datasets spanning multiple languages.
Our final submission achieves fourth place out of
nine submissions based on head-match F1 score,
and third place based on exact-match F1 score.

The CRAC 2023 shared task is specifically based
on the public portion of CorefUD 1.1, which in-
cludes 17 datasets spanning 12 languages: Cata-
lan, Czech, English, French, German, Hungarian,
Lithuanian, Norwegian, Polish, Russian, Spanish,
and Turkish. For the final evaluation, gold and pre-
dicted mentions are considered matching if they
have overlapping head words, referred to as head-
match score, and the CoNLL F1 head-match score
is then macro-averaged over all 17 datasets.

For our submission, we adapt the model de-
scribed in Toshniwal et al. (2020), which is based
on the entity-ranking model originally proposed
by Xia et al. (2020). We explore design decisions
necessary to apply this English-based model to mul-
tilingual coreference resolution: data preprocessing
steps, the pretrained language model encoder, and

methods of joint training. Our best configuration
outperforms the shared task baselines by a differ-
ence in head-match F1 score of +8.47, achieving
an ultimate score of 65.43.

2 Related Work

Shared tasks have been instrumental in the devel-
opment and evaluation of coreference resolution
systems. Previous examples include CoNLL 2011
(Pradhan et al., 2011), CoNLL 2012 (Pradhan et al.,
2012), and GAP (Webster et al., 2018, 2019). The
CRAC 2023 shared task builds off the previous iter-
ation, CRAC 2022 (Žabokrtský et al., 2022), with
some modification of the datasets and evaluation
procedure.

Entity-ranking models (Lee et al., 2017) of coref-
erence resolution function by ranking a set of can-
didate entities to which each mention might refer.
Xia et al. (2020) proposed a competitive neural
entity-ranking model that processes mentions in-
crementally left-to-right. We analyze this method
as implemented by Toshniwal et al. (2020). In con-
trast to existing work, we explore the potential of
this model for multilingual generalization.

The best model of the previous CRAC 2022
shared task was that of Straka and Straková (2022),
which consists of two stages: mention detection
and coreference linking. The authors found that
jointly training on multiple datasets led to better
performance on the shared task than training sev-
eral models, one per each individual dataset. The
same finding was found in other submissions as
well (Pražák and Konopik, 2022).

Existing analyses have considered the general-
ization of entity-ranking models across datasets,
including when jointly trained on multiple datasets
(Toshniwal et al., 2021; Xia and Van Durme, 2021;
Porada et al., 2023). Although such work has fo-
cused on English-language coreference and not
evaluated generalization to a multilingual collec-
tion of datasets. It is not clear, a priori, how well
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the constraints of an entity ranking model will gen-
eralize to phenomena not present in English coref-
erence datasets such as zero anaphora.

3 Model

We evaluate the entity-ranking model implemented
by Toshniwal et al. (2020). In this section, we
first overview the model configuration and then
outline the design decisions that we explore related
to preprocessing, the pretrained encoder, and joint
training. The high-level idea of the model is to first
use a mention scorer to produce a set of mention
candidates, then process the mentions left-to-right
to determine if they refer to either a new or existing
entity.

Configuration We start with the implementation
and hyperparameters of Toshniwal et al. (2021).
The model calculates coreference clusters for a
document in the following way: first, embeddings
are calculated for all spans of ≤ 20 subword tokens
using a pretrained encoder. Each span embedding
is scored using the mention scoring head described
in Joshi et al. (2019), which is based on that origi-
nally proposed by Lee et al. (2017). This scoring
head is trained with binary cross entropy loss to
assign a positive score to annotated mentions and a
negative score to all other spans. The top 0.4× ℓ
spans are considered as mention candidates and
kept for the next step, where ℓ is the length of the
document in terms of subword tokens. This set of
mention candidates is further filtered by removing
all spans with a negative score.

Then, the set of entities is initialized as E = {}
and the mention candidates are processed in a left-
to-right order. When processed, each candidate m
is scored against all entities e ∈ E using a scoring
function s(m, e). If ∀e ∈ E, s(m, e) < 0 then m
is added to the set E as a new entity. Otherwise,
m is said to belong to the entity representation
with the highest score e∗ = argmaxe∈E s(m, e)
and the representation of e∗ is updated to be the
mean of all mention representations that the entity
represents thus far. This method is referred to as
the Unbounded Memory (U-MEM) model in the
original work.

For training we use the default hyperparameters
except for those that are specific to the pretrained
encoder or number of training steps. We use the
default optimizer of AdamW with a learning rate
of 1e-5 for the pretrained encoder and 3e-4 for all
other parameters.

Mention Heads The shared task evaluation re-
quires the annotation of mention heads for each
mention. We estimate mention heads from the
provided dependency tree using heuristics pro-
vided by the Udapi library (Popel et al., 2017).
Specifically, we use the command ‘udapy -s
corefud.MoveHead’.

3.1 Preprocessing

We first convert the CoNLL-U files to a standard-
ized JSON format using the file reader available in
the Udapi Python library (Popel et al., 2017). We
then tokenize each word independently using the
pretrained encoder’s tokenizer as implemented in
Huggingface Transformers (Wolf et al., 2020). Fi-
nally, we concatenate all tokens together to produce
a sequence of tokens representing the document.

Speaker Information We extract speaker infor-
mation for each sentence from the sentence headers
in the original CoNLL-U file. For example, the
CorefUD_English-GUM corpora includes headers
of the form “# speaker = <SPEAKER_NAME>” for
certain documents. We include each speaker name
s in the input at the beginning of the respective
sentence. The name is formatted as “<speaker> s
</speaker>” where <speaker> and </speaker>
are randomly initialized tokens added to the model
vocabulary. Including speakers as part of the text
input such as in our approach was originally pro-
posed by Wu et al. (2020).

Language Embedding We represent each lan-
guage by a latent vector which is concatenated to
the input of the entity-mention scoring function
s(m, e). The shared task datasets include 12 unique
languages, so we define 12 such vectors. These
language features are analogous to the OntoNotes
genre features originally proposed by Wiseman
et al. (2016).

Zero-anaphora When zeros appear in input (i.e.,
omitted pronouns that have been reconstructed in
the coreference dataset), we represent these zeros
as the underscore character ‘_’ at training and test
time since this is how they are represented in the
CoNLL-U format.

3.2 Pretrained Encoder

We experimented with two pretrained encoders:
XLM-RoBERTa (XLM-R; Conneau et al. 2020)
and MT5 (Xue et al., 2021). To encode the docu-
ment represented as a sequence of tokens, we split
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the sequence into chunks of maximum length L,
encode the chunks using the pretrained encoder,
and then concatenate the token encodings. Based
on the sequence lengths the models were originally
pretrained with, we use L = 512 for XLM-R and
L = 1024 for MT5. We test using both the base
and large model sizes for each encoder, up to 559M
parameters for XLM-R and 995M parameters for
MT5. In future work, it might be interesting to test
RemBERT (Chung et al., 2021) as well, which was
found by Straka and Straková (2022) to outperform
XLM-R for multilingual coreference resolution.

3.3 Joint Training
We experiment with three methods for jointly train-
ing the model on all datasets: 1) uniform weight-
ing where all datasets are sampled from equally; 2)
proportional weighting where datasets are sam-
pled proportional to the number of training exam-
ples in the dataset; and 3) maximum weighting
where datasets are sampled from proportional to
their training set size, except that training sets over
some maximum threshold size are treated as if they
are of that maximum size. This amounts to down-
scaling larger datasets to a maximum size. In our
experiments we use 500 training examples as the
maximum threshold.

4 Results

In this section we first present the results ex-
perimenting with each design decision, and then
present the final submission performance. In pre-
liminary experiments, we micro-average CoNLL
F1 scores across all datasets for simplicity. For
the final evaluation, CoNLL F1 scores are macro-
averaged across datasets.

4.1 Pretrained Encoder
We experiment with both XLM-R and MT5 at the
base and large model sizes. For these experiments,
we report micro-averaged, exact-match CoNLL F1

Model CoNLL F1

XLM-R
Base 71.9
Large 74.4

MT5
Base 70.3
Large 71.5

Table 1: Effects of the pre-trained encoder. CoNLL F1
score micro-averaged across all development sets.

Sample Weighting CoNLL F1

Uniform 70.8
Proportional 71.9
Maximum 72.9

Table 2: Effects of the joint training method using the
XLM-R base encoder. CoNLL F1 score micro-averaged
across all development sets.

on the development set (Table 1). We find that
XLM-R, despite having fewer parameters and a
shorter sequence length than MT5 outperforms the
MT5 model. Possible explanations might be that:
1) MT5 was trained as an encoder-decoder model,
while we use only the encoder for these experi-
ments which creates a pretraining versus finetuning
disparity that could hurt performance; or, 2) we
finetuned the models with FP16 mixed precision
whereas MT5 was pretrained with BF16 mixed pre-
cision.

4.2 Joint Training

Next, we experiment with the three methods of
joint training. For this experiment we use the
XLM-R base encoder. We again evaluate using
exact-match CoNLL F1 micro-averaged on the de-
velopment set (Table 2). We find that the maximum
weighting sampling method outperformed propor-
tional sampling in this evaluation. For our final
submission, we use a model first trained with pro-
portional weighting for 50 epochs and next trained
with maximum weighting for 50 epochs using early
stopping on the development set.

4.3 Final Submission

Our final model achieves 65.43 F1 on the test set
and fourth place in the competition (Table 3). We
see a relatively high variance of the model ranking
across languages (Table 4): for example, achiev-
ing second place on German-PotsdamCC and yet
seventh place on both Czech-PDT and German-
ParCorFull. This seems to be correlated with the
relative size of the datasets, German-PotsdamCC
being much larger than German-ParCorFull. Better
performance on low-resource datasets is therefore
a possible way to improve the performance of mul-
tilingual, entity-ranking models.
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system head-match partial-match exact-match with singletons

1. CorPipe 74.90 73.33 71.46 76.82
2. Anonymous 70.41 69.23 67.09 73.20
3. Ondfa 69.19 68.93 53.01 68.37
4. McGill 65.43 64.56 63.13 68.23
5. DeepBlueAI 62.29 61.32 59.95 54.51
6. DFKI-Adapt 61.86 60.83 59.18 53.94
7. ITUNLP 59.53 58.49 56.89 52.07
8. BASELINE 56.96 56.28 54.75 49.32
9. DFKI-MPrompt 53.76 51.62 50.42 46.83

Table 3: Final F1 scores of all submissions. McGill (bolded) refers to our final submission which achieves fourth
place in all categories except exact-match, for which it is in third place.

ca cs1 cs2 de1 de2 en1 en2 es fr hu lt pl ru hu no1 no2 tr

Baseline 65.26 67.72 65.22 44.11 57.13 63.08 35.19 66.93 55.31 55.32 63.57 66.08 69.03 40.71 65.10 65.78 22.75
McGill 71.75 67.67 70.88 41.58 70.20 66.72 47.27 73.78 65.17 65.93 65.77 76.14 77.28 60.74 73.73 72.43 45.28

∆ 6.49 -0.05 5.66 -2.53 13.07 3.64 12.08 6.85 9.86 10.61 2.2 10.06 8.25 20.03 8.63 6.65 22.53

Table 4: Head-match CoNLL F1 scores of our final submission (McGill) as compared to the shared-task baseline for
each language. Delta is the difference in F1 score of both models. The datasets for each language, from left to right,
are: ca_ancora, cs_pcedt, cs_pdt, de_parcorfull, de_potsdamcc, en_gum, en_parcorfull, es_ancora, fr_democrat,
hu_szegedkoref, lt_lcc, pl_pcc, ru_rucor, hu_korkor, no_bokmaalnarc, no_nynorsknarc, and tr_itcc.

5 Conclusion

We adapt an entity-ranking coreference resolution
model to multilingual coreference resolution for the
CRAC 2023 shared task. We explore the method
of training and joint encoder, finally using XLM-
R large and a rescaled dataset weighting in our
submission. This method achieved fourth place of
nine submissions in the shared task.
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