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Preface

This volume contains papers describing the CRAC 2023 Shared Task on Multilingual Coreference
Resolution and the participating systems. The public edition of the multilingual collection CorefUD
1.1 was used as the source of training and evaluation data, spanning 17 datasets for 12 languages,
namely Catalan, Czech, English, French, German, Hungarian, Lithuanian, Norwegian, Polish, Russian,
Spanish, and Turkish. Shared task participants were supposed to identify mentions in texts and to predict
coreference relations between the identified mentions; only identity coreference is considered in this
shared task.

7 systems participated in the shared mask. In this volume, system description papers delivered by 4 teams
are presented, preceded with an overview paper describing in more detail the task itself, the input data,
the baseline system, the main evaluation metric, and global performance comparisons.

This year’s shared task follows up on the first edition of the shared task held with CRAC 2022. The
number of languages as well as the number of participating teams has grown, and we can only hope that
this will become a trend.

Finally, we would like to thank all the participants for their efforts, and program committee members
for reviewing the submitted manuscripts. In addition, we would like to thank all authors of the involved
coreference datasets for making the results of their work publicly accessible.

November 2023
Maciej Ogrodniczuk, Zdeněk Žabokrtský

on behalf of the shared task organizers

iii





Shared task specification

https://ufal.mff.cuni.cz/corefud/crac23

Shared task organizers

• Charles University (Prague, Czechia):

– Anna Nedoluzhko

– Michal Novák

– Martin Popel
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Invited Talk

The CRAC 2023 Shared Task on Multilingual Coreference Resolution

Milan Straka, Charles University, Czech Republic

Abstract
In a manner consistent with development in various domains of natural language processing, the
performance of coreference resolution systems has been exhibiting a consistent improvement over recent
years. With coreference resolution being a complex structured prediction problem, quite a few approaches
have been put forth, encompassing auto-/non-autoregressive decoding, diverse mention representation,
and pretrained language models of varying size and kind. In this talk, I seek to offer a review of
prominent approaches and assess and compare them with a high degree of independence. Furthermore,
owing to the CorefUD initiative providing datasets in many languages, I aim to empirically quantify the
impact of multilingual and crosslingual transfer on the performance of the best system of the CRAC 2023
Shared Task on Multilingual Coreference Resolution.

Speaker Bio
Milan Straka is an assistant professor at the Institute of Formal and Applied Linguistics at the Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic. He is the (co-)author of several
shared-task-winning NLP tools like UDPipe, a morphosyntactic analyzer for currently 72 languages;
PERIN, a semantic parser; and CorPipe, the winner of CRAC 2022 and 2023 shared tasks on multilingual
coreference resolution. His further research interests include named entity recognition, named entity
linking, grammar error correction, and multilingual models in general.
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Abstract

This paper summarizes the second edition of
the shared task on multilingual coreference res-
olution, held with the CRAC 2023 workshop.
Just like last year, participants of the shared
task were to create trainable systems that de-
tect mentions and group them based on identity
coreference; however, this year’s edition uses
a slightly different primary evaluation score,
and is also broader in terms of covered lan-
guages: version 1.1 of the multilingual col-
lection of harmonized coreference resources
CorefUD was used as the source of training
and evaluation data this time, with 17 datasets
for 12 languages. 7 systems competed in this
shared task.

1 Introduction

The idea of a shared task focused on resolving
coreference for multiple languages goes back to
SemEval-2010 (Recasens et al., 2010) with seven
languages and CoNLL-2012 (Pradhan et al., 2012)
with three languages included. The amount of lan-
guages has been extended to 10 languages (with
multiple datasets for some of them) in the Mul-
tilingual Coreference Resolution Shared Task at
CRAC 2022 (Žabokrtský et al., 2022), making use
of the CorefUD 1.0 collection (Nedoluzhko et al.,
2022). This paper reports on the second edition
of this shared task organized in 2023,1 associated
with CRAC again.

In brief, the most important improvements in this
year’s edition are the following. First, the shared

1https://ufal.mff.cuni.cz/corefud/
crac23

task employs a newer version of the CorefUD col-
lection. CorefUD 1.1 contains updated versions
of 13 datasets (for 10 languages) already included
in CorefUD 1.0, one new dataset for (already in-
cluded) Hungarian, and 3 new datasets for newly
added languages: 2 for Norwegian and 1 for Turk-
ish.

Second, the original morpho-syntactic features
in the development and test sets were replaced by
the output of UDPipe 2 (Straka, 2018) to make the
evaluation scheme more realistic (with gold fea-
ture values being available, coreference prediction
might be simplified to some extent, compared to
real-world application scenarios).

Third, we use the head-matching approach for
mentions in the primary score in this year’s edi-
tion instead of partial matching. Last year, partial
matching led several teams to optimize their pre-
dicted mentions by reducing them to their syntactic
heads, thereby losing the information about full
mention spans.

The remainder of the paper is structured as fol-
lows. Section 2 focuses on changes of this shared
task’s data compared to the previous edition. Sec-
tion 3 explains the evaluation metrics – the pri-
mary score as well as the supplementary ones –
employed in the shared task. Section 4 describes
the baseline system and the 7 participating systems.
Section 5 summarizes the results. Section 6 con-
cludes.

2 Datasets

Like the previous year, the shared task draws its
training and evaluation data from the public part of
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CorefUD dataset docs sents words zeros entities avg. len. non-singletons

Catalan-AnCora 1298 13,613 429,313 6,377 18,030 3.5 62,417
Czech-PCEDT 2312 49,208 1,155,755 35,844 52,721 3.3 168,138
Czech-PDT 3165 49,428 834,720 22,389 78,747 2.4 154,983
English-GUM 195 10,761 187,416 99 27,757 1.9 32,323
English-ParCorFull 19 543 10,798 0 202 4.2 835
French-Democrat 126 13,057 284,883 0 39,023 2.0 46,487
German-ParCorFull 19 543 10,602 0 259 3.5 896
German-PotsdamCC 176 2,238 33,222 0 3,752 1.4 2,519
Hungarian-KorKor 94 1,351 24,568 1,988 1,134 3.6 4,103
Hungarian-SzegedKoref 400 8,820 123,968 4,857 5,182 3.0 15,165
Lithuanian-LCC 100 1,714 37,014 0 1,224 3.7 4,337
Norwegian-BokmaalNARC 346 15,742 245,515 0 53,357 1.4 26,611
Norwegian-NynorskNARC 394 12,481 206,660 0 44,847 1.4 21,847
Polish-PCC 1828 35,874 538,885 470 127,688 1.5 82,804
Russian-RuCor 181 9,035 156,636 0 3,636 4.5 16,193
Spanish-AnCora 1356 14,159 458,418 8,112 20,115 3.5 70,663
Turkish-ITCC 24 4,733 55,341 0 690 5.3 3,668

Table 1: Data sizes in terms of the total number of documents, sentences, tokens, zeros (empty words), coreference
entities, average entity length (in number of mentions) and the total number of non-singleton mentions. Train/dev/test
splits of these datasets roughly follow 8/1/1 ratio. See Nedoluzhko et al. (2022) for details.

the CorefUD collection (Nedoluzhko et al., 2022),2

now in its latest release (1.1).3 There are 17
datasets for 12 languages (3 language families).
Compared to CorefUD 1.0, which was used in the
previous year of the shared task, there are 4 new
datasets and 2 new languages (1 new language fam-
ily): Hungarian KorKor, Norwegian NARC (Bok-
mål and Nynorsk versions), and Turkish ITCC.

CorefUD ensures that the datasets are unified
at the file format level: They use the CoNLL-U
format with extra annotation in the last column.4

The data have not been sufficiently harmonized
at the level of annotation guidelines (for example,
different datasets may have different rules for the
extent of a mention). Table 1 gives an overview of
the datasets and their sizes.

We follow the official train/dev/test splits of
CorefUD 1.1.

2.1 Updated Resources

The 13 datasets that were already available in
CorefUD 1.0 are introduced in Žabokrtský et al.
(2022). Instead of repeating the introduction here,
we focus on changes between CorefUD 1.0 and 1.1.

2https://ufal.mff.cuni.cz/corefud
3http://hdl.handle.net/11234/1-5053
4https://ufal.mff.cuni.cz/~popel/

corefud-1.0/corefud-1.0-format.pdf

Catalan-AnCora (ca_ancora) and Spanish-
AnCora (es_ancora): The 3LB section of the
AnCora treebank is omitted from CorefUD 1.1 be-
cause it does not contain coreference annotation.
Named entities that are not annotated for coref-
erence are omitted also in the remaining sections
(previously they appeared as singletons). There
are also some corrections in the LEMMA column
and in dependency relations; the arg and tem se-
mantic attributes from the original corpus are now
visible in the MISC column.

Czech-PCEDT (cs_pcedt) and Czech-PDT
(cs_pdt): Removed superfluous empty nodes (ze-
ros) #Rcp, #Cor and #QCor. Removed empty
nodes depending on the artificial root. Improved
guessing of pronominal forms for empty nodes,
fixed cases where conditional auxiliaries in multi-
word tokens are used to break mention spans. There
are also some improvements in morphological and
syntactic annotation. The tectogrammatical func-
tors from the original corpus are now visible in the
MISC column.

English-GUM (en_gum): new data from GUM
v9 (published in Universal Dependencies 2.12),
the total size increased from 164 to 187 thousand
words.

English-ParCorFull (en_parcorfull) and Ger-
man-ParCorFull (de_parcorfull): Morpho-
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syntactic annotation updated using UD 2.10 models
for UDPipe 2. In addition, the conversion of the En-
glish data was fixed so that mentions are detected
even in invalid files.

French-Democrat (fr_democrat): Conversion
into CorefUD reimplemented, fixing multiple bugs.

German-PotsdamCC (de_potsdam), Hun-
garian-SzegedKoref (hu_szeged), Lithuanian-
LCC (lt_lcc), Polish-PCC (pl_pcc), and Russian-
RuCor (ru_rucor): Morpho-syntactic annotation
updated using UD 2.10 models.

2.2 New Resources

Hungarian-KorKor (hu_korkor) (Vadász, 2022)
contains texts from two sources: articles from Hun-
garian Wikipedia and texts from the Hungarian
website of the GlobalVoices news portal. Com-
pared to hu_szeged, the latter contains student
essays and news articles. Both corpora contain
zeros in subject, object, and possessor positions,
but the rules for their placement are not identical.
Moreover, the tagset of coreference and anaphora
relations are different as well.

Norwegian-BokmaalNARC and Norwegian-
NynorskNARC (no_bokmaalnarc, no_nynorsk-
narc) (Mæhlum et al., 2022) are based on parts
of the Norwegian Dependency Treebank (NDT),
which contains mostly news texts, but also govern-
ment reports, parliamentary transcripts, and blogs
in the two varieties of written Norwegian – Bokmål
and Nynorsk. Train/dev/test splits correspond to
those in the UD version of the NDT treebank.

Turkish-ITCC (tr_itcc) (Pamay and Eryiğit,
2018) is based on the Marmara Turkish Corefer-
ence Corpus, which in turn contains documents
from the METU Turkish Corpus. There is an over-
lap between ITCC and the UD Turkish IMST tree-
bank. The gold-standard morphosyntactic annota-
tion of sentences that occur in both datasets was
taken from IMST; the remaining sentences were
parsed by a model trained on IMST. Train/dev/test
split in the shared task follows that of CorefUD.5

The coreference annotation in this corpus is less ad-
vanced than in the other corpora in CorefUD: some
paragraphs completely lack coreference annotation,

5The CorefUD ITCC data split is not compatible with
the IMST treebank data split in Universal Dependencies 2.12
because the sentences were shuffled in IMST. An improved
version of IMST is prepared for UD 2.13 to be released in
November 2023: The original ordering of sentences from
METU is restored, sentence identifiers refer to METU, docu-
ment boundaries are marked and data split is made compatible
with ITCC.

in some other paragraphs coreference is annotated
only partially. Annotation of zeros is missing in
the current version.

2.3 Data pre-processing

For training and tuning purposes, we have provided
the participants with the train and dev sets as they
were released in CorefUD 1.1, i.e. with gold coref-
erence annotation for all datasets and manually an-
notated morpho-syntactic features for the datasets
that originally include them. However, in the dev
and test sets intended for evaluation (and submit-
ting), we have deleted the corefence annotation
and replaced original morpho-syntax features by
the outputs of UD 2.10 models for all datasets,
even those in which these features were originally
human-annotated. Although it makes the evalu-
ation setup more realistic, there is still room for
improvement as this has not affected zeros. Simi-
larly to last year’s edition, participants have been
given the input documents with zeros already re-
constructed.

3 Evaluation Metrics

Systems participating in the shared task are evalu-
ated with the CorefUD scorer.6 The primary evalu-
ation score is the CoNLL F1 score with singletons
excluded and using head mention matching, which
is a change to the last year’s edition, where partial
mention matching was used in the primary score.
In addition, we calculate several other supplemen-
tary scores to compare the shared task submissions.

Official scorer We use the CorefUD scorer to
evaluate participants’ submissions. It is built on
the Universal Anaphora (UA) scorer 1.0 (Yu et al.,
2022)7 taking advantage of the implementations of
all generally used coreferential measures with no
modifications. Additionally, the CorefUD scorer in-
troduces the implementation of head match and the
Mention Overlap Ratio (MOR; Žabokrtský et al.,
2022). It also supports matching of potentially dis-
continuous mentions and anaphor-level evaluation
of zeros. Naturally, it is also compatible with the
CorefUD 1.0 file format.8

6https://github.com/ufal/
corefud-scorer

7This in turn reimplements the official CoNLL-2012 scorer
(Pradhan et al., 2014).

8After the scorer for the shared task had been frozen, the
UA scorer 2.0 (Yu et al., 2023), which integrates most of the
new features from the CorefUD scorer, was released as a result
of the cooperation of the authors of the two scorers.
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Mention matching Within the CorefUD col-
lection, some datasets do not specify mention
spans in their original annotations (e.g. cs_pdt,
hu_korkor). In such datasets, a mention is primar-
ily identified by its head and loosely associated
with a dependency subtree rooted in this head. Ad-
ditionally, in other datasets, it can be challenging to
precisely define mention boundaries, particularly
when mentions involve embedded clauses, long de-
tailed specifications, etc. On the other hand, some
of the original sources from CorefUD do not anno-
tate mention heads at all (e.g. de_potsdam, lt_lcc).
Consequently, CorefUD addresses this issue by
specifying both the mention span and its head for
each mention in all its datasets. While mention
spans are derived using the dependency tree only if
they are not present in the original source, mention
heads are always determined from the tree9 using
the Udapi block corefud.MoveHead.10

The availability of both spans and heads in gold
annotation allows for various possible ways of men-
tion matching in the evaluation. Last year, the
participants were asked to predict only the span
boundaries in order to keep the task simple. To
compensate for the drawbacks of exact matching
(i.e., precise matching of the full span), we pro-
posed the partial mention matching method and
used it also in the primary score. A partial match
of a predicted mention to a gold mention is found
if all its words are included in the gold mention and
one of them is the gold head. Nevertheless, this ap-
proach appeared to be problematic. It encouraged
some participants to post-process their predictions
by reducing the full mention spans to the head word
only. First, since not all the participants applied
this post-processing, it made the comparison of the
participants’ submissions slightly unfair. To rec-
tify this imbalance, we evaluated the submissions
also with a head match, deriving the mention heads
automatically using the same method as for the
gold spans. More importantly, forced shrinkage
of predicted mention spans performed by some of
the teams resulted in loss of the original mention

9Note that some datasets label a semantic head (single
word) or a minimal span (multiple words possible, e.g. in
ARRAU, Uryupina et al., 2020), i.e., a unit that carries the
most crucial semantic information, instead. Nedoluzhko et al.
(2021) have shown though that heads labeled in coreference
annotation most often correspond to heads in a dependency
tree.

10https://github.com/udapi/
udapi-python/blob/master/udapi/block/
corefud/movehead.py

spans produced by their systems. Consequently,
such submissions failed in the evaluation with the
exact match.

For this year’s edition, we decided to use head
match in the primary metric. Two mentions are
considered matching if their heads correspond to
identical tokens. If there are multiple gold or pre-
dicted mentions with the same head, full spans
are taken into account but only to disambiguate
between multiple mentions with the same head.
Otherwise, full mention spans are ignored.

Therefore, the participants were expected to pre-
dict mention heads in their submissions. However,
due to the disambiguation rules we encouraged the
participants to predict the mention span boundaries
as well. In addition, their presence allows us to
evaluate the systems with respect to exact match-
ing as one of the supplementary scores.

Note that the participants were also free to use
the Udapi block corefud.MoveHead in order
to derive the mention head from the dependency
tree, if their systems were not able to predict the
heads by their own means.11

Singletons New additions to the CorefUD collec-
tion have not altered the dominance of the datasets
without the annotation of singletons, i.e., entities
comprising only a single mention. We thus keep
the setup from the last year’s edition and calculate
the primary score excluding potential singletons in
both gold and predicted coreference chains.

Primary score As is usual for coreference res-
olution tasks, we employed the CoNLL F1 score
(Denis and Baldridge, 2009; Pradhan et al., 2014)
as the primary evaluation score. It is an unweighted
average of the F1 scores of three coreference met-
rics: MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998) and CEAF-e (Luo, 2005), each
adopting a different view on coreference rela-
tions, namely link-based, mention-based and entity-
based, respectively. A single primary score provid-
ing a final ranking of participating submissions is
a macro-average over all datasets in the CorefUD
test collection.

Supplementary scores In addition to the primary
CoNLL F1 score, we calculate alternative versions
of this metric using different ways of mention
matching: partial-match and exact-match. Note

11All of the participants used this Udapi block for predicting
heads (or another method with identical results on the test set).
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that the partial-match setup was used as the pri-
mary score in the last year’s edition. Furthermore,
we compute the primary metrics using the head-
match for all mentions including singletons.

Besides the primary score, we also report the sys-
tems’ performance in terms of the coreference mea-
sures that contribute to the CoNLL score as well as
other standard measures, e.g. BLANC (Recasens
and Hovy, 2011) and LEA (Moosavi and Strube,
2016). To evaluate the quality of mention matching
while ignoring the assignment of mentions to coref-
erential entities, we use the MOR score. Last but
not least, we also measure the performance of the
systems on zeros using the anaphor-decomposable
score for zeros (Žabokrtský et al., 2022), which is
an application of the scoring schema proposed by
Tuggener (2014).

4 Participating Systems

4.1 Baseline
Same as last year, the baseline system is the end-to-
end neural coreference resolution system based on
Pražák et al. (2021).12 The model solves both tasks
(mention prediction and coreference linking) at the
same time. It goes through all the possible mention
spans and learns to predict the antecedent of each
span. In case a span is not the correct mention or
it is the singleton the model learns to align it to
the artificial antecedent. Therefore, the model is
not able to predict singletons. During training, the
marginal probability of all the correct antecedents
of each mention is maximized. More details can be
found in Pražák et al. (2021).

4.2 System Submissions
This year, 7 teams participated in the shared task.
The descriptions below are based on the informa-
tion provided by the respective participants in an
online questionnaire. As the authors of the Deep-
BlueAI system have neither provided us with any
details nor submitted their system description pa-
per, we cannot include it among the descriptions.

Anonymous13 The system initially drew inspira-
tion from wl-coref (Dobrovolskii, 2021), account-
ing for head information. The authors found that
XLM-Roberta yields the best results, leading to its
selection for subsequent tests. They developed a

12https://github.com/ondfa/
coref-multiling

13The authors of this system asked us to anonymize this
submission.

conversion system to manage the CoNLL-U format
as jsonlines. Furthermore, they efficiently incorpo-
rate new features (e.g., UPOS, DEPREL, FEATS)
with Udapi assistance. Alongside the CoNLL fea-
tures, a BIO-like scheme is added to the indices in
mention spans. Various distance/matching features
and context sizes are used to update token scores
for potential antecedents. The results primarily de-
pend on a model’s ability to construct the assigned
scheme, where the head (B) is the primary focus
of this specific task. Future work plans include
leveraging similarity- and classification properties
through fine-tuning sentence embeddings to further
enhance span detection and merging. The authors
note that they did not conduct any ablation study,
and there is still much to explore regarding the
usefulness of features.

CorPipe14 ÚFAL CorPipe is a minor evolution
from the system implemented in the previous year
(Straka and Straková, 2022). All models undergo
training on the concatenation of all treebanks. They
utilize either the mT5-large pre-trained model or
the mT5-xl pre-trained model. The architecture
remains the same, with a few modifications: The
system employs 2560 subwords during prediction,
which is possible due to the relative embeddings
in mT5. Instead of using CRF to perform mention
span detection (since it would be complicated to
ensemble), the authors train the model using stan-
dard classification into generalized BIO encoding,
allowing overlapping mentions. Subsequently, a dy-
namic programming algorithm performs structured
prediction, whose output always presents a valid
sequence of BIO tags. Ensembling takes place
during both the mention span detection and the
coreference linking. The ÚFAL CorPipe team sub-
mits multiple configurations – one best-performing
mT5-large-sized model, one best-performing mT5-
xl-sized model, a best-performing checkpoint se-
lected for each treebank independently, and the best
submission that is an ensemble of 3 checkpoints
chosen for each treebank independently. See Straka
(2023) in this volume for details.

DFKI-Adapt15 The DFKI-Adapt system is
based on the baseline system provided by the orga-
nizers. This system augments it by adding charac-
ter embeddings for each token to the original input

14The CorPipe system was submitted to CodaLab by user
“straka” from team ÚFAL CorPipe.

15The DFKI-Adapt system was submitted to CodaLab by
user “tatiana.anikina” from team DFKI_TR.
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embeddings (based on multilingual BERT) using
LSTM (300 dimensions). The training procedure
starts with pre-training the joint model utilizing all
languages combined into a single training set. Fol-
lowing this step, the team merges the datasets for
the related languages (for example, all Slavic or Ro-
mance languages) and fine-tunes a separate model
for each language using these combined datasets.
Additionally, they train the language-specific task
adapters added to the BERT model. During the
training process, they sort all documents after every
epoch according to their difficulty for the model,
as determined by the loss function. The most chal-
lenging instances are chosen for further model fine-
tuning before the next epoch begins. The DFKI-
Adapt system employs no external resources for
training, relying solely on the Shared Task data.

DFKI-MPrompt16 The DFKI-MPrompt system
integrates two independent modules. One mod-
ule performs mention generation based on prompt
learning facilitated by the OpenPrompt library. Us-
ing a prefix template and a frozen mT5-large model,
the prompt model generates all possible mentions
within a given sentence, including their indices.
The training of this single prompt model encom-
passes all languages. The other module uses the
baseline trained on gold mentions. Given the avail-
ability of gold mentions, the baseline’s mention
scorer is not utilized. The baseline also undergoes
training on the combined datasets. In the final stage,
the authors input the mentions generated by the
prompt model to the baseline to identify coreferent
pairs.

McGill17 The McGill system is based on the
Longdoc “unbounded memory” model (Toshniwal
et al., 2020). It is similar to end-to-end coreference
(Lee et al., 2017) adapted for BERT (Joshi et al.,
2019). The primary difference is that the model has
a discrete set of candidate entities. The McGill sys-
tem uses the same hyperparameters that Toshniwal
et al. (2021) use for the PreCo dataset, with the fol-
lowing exceptions: Speaker information is included
at the start of each sentence if present in the dataset.
A language embedding is defined for each dataset
using the same configuration as the genre embed-
ding used by Lee et al. (2017). The McGill model
uses a batch size of 1, similar to most other models

16The DFKI-MPrompt system was submitted to CodaLab
by user “natalia_s” from team DFKI_TR.

17The McGill system was submitted to CodaLab by user
“ianpo”.

based on Lee et al. (2017). The authors experi-
mented with using XLM-Roberta (Conneau et al.,
2020) and mT5 (Xue et al., 2021) Large model
sizes as the language model encoder. They found
that XLM-Roberta leads to better performance, so
they used XLM-Roberta Large in the final sub-
mission. The McGill team trained the model for
60k steps. In the first 50k steps, they trained their
model on all datasets weighted by the number of
documents in the dataset. For the last 10k steps,
they trained the model on all datasets weighted
equally. The model with the best performance on
the development set, corresponding to 57.5k steps,
was submitted. The McGill model predicts only
coreferring spans. Therefore, the McGill team es-
timated mention heads using Udapi following the
same method as the shared-task baseline. For de-
tails, see Porada and Cheung (2023) in this volume.

Morfbase18 The Morfbase system enhances the
baseline system by incorporating morphological
features, drawing inspiration from Pamay Arslan
and Eryiğit (2023). These linguistic features, rep-
resented as one-hot vectors, are concatenated to
BERT representations. Both the mention detec-
tion and coreference linking stages utilize these
hand-crafted linguistic features. The team used
the provided heuristic head detection script on the
model outputs to estimate the heads of the predicted
mentions. The primary goal of this model is to en-
hance coreference performance, particularly for
pro-dropped and morphologically rich languages.
See Pamay Arslan et al. (2023) in this volume for
details.

Ondfa The UWB system remains identical to the
one submitted in the previous year, optimized for
the new metric (Pražák and Konopík, 2022). It
builds on the baseline system with several mod-
ifications. Initially, the team trains a joint cross-
lingual model (XLMR-large) for all datasets. Sub-
sequently, they fine-tune this model for each dataset
separately. The model learns to predict the heads of
the mentions from the original spans. They either
use head prediction or whole span prediction with
corefud.MoveHead (chosen for each dataset
separately based on the performance on the dev
dataset). Syntax trees are also incorporated as fea-
tures into the model. Additionally, the UWB team
modified the model to handle singletons.

18The Morfbase system was submitted to CodaLab by user
“TugbaP” from team TrCR, originally under the name “itunlp”.
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Figure 1: The evolution of the competition in the development (left) and the test phase (right).

4.3 System Comparison

Table 2 shows the basic properties of all submitted
systems for evaluation. Half of the submissions
based their systems on the provided baseline. The
participants who used the baseline model either
used it as it is, or added some modifications to
it, such as soft prompt, tuning per language, or
changing the sequence length.

Comparing Tables 2 and 3 reveals that results
generally improve with larger model sizes, apart
from some exceptions. This is expected, as larger
models have more parameters and can capture more
information and nuances from the data. However,
larger models also require more computational re-
sources and time to train and run, which could be a
challenge for some participants.

5 Results and Comparison

5.1 Evolution of CodaLab Submissions

Across the two phases of the competition, partici-
pants had access to the official evaluation scripts,
enabling them to track and evaluate the metrics
dynamically. We also encouraged them to send
continuous results into the CodaLab system.19 Af-
ter the competition, we collected all continuously
received results from all contributors. The compe-
tition evolved as participants refined their models
and strategies. We can see non-negligible progress
in Figure 1 in terms of observed metrics during

19https://codalab.lisn.upsaclay.fr/
competitions/11800

both phases, which was caused most probably by
competition among participants, who could check
the results of others during all phases.

5.2 Main Results

The main results are summarized in Table 3. The
CorPipe system is the best one according to the
official primary metric (head-match excluding sin-
gletons) as well as according to three alternative
metrics: partial-match excluding singletons (which
was the primary metric last year), exact-match ex-
cluding singletons and head-match including sin-
gletons. The Anonymous system is the second best
according to all four metrics. All metrics result
in the same ordering of systems with a single ex-
ception of the Ondfa system, which is the second
worst according to exact-match, but the third best
according to other metrics. This is caused by the
fact that for some datasets (cf. description of Ondfa
in Section 4.2), Ondfa predicted only the head word
and the span was always just this single word.

Table 4 shows recall, precision, and F1 for six
metrics. The F1 scores of the first five metrics
(MUC. B3, BLANC, and LEA) result in exactly
the same ordering of systems (same as the primary
metric). Most of the systems have higher precision
than recall for all the metrics, but the highest dis-
balance is in the BASELINE system. CorPipe is the
only system that has higher recall than precision
for at least some metrics (MUC and CEAF-e), but
other metrics have similar precision and recall.

The MOR metric (mention overlap ratio) mea-
7



Name Baseline? Pretrained model Model size Seq. length
Anonymous No xlm-roberta-base 1-20M (various) 512
BASELINE Yes bert-base 220M 512
CorPipe No google/mt5-large, google/mt5-xl 567M, 1.7G (two sizes) 512, 2560
DFKI-Adapt Yes bert-base 259M 512
DFKI-MPrompt Yes bert-base + soft prompt 221M 512
McGill No xlm-roberta-large 596M 512
Morfbase Yes bert-base 219M 512
Ondfa Yes xlm-roberta-large 600M 512

Name Tuned per lang.? Batch size Tuned hyperparameters
Anonymous Some (l. families) 16 2 – Input size, learning rate
BASELINE No 1 doc 0
CorPipe No 8, 12, 16, 32 4 – Model size, batch size, learning rate, epochs
DFKI-Adapt Yes 1 doc 3 – Dropout, mention loss coef, task LR
DFKI-MPrompt No 1 sent + 1 doc 0
McGill No 1 1 – Number of training steps
Morfbase No 256 0
Ondfa Yes 1 doc 4 – Specific for the model

Table 2: The table compares properties of systems participating in the task (except for the DeepBlueAI system,
as there are no details available) . The systems are ordered alphabetically. The shortcuts in headings are defined
as follows: Name is the name of the submission, Baseline? indicates whether they used a baseline model or not,
Tuned per lang.? indicates whether they tuned their model for each language or not. various in Anonymous means
various settings depending on features and architecture.

sures only the mention matching quality, while ig-
noring the coreference, but even then the ordering
of systems is similar to the primary metric (Ondfa
is the third worst according to MOR, again because
it does not predict full spans for some datasets).

Table 5 shows that the CorPipe system consis-
tently outperforms the other submissions across
all datasets and languages. Furthermore, the low
results on tr_itcc confirm that the annotation of
coreference is unfinished in this dataset. Similarly,
we experienced an unexpectedly low performance
of submissions on en_parcorfull in the 2022 edi-
tion of the shared task. This was a consequence
of the small size of the dataset and an error in the
CorefUD conversion pipeline, making one of the
two documents in the test set completely missing
all coreference annotation. The error was fixed
this year, but the English and German ParCorFull
datasets remain the smallest ones in CorefUD, so
there is a high risk of overfitting. We admit such
outliers may have a negative impact on the overall
score, especially if macro-averaging is used in the
primary score to weigh performance on individ-
ual datasets. However, we still believe that due to
differences in languages and annotation standards,
each dataset should contribute equally. The im-
pact of potential errors in some datasets is then

mitigated by the number of contributing datasets.

5.3 Evaluation of Zeros
Table 6 focuses on the evaluation of zero anaphors
for individual languages where anaphoric zeros are
annotated.20 The F1 scores are again highly cor-
related with the primary score, with the exception
of pl_pcc, where CorPipe was outperformed by
Ondfa (4 points better) and DeepBleuAI (1 point
better). However, according to Table 1, pl_pcc has
a very small number of zeros annotated, so these
results are not reliable.

5.4 Further analysis
Similarly to last year, we provide several additional
tables in the appendices to shed more light on the
differences between the submitted systems.

Tables 7–8 show results factorized according to
the different universal part of speech tags (UPOS)
in the mention heads. Table 7 contains results on
datasets where all entities without any mention with
a given UPOS as head were deleted. Table 8 con-
tains results on datasets where all mentions without
a given UPOS as head were deleted, so these results
may be a bit misleading because e.g. the PRON

20Recall that the setup for zeros is slightly unrealistic (see
Section 2.3).
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excluding singletons with singletons

system head-match partial-match exact-match head-match

CorPipe 74.90 73.33 (-1.57) 71.46 (-3.44) 76.82 (+1.91)
Anonymous 70.41 69.23 (-1.18) 67.09 (-3.32) 73.20 (+2.79)
Ondfa 69.19 68.93 (-0.26) 53.01 (-16.18) 68.37 (-0.82)
McGill 65.43 64.56 (-0.88) 63.13 (-2.30) 68.23 (+2.80)
DeepBlueAI 62.29 61.32 (-0.98) 59.95 (-2.34) 54.51 (-7.78)
DFKI-Adapt 61.86 60.83 (-1.03) 59.18 (-2.69) 53.94 (-7.92)
Morfbase 59.53 58.49 (-1.05) 56.89 (-2.64) 52.07 (-7.47)
BASELINE 56.96 56.28 (-0.68) 54.75 (-2.21) 49.32 (-7.64)
DFKI-MPrompt 53.76 51.62 (-2.15) 50.42 (-3.35) 46.83 (-6.93)

Table 3: Main results: the CoNLL metric macro-averaged over all datasets. The table shows the primary metric
(head-match excluding singletons) and three alternative metrics: partial-match excluding singletons, exact-match
excluding singletons and head-match with singletons. A difference relative to the primary metric is reported in
parenthesis. The best score in each column is in bold. The systems are ordered by the primary metric.

system MUC B3 CEAF-e BLANC LEA MOR

CorPipe 80 / 79 / 80 73 / 73 / 73 73 / 71 / 72 72 / 73 / 72 70 / 71 / 70 79 / 80 / 79
Anonymous 74 / 78 / 76 65 / 72 / 68 67 / 68 / 67 63 / 71 / 66 62 / 69 / 65 74 / 78 / 76
Ondfa 74 / 78 / 75 64 / 71 / 67 64 / 67 / 66 62 / 70 / 65 61 / 68 / 64 52 / 83 / 63
McGill 69 / 76 / 71 60 / 69 / 63 58 / 68 / 62 58 / 68 / 61 57 / 66 / 60 59 / 82 / 67
DeepBlueAI 67 / 74 / 70 56 / 65 / 59 55 / 63 / 58 53 / 64 / 56 53 / 61 / 56 61 / 81 / 67
DFKI-Adapt 66 / 73 / 69 56 / 65 / 59 56 / 62 / 58 53 / 63 / 56 52 / 61 / 55 58 / 80 / 66
Morfbase 63 / 71 / 66 51 / 65 / 56 56 / 58 / 56 47 / 62 / 52 47 / 61 / 52 59 / 78 / 66
BASELINE 56 / 76 / 63 46 / 69 / 54 48 / 62 / 54 44 / 67 / 51 42 / 64 / 49 49 / 87 / 61
DFKI-MPrompt 57 / 67 / 61 45 / 60 / 50 49 / 56 / 51 41 / 57 / 45 40 / 55 / 45 57 / 71 / 62

Table 4: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets.
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CorPipe 82.59 79.33 79.20 72.12 71.09 76.57 69.86 83.39 69.82 68.92 69.47 75.87 78.74 78.77 79.54 82.46 55.63
Anonymous 79.51 75.88 76.39 64.37 68.24 72.29 59.02 80.52 66.13 64.65 66.25 70.09 75.32 73.33 77.58 80.19 47.22
Ondfa 76.02 74.82 74.67 71.86 69.37 71.56 61.62 77.18 60.32 66.38 65.75 68.52 72.39 70.91 76.90 76.50 41.52
McGill 71.75 67.67 70.88 41.58 70.20 66.72 47.27 73.78 65.17 60.74 65.93 65.77 73.73 72.43 76.14 77.28 45.28
DeepBlueAI 67.55 70.38 69.93 48.81 63.90 63.58 43.33 69.52 55.69 54.38 63.14 66.75 69.86 68.53 73.11 74.41 36.14
DFKI-Adapt 68.21 68.72 67.34 52.52 69.28 65.11 36.87 69.19 58.96 51.53 58.56 66.01 70.05 68.21 67.98 72.48 40.67
Morfbase 68.23 64.89 64.74 39.96 64.87 62.80 40.81 69.01 53.18 52.91 56.41 64.08 68.17 66.35 67.88 68.53 39.22
BASELINE 65.26 67.72 65.22 44.11 57.13 63.08 35.19 66.93 55.31 40.71 55.32 63.57 65.10 65.78 66.08 69.03 22.75
DFKI-MPrompt 55.45 60.39 56.13 40.34 59.75 57.83 34.32 58.31 52.96 44.53 48.79 56.52 65.12 62.99 61.15 61.96 37.44

Table 5: Results for individual languages in the primary metric (CoNLL).
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system ca_ancora cs_pdt cs_pcedt es_ancora hu_korkor hu_szeged pl_pcc

CorPipe 93 / 92 / 92 91 / 92 / 92 87 / 88 / 87 94 / 95 / 95 82 / 89 / 85 88 / 70 / 78 75 / 69 / 72
Anonymous 91 / 90 / 91 90 / 91 / 90 86 / 86 / 86 94 / 95 / 94 79 / 89 / 84 83 / 74 / 78 71 / 63 / 67
Ondfa 91 / 90 / 91 90 / 92 / 91 86 / 87 / 87 94 / 94 / 94 77 / 87 / 82 86 / 74 / 79 79 / 73 / 76
McGill 89 / 90 / 89 88 / 89 / 89 82 / 87 / 84 92 / 95 / 94 81 / 85 / 83 81 / 73 / 77 71 / 65 / 68
DeepBlueAI 85 / 89 / 87 86 / 90 / 88 83 / 86 / 85 91 / 94 / 93 75 / 79 / 77 78 / 70 / 74 79 / 68 / 73
DFKI-Adapt 85 / 84 / 84 84 / 85 / 84 78 / 81 / 80 89 / 89 / 89 67 / 77 / 72 67 / 61 / 64 62 / 68 / 65
Morfbase 84 / 85 / 85 81 / 84 / 83 78 / 81 / 80 88 / 89 / 88 57 / 73 / 64 61 / 57 / 59 33 / 40 / 36
BASELINE 82 / 82 / 82 81 / 84 / 82 77 / 81 / 79 87 / 88 / 87 60 / 68 / 64 61 / 57 / 59 50 / 80 / 62
DFKI-MPrompt 78 / 83 / 80 78 / 85 / 81 72 / 79 / 75 78 / 87 / 82 69 / 70 / 69 59 / 45 / 51 46 / 55 / 50

Table 6: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across
individual languages. Only the datasets that contain anaphoric zeros are listed (en_gum excluded as all zeros in its
test set are non-anaphoric). Note that these scores are directly comparable to neither the CoNLL score nor to the
supplementary scores calculated with respect to whole entities in Table 4.

column does not consider all pronominal coref-
erence, but only pronoun-to-pronoun coreference.
An entity with one pronoun and one noun mention
is excluded from this table (because it becomes a
singleton after deleting noun or pronoun mentions
and singletons are excluded from the evaluation in
these tables).

Tables 9–12 show various statistics on the enti-
ties and mentions in a concatenation of all the test
sets. Note that such statistics are mostly influenced
by larger datasets. Tables 13–16 show the same
statistics for cs_pcedt, which is the largest dataset
in CorefUD 1.1 (as for the number of words and
non-singleton mentions).

6 Conclusions and Future Work

Both editions of the shared task attracted a substan-
tial number of participants and led to an increase in
the state of the art. Hence, the success of the two
completed shared tasks supports us in the idea of
continuing this initiative in the future.

However, there are challenges, too. For instance,
the underlying data collection is still somewhat lim-
ited from the typological perspective, and thus our
ambition is to add more languages with substan-
tially different typological structures, experiment
with other writing systems, or add a historical per-
spective with data from classical languages.

There are also more technical questions that
would deserve a discussion in the future, such
as whether weightless macro-averaging is the
best approach for data collections with order-of-
magnitude differences in training and testing data
sizes. Similarly, substantial differences in internal
annotation consistency in individual resources is

also an issue from the evaluation viewpoint, since,
for example, optimizing performance for a low-
quality resource might lead to substantial perfor-
mance gains, which, however, may correspond to
systematic deficiencies present in the data rather
than objective quality.

Finally, we aim to progress to a fully realis-
tic evaluation setup which starts from raw or pre-
tokenized text. Participants would be then expected
to reconstruct zeros.
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Tuğba Pamay Arslan, Kutay Acar, and Gülşen Eryiğit.
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A Data References

Catalan AnCora ca_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Czech PCEDT cs_pcedt (Nedoluzhko et al., 2016)
Czech PDT cs_pdt (Hajič et al., 2020)
English GUM en_gum (Zeldes, 2017)
English ParCorFull en_parcorfull (Lapshinova-Koltunski et al., 2018)
French Democrat fr_democrat (Landragin, 2021)
German ParCorFull de_parcorfull (Lapshinova-Koltunski et al., 2018)
German PotsdamCC de_potsdam (Bourgonje and Stede, 2020)
Hungarian KorKor hu_korkor (Vadász, 2022)
Hungarian SzegedKoref hu_szeged (Vincze et al., 2018)
Lithuanian LCC lt_lcc (Žitkus and Butkienė, 2018)
Norwegian Bokmål NARC no_bokmaalnarc (Mæhlum et al., 2022)
Norwegian Nynorsk NARC no_nynorsknarc (Mæhlum et al., 2022)
Polish PCC pl_pcc (Ogrodniczuk et al., 2013, 2015)
Russian RuCor ru_rucor (Toldova et al., 2014)
Spanish AnCora es_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Turkish ITCC tr_itcc (Pamay and Eryiğit, 2018)

B Partial CoNLL results by head UPOS

system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipe 72.21 77.05 76.33 51.58 44.38 40.13 33.88 37.44
Anonymous 68.25 72.70 70.84 50.98 38.42 34.15 35.91 41.86
Ondfa 66.98 71.27 70.16 48.52 33.78 24.98 33.76 40.82
McGill 62.67 68.07 63.76 51.03 39.00 23.68 32.87 28.60
DeepBlueAI 59.54 65.05 60.08 40.34 36.57 17.57 28.26 31.68
DFKI-Adapt 57.80 64.02 61.82 39.53 26.72 14.71 21.29 33.03
Morfbase 55.39 61.74 58.45 44.61 28.58 20.74 30.26 29.17
BASELINE 51.82 57.79 56.32 33.89 25.80 14.12 19.43 27.51
DFKI-MPrompt 50.07 57.37 54.84 42.28 21.37 12.30 25.36 17.81

Table 7: CoNLL F1 score evaluated only on entities with heads of a given UPOS. In both the gold and prediction
files we deleted some entities before running the evaluation. We kept only entities with at least one mention with a
given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node had deprel=flat
children, their UPOS tags were considered as well, so for example in “Mr./NOUN Brown/PROPN” both NOUN
and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns NOUN and
PROPN. Otherwise, the CoNLL F1 scores are the same as in the primary metric, i.e. an unweighted average over all
datasets, partial-match, without singletons. Note that when distinguishing entities into events and nominal entities,
the VERB column can be considered as an approximation of the performance on events. One of the limitations of
this approach is that copula is not treated as head in the Universal Dependencies, so e.g. phrase She is nice is not
considered for the VERB column, but for the ADJ column (head of the phrase is nice).
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system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipe 63.51 65.25 63.85 52.93 49.85 50.48 51.24 50.30
Anonymous 57.32 59.16 57.80 49.09 46.65 46.39 46.02 46.08
Ondfa 56.39 58.32 57.08 45.55 42.93 42.79 42.64 42.48
McGill 53.13 55.73 52.97 42.50 39.46 39.50 38.79 38.94
DeepBlueAI 50.43 51.93 49.63 40.39 37.60 38.02 37.36 37.14
DFKI-Adapt 48.56 50.95 50.60 34.66 32.05 32.32 31.76 31.59
Morfbase 47.08 48.93 49.23 36.41 33.90 33.92 33.36 33.19
BASELINE 40.50 43.28 45.60 30.62 27.74 28.48 27.74 27.65
DFKI-MPrompt 39.56 43.31 42.67 29.20 26.53 26.64 26.22 26.33

Table 8: CoNLL F1 score evaluated only on mentions with heads of a given UPOS. In both the gold and prediction
files we deleted some mentions before running the evaluation. We kept only mentions with a given head UPOS
(again considering also deprel=flat children).

C Statistics of the submitted systems on concatenation of all test sets

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 44,806 107 509 2.0 61.7 22.0 6.7 3.2 6.5
Anonymous 46,367 110 232 2.0 64.0 20.3 6.7 3.0 6.0
BASELINE 14,059 33 237 3.8 0.0 57.7 17.3 7.6 17.4
CorPipe 47,054 112 540 2.0 62.6 21.0 6.8 3.2 6.3
DFKI-Adapt 14,808 35 230 3.8 0.0 56.6 17.7 8.0 17.7
DFKI-MPrompt 12,884 31 85 3.7 0.0 55.5 18.2 8.6 17.7
DeepBlueAI 14,635 35 165 3.9 0.0 54.1 18.4 8.4 19.1
McGill 44,059 105 425 1.9 67.8 17.7 5.8 2.7 6.0
Morfbase 15,118 36 92 3.6 0.0 56.9 18.2 8.2 16.8
Ondfa 55,232 131 135 1.8 70.8 16.3 5.2 2.4 5.3

Table 9: Statistics on coreference entities. The total number of entities and the average number of entities per 1000
tokens in the running text. The maximum and average entity “length”, i.e., the number of mentions in the entity.
Distribution of entity lengths (singletons have length = 1). The systems are sorted alphabetically. We can see that the
Ondfa system notably overgenerates, i.e. predicts more entities than in the gold data. On the contrary, DeepBlueAI,
DFKI-Adapt, BASELINE, DFKI-MPrompt, and Morfbase undergenerate and predict on average longer entities (i.e.
with more mentions) than in the gold data. The best two systems, CorPipe and Anonymous, have the statistics
similar to the gold data.
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mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 66,520 158 100 3.1 8.3 45.1 18.7 8.0 3.9 15.9
Anonymous 87,664 209 101 3.3 6.7 41.5 20.5 9.3 4.7 17.3
BASELINE 53,063 126 29 2.2 9.9 50.0 19.0 7.2 3.3 10.6
CorPipe 91,081 217 163 3.2 6.5 41.4 20.8 9.5 4.8 16.9
DFKI-Adapt 56,749 135 29 2.3 9.4 49.0 19.2 7.4 3.5 11.5
DFKI-MPrompt 47,796 114 71 2.9 10.7 50.2 17.2 5.8 2.7 13.2
DeepBlueAI 57,329 136 26 2.3 9.2 48.3 19.5 7.7 3.7 11.7
McGill 81,989 195 20 2.3 7.1 43.8 21.8 9.8 5.0 12.5
Morfbase 54,668 130 29 2.3 9.6 48.8 19.0 7.4 3.5 11.6
Ondfa 97,081 231 29 2.6 6.0 49.7 17.6 7.8 4.3 14.5

Table 10: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions
per 1000 words of running text. The maximum and average mention length, i.e., the number of nonempty nodes
(words) in the mention. Distribution of mention lengths (zeros have length = 0). We can see that Ondfa, CorPipe,
and Anonymous notably overgenerate mentions, i.e. predict more mentions than in the gold data, but these are
the three best systems, so it seems a reasonable strategy. Note that CorPipe is the only system that has higher
Recall than Precision in MUC and CEAF-e, according to Table 4. The average length of mentions predicted by
Ondfa is lower than in the gold data (and it is caused by the single-word mentions in some datasets). CorPipe and
Anonymous are the only two systems that predict long mentions (5+ words) more frequently than in the gold data.

mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 24,961 59 81 3.5 1.3 30.7 25.1 13.6 7.4 21.9
Anonymous 3,088 7 57 3.9 0.0 31.2 25.3 12.3 7.8 23.4
BASELINE 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CorPipe 2,674 6 78 3.7 0.1 31.5 25.7 12.2 8.2 22.4
DFKI-Adapt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DFKI-MPrompt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepBlueAI 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
McGill 3,160 8 15 2.9 0.0 33.7 27.3 12.7 7.6 18.7
Morfbase 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ondfa 3,226 8 21 3.3 0.1 32.5 26.1 12.2 7.2 21.9

Table 11: Statistics on singleton mentions. See the caption of Table 10 for details. Only four systems (Anonymous,
CorPipe, McGill, and Ondfa) attempt to predict singletons and none of them as frequently as in the gold data. Note
that singletons are not annotated in all the (gold) datasets.
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mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM other

gold 10.5 0.6 2.0 44.1 23.3 14.7 7.1 2.7 4.2 1.2 0.5 2.2
Anonymous 8.5 0.0 3.4 51.9 19.1 13.6 5.8 2.5 3.6 1.0 0.6 1.8
BASELINE 11.2 0.0 1.8 39.0 26.6 16.1 8.4 2.5 3.8 1.2 0.3 2.1
CorPipe 8.1 0.0 2.6 52.9 18.6 13.8 5.7 2.6 3.2 0.9 0.6 1.7
DFKI-Adapt 10.8 0.0 1.8 40.3 25.8 15.9 8.0 2.5 3.9 1.2 0.4 2.0
DFKI-MPrompt 12.6 0.0 2.0 37.7 29.0 14.7 9.1 1.7 4.0 1.1 0.2 2.5
DeepBlueAI 10.6 0.0 1.9 41.4 25.2 15.3 7.9 2.7 3.8 1.3 0.4 2.0
McGill 8.0 0.0 2.1 51.5 20.4 13.6 6.3 2.4 2.6 1.0 0.6 1.6
Morfbase 11.0 0.0 1.8 40.1 26.1 16.1 8.1 2.4 3.8 1.1 0.4 1.9
Ondfa 7.3 0.1 2.0 54.1 17.6 14.2 5.4 2.5 2.8 1.0 0.9 1.5

Table 12: Detailed statistics on non-singleton mentions. The left part of the table shows the percentage of: mentions
with at least one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and
non-treelet mentions, i.e. mentions not forming a connected subgraph in the dependency tree (non-tree). Note
that these three types of mentions may be overlapping. We can see that none of the systems attempts to predict
discontinuous mentions (the 0.1% of such mentions in Ondfa seems to be rather a technical error). The right
part of the table shows the distribution of mentions based on the universal part-of-speech tag (UPOS) of the head
word. Note that this distribution has to be interpreted with the total number of non-singleton mentions predicted
(as reported in Table 10) in mind. For example, only 18.6% of mentions predicted by CorPipe are pronominal
(head=PRON), while there are 23.3% of pronominal mentions in the gold data. However, UDPipe predicts actually
more pronominal mentions (16941) than in the gold data (15500).

D Statistics of the submitted systems on cs_pcedt

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 2,533 45 84 3.2 7.2 60.1 13.8 6.2 12.8
Anonymous 2,804 50 74 2.9 21.0 47.5 14.2 5.4 11.8
BASELINE 1,963 35 77 3.5 0.0 61.7 16.4 6.9 15.0
CorPipe 2,918 52 81 3.0 20.5 47.5 13.4 5.8 12.7
DFKI-Adapt 2,034 36 73 3.6 0.0 60.4 16.2 7.5 15.9
DFKI-MPrompt 1,767 32 36 3.4 0.0 58.7 18.8 8.1 14.3
DeepBlueAI 2,069 37 71 3.6 0.0 60.7 15.9 7.2 16.3
McGill 2,627 47 83 2.8 33.4 39.4 11.2 4.5 11.5
Morfbase 2,038 36 37 3.4 0.0 60.7 17.0 8.0 14.3
Ondfa 2,844 51 74 3.0 23.9 45.4 13.0 5.3 12.3

Table 13: Statistics on coreference entities in cs_pcedt.
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mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 7,905 141 61 3.7 19.8 27.9 18.0 8.8 3.9 21.5
Anonymous 7,594 135 60 3.7 20.5 28.7 17.8 8.1 3.8 21.1
BASELINE 6,931 124 23 2.6 21.1 29.6 19.5 9.1 4.0 16.7
CorPipe 8,083 144 59 3.7 19.0 28.5 18.3 9.0 4.3 21.0
DFKI-Adapt 7,292 130 23 2.7 20.3 29.2 19.7 9.4 4.2 17.2
DFKI-MPrompt 6,050 108 61 3.5 23.7 31.1 16.7 6.0 2.9 19.4
DeepBlueAI 7,420 132 21 2.8 20.3 28.5 19.4 9.3 4.5 18.0
McGill 6,448 115 16 2.2 22.8 29.2 19.8 10.0 4.8 13.5
Morfbase 6,843 122 26 2.7 21.4 29.5 18.9 9.2 4.2 16.8
Ondfa 7,745 138 22 3.0 19.6 28.7 19.1 9.4 4.5 18.7

Table 14: Statistics on non-singleton mentions in cs_pcedt.

mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 182 3 34 3.3 20.9 21.4 18.1 11.0 8.2 20.3
Anonymous 590 11 47 4.5 9.0 18.3 24.9 15.6 7.3 24.9
BASELINE 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CorPipe 598 11 30 4.0 12.4 13.4 26.1 14.0 9.2 24.9
DFKI-Adapt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DFKI-MPrompt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepBlueAI 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
McGill 877 16 15 2.0 15.5 40.7 19.4 8.4 5.4 10.6
Morfbase 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ondfa 679 12 22 3.7 12.8 21.8 19.0 12.7 7.7 26.1

Table 15: Statistics on singleton mentions in cs_pcedt.

mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM other

gold 25.9 0.7 4.5 46.2 25.5 6.7 13.2 0.9 2.7 1.6 0.7 2.5
Anonymous 26.3 0.0 2.4 46.6 24.2 7.0 15.9 1.2 2.4 1.5 0.5 0.7
BASELINE 24.7 0.0 1.9 47.1 24.8 7.6 15.4 1.1 1.5 1.6 0.6 0.2
CorPipe 24.6 0.0 1.7 48.9 22.5 7.2 15.3 1.3 2.1 1.6 0.6 0.5
DFKI-Adapt 24.0 0.0 1.8 48.1 24.2 7.4 15.0 1.1 1.8 1.7 0.7 0.2
DFKI-MPrompt 29.0 0.0 2.1 42.8 28.3 6.7 17.7 1.1 1.4 1.3 0.3 0.3
DeepBlueAI 24.2 0.0 1.6 48.2 23.9 7.3 15.2 1.1 2.1 1.6 0.5 0.2
McGill 25.9 0.0 1.3 48.1 26.7 6.7 15.0 0.9 0.8 1.2 0.6 0.1
Morfbase 25.1 0.0 1.8 46.9 25.3 7.2 15.4 1.3 1.7 1.6 0.5 0.1
Ondfa 23.9 0.0 1.7 49.2 23.2 7.4 15.0 1.2 1.4 1.7 0.6 0.3

Table 16: Detailed statistics on non-singleton mentions in cs_pcedt.
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Abstract

The paper presents two multilingual coref-
erence resolution systems submitted for the
CRAC Shared Task 2023. The DFKI-Adapt
system achieves 61.86 F1 score on the shared
task test data, outperforming the official base-
line by 4.9 F1 points. This system uses a com-
bination of different features and training set-
tings, including character embeddings, adapter
modules, joint pre-training and loss-based re-
training. We provide evaluation for each of
the settings on 12 different datasets and com-
pare the results. The other submission DFKI-
MPrompt uses a novel approach that involves
prompting for mention generation. Although
the scores achieved by this model are lower
compared to the baseline, the method shows a
new way of approaching the coreference task
and provides good results with just five epochs
of training.

1 Introduction

Coreference resolution is a task of finding all men-
tions referring to the same physical or abstract en-
tity in the given piece of text. E.g., in sentences

“I’ve never been to London before. But I heard it is
a lovely place” the words London and it both refer
to the real-world entity the city of London, and are
called an antecedent and an anaphor respectively.
Coreference resolution includes two sub-tasks that
can be done either in a pipeline manner, or jointly:
mention detection and mention clustering. They are
quite challenging: (i) antecedents can be split; (ii)
mentions can be discontinuous; (iii) one needs to
consider the semantics of the context; (iv) there are
long-distance coreference relations, etc. Corefer-
ence resolution contributes to the correct automatic
text understanding, and is important for many NLP
tasks, including text summarization and paraphras-
ing, information extraction, machine translation,
question answering, etc.

*Equal contribution

The CRAC-2023 shared task (Žabokrtský et al.,
2023) focuses on multilingual coreference resolu-
tion. However, the majority of language models
are still being created for English, e.g., about 70%
of the oral papers at ACL 2021 presented mod-
els evaluated only on English (Ruder et al., 2022).
The problem is that many languages, even some of
the big ones, do not have enough labeled training
data, especially for specific tasks. Another issue
is that training a separate model for each separate
language when the task stays the same can be too
time- and resource-consuming, especially when
the model is large. A typical solution to this is
transfer learning, when a model trained on some
language(s) or task(s) is adapted to work for an-
other one. In this paper we present our approach
to transfer learning for multilingual coreference
resolution.

Our first submission DFKI-Adapt presents a
novel approach which combines joint pre-training,
combined datasets for related languages, loss-based
re-training, character embeddings and adapters.
Our second submission DFKI-MPrompt integrates
prompting. Prompting is a way of eliciting the de-
sired output from a large language model (LLM).
It was first introduced by Brown et al. (2020). The
main motivation behind prompting is to avoid com-
putationally expensive fine-tuning of LLMs, as they
contain billions of parameters. Moreover, such
models already incorporate lots of various knowl-
edge, therefore we can simply add demonstrations
to our input to help the model "understand" what
we want and produce the desired output.

To summarize, our contributions are as follows.

• We investigate how to combine the existing
data, features and fine-tuning approaches to
improve the baseline results without larger
models or additional data.

• We check if knowledge accumulated in large
multilingual language models can be extracted
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using prompt fine-tuning to perform mention
detection, and if this method can compete with
the state-of-the-art one.

• Some of the approaches we try have never
been used for the given task before, and can
be of interest for the community.

2 Related work

In this section we outline the main achievements in
the area of multilingual coreference resolution, and
present the approaches that are similar to our work.

Most progress in the area of multilingual coref-
erence resolution was made due to the introduction
of shared tasks. SemEval-2010 Task 1 (Recasens
et al., 2010) was designed to evaluate and compare
methods of coreference resolution in six languages
(Catalan, Dutch, English, German, Italian, and
Spanish) and used four different metrics: MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998),
CEAF (Luo, 2005) and BLANC (Recasens and
Hovy, 2011). There were six systems submitted
for this task, all of them rely on feature extraction
and machine learning algorithms, like maximum
entropy, decision trees, support vector machines
(SVM), etc. Only two systems, UBIU (Zhekova
and Kübler, 2010) and SUCRE (Kobdani and
Schütze, 2010) work for all the languages.

CoNLL-2012 (Pradhan et al., 2012) was dedi-
cated to predicting coreference in the OntoNotes
corpus (Pradhan et al., 2007) which includes data in
English, Chinese, and Arabic. The evaluation met-
rics included metrics used for SemEval-2010 and a
CoNLL score representing an unweighted average
of MUC, B3 and entity based CEAF. There were
16 systems submitted for CoNLL-2012. The major-
ity of them combine machine learning approaches
mentioned earlier with the rule-based ones. The
latter are typically used for mention detection. The
best performing systems also heavily rely on fea-
ture engineering. As far as we can judge, most of
the systems assume training a separate model for
each language.

In contrast to the previous shared tasks, CRAC-
2022 (Žabokrtský et al., 2022) offered much more
data in different languages. The CorefUD 1.0
collection (Nedoluzhko et al., 2022) included 13
datasets in Czech, English, Polish, French, Rus-
sian, German, Catalan, Spanish, Lithuanian and
Hungarian which were harmonized to the same
annotation scheme and data format. The primary

evaluation metric was the CoNLL score. The or-
ganizers offered a strong Transformer-based base-
line (Pražák et al., 2021), which was also used for
the current shared task. There were eight systems
submitted.The absolute majority use deep learn-
ing approaches and rely on large pre-trained mod-
els. Importantly, most of the systems present cross-
lingual models trained on all the multilingual data.

It is actually difficult to compare all these models
in terms of numbers and judge how much progress
has been made since SemEval-2010 for multilin-
gual coreference resolution. First, the models were
trained on quite different data. Second, despite the
unification of the annotations, the definition of a
mention varies across the datasets. Third, the eval-
uation criteria are also different, in the first place
for mention boundaries detection.

Our DFKI-Adapt system uses a combination of
different settings that includes pre-trained adapters.
As far as we know, adapters (Houlsby et al., 2019;
Rebuffi et al., 2017) have not been well researched
for multilingual coreference resolution. Adapters
represent a small amount of additional parame-
ters that can be added as trainable task-specific
weights at each layer of the transformer architec-
ture (Vaswani et al., 2017). They have been success-
ful on a variety tasks including speech recognition
(Hou et al., 2021), cross-lingual transfer (Parovic
et al., 2022) and classification tasks (Lee et al.,
2022; Anikina, 2023; Metheniti et al., 2023) but
there is very little research on using adapters for
coreference resolution and the only work that we
are aware of uses parallel data for training (Tang
and Hardmeier, 2023).

The idea of prompting LLMs for the task of
coreference resolution is relatively new. There are
not so many papers on this topic. E.g., Perez
et al. (2021) do few-shot prompting to resolve
anaphora that requires commonsense knowledge
using the Winograd Schema Challenge (WSC) cor-
pus (Levesque et al., 2012). Min et al. (2022) per-
form similar experiments on the WSC and Wino-
Grande (Sakaguchi et al., 2021) data, and Yang
et al. (2022) - on ECB+ (Cybulska and Vossen,
2014). Le et al. (2022) and Agrawal et al.
(2022) try prompting for coreference resolution
in scientific protocols and medical domain, respec-
tively. Lin et al. (2022) experiment with few- and
zero-shot anaphora resolution in the multilingual
XWinograd corpus (Tikhonov and Ryabinin, 2021).
In contrast to our approach, all these models do not
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perform prompt fine-tuning, instead they typically
include a few demonstrations into their prompts
(therefore few-shot) and use much larger models,
like XGLM (Lin et al., 2022), GPT-2 (Radford
et al., 2019), GPT-3 (Brown et al., 2020) or In-
structGPT (Ouyang et al., 2022). Moreover, we use
prompting only for mention generation. A some-
what similar approach but without prompting was
presented by Kalyanpur et al. (2020), who used the
T5 model (Raffel et al., 2020) to generate semantic
roles when doing frame-semantic parsing.

3 Data

All our experiments are done using an officially
provided public version of the CorefUD 1.1 data,
which extends CorefUD 1.0 with new datasets in
Hungarian, Norwegian and Turkish. In total, this
version of CorefUD consists of 17 datasets in 12
languages. The datasets vary a lot in their sizes (see
Table 7 in the Appendix B). Moreover, they repre-
sent different language families and subgroups with
very different grammars and vocabularies. Also,
the datasets differ in how markables are defined,
e.g., some datasets omit singletons, others may an-
notate verbal phrases, if they are antecedents of
anaphoric noun phrases (Žabokrtský et al., 2022).
All this makes it very challenging to build a single
model working well for all the given languages.

Intuitively, the quality of mention extraction and
subsequent coreference resolution depends not only
on the training data size, but also on length and
complexity of the sentences and mentions, the num-
ber of mentions (including nested) in a sentence,
the amount of unique named entities, etc. To get an
idea about difficulty of the task, we collected some
basic statistical facts about the relevant data prop-
erties. This information can be found in Table 8 in
the Appendix B.

4 Multilingual coreference resolution
with DFKI-Adapt

Our submission DFKI-Adapt is based on the base-
line provided by the organizers but extended in
different ways to accommodate the multi-lingual
nature of the task. The DFKI-Adapt system in-
tegrates character embeddings, joint pre-training
and fine-tuning on the datasets of the related lan-
guages. It also includes additional re-training on
the documents with the higher loss and uses adapter
modules that were pre-trained for each dataset.

The goal of the DFKI-Adapt submission is to

demonstrate how one could get a substantial im-
provement over the baseline (+4.9 F1 points on the
test and +9.07 F1 on the development partitions)
without any additional data or larger models, just
by leveraging the existing annotations. All exper-
iments are performed with standard multilingual
BERT and the official CRAC data. The follow-
ing sections introduce our baselines, the experi-
ments with individual settings and the final results
achieved by DFKI-Adapt. Since the test data are
not publicly available our evaluation is performed
on the CRAC development set. The evaluation re-
sults on 12 datasets for different languages1 are
summarized in Table 1. The more detailed analy-
sis with different coreference evaluation metrics is
reported in Tables 3-6 in the Appendix A.

4.1 Baselines

We consider three different baselines for our sys-
tem. Firstly, we use the official baseline of the
shared task which was published by the organizers
(CRAC-baseline). Secondly, we train a single joint
coreference model based on multilingual BERT
and use it to predict coreference chains for each
dataset (mbert-joined). Thirdly, we train a separate
model for each language and dataset present in the
shared task (mbert-separate). The results in Table 1
demonstrate that mbert-joined consistently outper-
forms mbert-separate indicating that joint training
on the combination of all datasets is a good strategy
for coreference resolution. The main baseline to
which we compare different settings in the follow-
ing sections is the official CRAC-baseline.

4.2 Adapters

We add adapters to multilingual BERT and then
fine-tune them for each dataset separately. Then
we load the pre-trained adapters and train a new
coreference resolution model for each dataset from
scratch but with the pre-trained adapter weights. In
one setting, task-adapters-frozen, we do not fur-
ther train the adapters, while the rest of the model
is being tuned on the coreference resolution task.
In another setting, task-adapters-tuned, we con-
tinue training the adapters together with the rest of
the model. According to the experimental results

1For some languages several datasets were available and
we selected a single dataset for each language as a representa-
tive. Although the differences between the datasets can also
occur within a single language, we evaluated one dataset per
language given the limited time, resources and the goal of com-
paring different languages rather than the datasets. Further
details can be found in the Appendix A.
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Dataset
mbert-
joined

mbert-
separate

char-
embed

joined-
pre-
training

combined-
datasets

loss-re-
training

task-
adapters-
frozen

task-
adapters-
tuned

DFKI-
Adapt

CRAC-
baseline

ca_ancora 68.97 65.06 66.56 68.72 66.29 65.59 66.19 61.99 68.34 65.60
cs_pdt 66.35 65.30 67.45 68.32 66.62 65.36 66.35 61.18 68.60 65.66
en_gum 65.80 52.01 54.05 62.41 35.25 51.38 51.49 47.54 69.63 66.87
fr_democrat 59.74 58.85 58.88 60.97 61.09 57.81 57.88 52.50 62.34 57.22
de_potsdamcc 65.77 58.92 55.16 62.03 67.12 59.77 64.28 60.27 69.29 56.07
hu_szegedkoref 59.78 59.98 59.53 62.29 60.42 60.13 57.39 53.70 62.60 58.96
lt_lcc 71.22 69.09 69.55 73.18 75.76 69.47 68.05 64.95 73.08 66.96
no_bokmaal 69.81 68.47 69.11 72.26 69.09 67.65 68.83 64.53 72.45 58.44
pl_pcc 65.41 63.64 65.32 66.38 66.21 63.74 64.30 59.44 65.89 64.17
ru_rucor 62.08 62.11 63.84 66.54 64.58 63.26 61.73 57.97 67.50 63.04
es_ancora 67.00 66.37 67.99 69.82 66.64 66.29 66.99 62.53 70.07 67.00
tr_itcc 31.66 31.35 17.98 30.80 33.88 23.28 20.68 6.91 37.80 16.15

Table 1: CoNLL F1 scores on the development data. The best performing setting is in bold

shown in Table 1, for task-adapters-frozen the re-
sults differ significantly between the datasets. E.g.,
we can see that the model trained on the German
data gives an improvement of +8.21 F1 points com-
pared to the CRAC-baseline and for Turkish the
improvement is +4.53 F1 points. Polish and Czech
also have small gains in performance when using
pre-trained adapters (+0.13 and +0.69 F1 points
correspondingly). However, Hungarian has a drop
of -1.57 F1 points compared to the CRAC baseline.

We also observe that using pre-trained adapters
and then freezing them consistently outperforms
the version with tunable adapters. Compared to the
CRAC baseline the latter model underperforms by
4.39 F1 points on average. We notice that using
language-specific pre-trained adapters gives model
a "warm start" and it starts with a slightly better
performance, e.g., the ratio of the correctly pre-
dicted to gold mention spans is higher than if we
start training the model from scratch, without any
pre-trained adapters.

4.3 Character embeddings
For character embeddings we consider 273 charac-
ters which include the alphabet letters of all rele-
vant languages plus some additional symbols such
as currency or copyright signs. A symbol has to
occur more than 5 times in the training set in order
to be included in our list of the frequent characters.
After making the character list we run bi-LSTM to
encode every token in the data.

Then in the coreference resolution model we add
an extra layer that projects character embeddings
from 300 to 100 dimensions and concatenate the
character embeddings of the start and the end of
each span with the corresponding BERT embed-

dings. We observe that adding character embed-
dings gives a small boost in performance compared
to the CRAC baseline (+0.77 F1 points on average).
Interestingly, the only two languages which show a
decrease in performance are German and English,
all other languages show some improvement and
the largest gains are attributed to Norwegian +10.67
F1 and Lithuanian +2.59 F1.

4.4 Joined pre-training
As discussed in Section 3, the available datasets are
quite different. However, since in all the cases the
task is to identify and cluster coreferent mentions
we believe that patterns relevant for coreference
resolution in one language may prove to be helpful
for another. Hence, we pre-train one multilingual
BERT model on all datasets combined together and
then we continue fine-tuning this model on each
language separately. We restrict the number of the
pre-training steps to 100,000 and leave all other
hyper-parameters unchanged. This setting with the
joined pre-training is beneficial for all languages
and it brings an average improvement of +4.8 F1
points on the development data compared to the
CRAC baseline.

4.5 Combined datasets
In the combined-datasets setting we test whether
combining the training sets of the related languages
can boost the performance. E.g., for Spanish we
combine it with the training sets for other Romance
languages that include Catalan and French, and for
Czech we combine both datasets for this language
(cs_pdt and cs_pcedt) together with the annotations
for Polish and Russian. Note that we do not adjust
for any differences in the dataset size and do not
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balance the amount of samples that might have
negatively impacted the performance in some of
the cases (e.g., Spanish and Catalan data have more
than 1,000 documents each, whereas French has
only 50 documents).

The results in Table 1 show that combining the
datasets of the related languages is a good approach
in many cases, although it seems to help some lan-
guages more than the others (e.g., it brings +11.05
F1 points for de_potsdamcc but only +0.96 F1 for
cs_pdt). We notice that this method is especially
beneficial for those cases where we have a rela-
tively small number of annotated documents (e.g.,
French with only 50 documents in the training set
and Lithuanian with 80). Also, perhaps due to the
differences in the annotation format, for some lan-
guages we notice a significant drop in performance
when we train on the combined datasets. E.g., the
model trained on the en_gum data combined with
en_parcorfull, de_potsdamcc and de_parcorfull
datasets shows poor performance in our experi-
ments, achieving only 35.25 F1. Further ablation
studies and error analysis are needed to find the
exact cause of this issue.

In some cases finding datasets in related lan-
guages is not possible and we combine the cor-
pora based on other linguistic similarities, e.g.,
both Hungarian and Turkish are agglutinative lan-
guages and both of them benefit from the combined
datasets (see Table 1).

4.6 Loss-based re-training

In the loss-re-training setting we store the loss as-
sociated with each document per epoch and at the
end of each epoch we sort the documents by their
corresponding losses and take the 10% of the most
difficult documents (i.e., the ones with the highest
loss) to continue additional training. This means
that we effectively fine-tune our models on particu-
larly difficult instances.

This approach brings an average improvement of
+0.63% F1 points across all datasets, as shown in
Table 1, but the gains differ between the languages.
E.g., the lt_lcc and tr_itcc data show substantial im-
provements with the loss-based re-training: +2.51
and +7.13 F1 points respectively. However, some
datasets (e.g., es_ancora, cs_pdt and en_gum) show
worse performance.

The discrepancy is potentially caused by the im-
balance in the amount of the available training data
between the datasets. The datasets with the fewer

documents (e.g., tr_itcc with 19 and lt_lcc with
80) seem to benefit from the loss-based re-training
while other datasets with relatively large amount of
documents do not benefit from it (e.g., es_ancora
with 1,080 documents or cs_pdt with 2,533). In
the future we would like to explore this fine-tuning
approach in more detail and apply it to different
low-resource settings using various metrics to order
and select difficult documents (e.g., ordering them
by entropy or surprisal).

4.7 DFKI-Adapt

Our submission DFKI-Adapt combines the best-
performing configurations as described above. It
includes joined-pre-training for 100,000 steps to-
gether with the combined-datasets setting for fine-
tuning on the combined training data for the related
languages. It also integrates character embeddings
as in the char-embedding configuration. Addition-
ally, we fine-tune each model on the 10% of the
most difficult documents per dataset (as in loss-
re-training) and we also include the pre-trained
adapter modules as in task-adapters-frozen.

DFKI-Adapt consistently outperforms all three
baselines (mbert-joined, mbert-separate and
CRAC-baseline) and for most of the languages it
gives the best performance on the development set,
although for some datasets (e.g., pl_pcc and lt_lcc)
other configurations such as joined-pre-training
or combined-datasets perform slightly better than
DFKI-Adapt (see Table 1 for comparison). On the
official test set our DFKI-Adapt system achieves
61.86 CoNLL F1 score (+4.89 F1 points compared
to the CRAC baseline) and on the development set
it achieves 68.06 CoNLL F1 score (+9.07 F1 points
compared to the baseline).

All our models are trained on either NVIDIA
RTX A6000 with 48 GB memory or NVIDIA
A100-SXM4 with 40 GB memory. We use the
hyper-parameter settings as defined in the baseline
configuration file2 and train the models for the same
amount of epochs. For the models that use adapters
we set the BERT learning rate to 1e-05 and the
task learning rate to 2e-4. We set the dropout rate
to 0.4 and the mention loss coefficient to 0. For
optimizing the network we employ AdamW and a
linear schedule with warm-up.

2See https://github.com/ondfa/coref-multiling/
for the configuration details and the hyper-parameter settings.

23



5 Multilingual coreference resolution
with DFKI-MPrompt

In this section we first present our approach to men-
tion identification as generation, then explain how
we adapt the baseline to work with the mentions
generated by our model. We discuss the results
obtained by our system, analyse the mistakes and
outline possible improvements.

5.1 Mention generation

The absolute majority of modern coreference res-
olution models, including the baseline provided
for this shared task, use span ranking with prun-
ing to identify mentions. As pointed out in Sec-
tion 3, the results depend on many factors, such
as how the markables are defined in the dataset,
the dataset size, domain and language, etc. E.g.,
the baseline3 reaches up to 85.16 F1 in mention
identification on the no_nynorsk and only about
54.65 F1 on the tr_itcc development data. Cor-
rect mention identification is crucial for successful
coreference resolution. The same baseline achieves
the F1 score of only 38.17 in coreference resolution
on the de_parcorfull development data, if it has to
predict the mentions. However, if the gold men-
tions are given, the F1 score reaches 91.90 points
on the same data.

Motivated by the recent success of prompting
LLMs for various downstream NLP tasks, we de-
cide to try casting mention identification problem
as a generation task using a simple prefix prompt.
Theoretically, mention generation offers certain
advantages in comparison with the span-ranking
approach, e.g., (a) no pruning is required; (b) it
is possible to generate discontinuous and nested
mentions; (c) both input and output are in natural
language and therefore are easy to analyze for a
human. Moreover, as far as we are aware, no one
has tried mention generation as a way to identify
mentions for coreference resolution before.

We use a family of multilingual T5 models (Xue
et al., 2021), namely mT5-base and mT5-large
with 580M and 1.2B parameters, respectively. We
omit the demonstrations in our prompt, as they can
make the input quite lengthy, and are unlikely to
work with relatively small models. Instead, we
use a prefix consisting of five tunable embeddings
prepended to our input. This method was first pre-

3We consider the version trained on all the available mul-
tilingual train data in CorefUD 1.1 with singletons excluded
from evaluation.

sented by Li and Liang (2021). For all our exper-
iments we employ the Openprompt library (Ding
et al., 2022), which we locally extend so that it
works with multilingual T5 models.

Our task is formulated as follows. Given an
input string consisting of one sentence, the desired
output should include all mentions contained in
the given sentence together with their start and end
indices in brackets. Generated mentions should
be separated from each other with a delimiter (a
vertical bar). To help the model generate indices,
we modify the input by adding the corresponding
index to each token, like Kalyanpur et al. (2020) do.
Example 5.1 shows the approach. Both the model
and the input embeddings stay frozen, and only
prefix embeddings, which are added to the input
under the hood, get updated during the prompt
training. The prompt itself is given in Example 5.2.

Example 5.1. Model input and output
Input: 0 já 1 Jsem 2 prý 3 v 4 USA 5 a 6 hry 7
skončily 8 , 9 uvedl 10 de 11 Merode 12 .
Output: já (0-0) | de Merode (10-11) | hry (6-6) | v
USA (3-4)

Example 5.2. Prompt
0 já 1 Jsem 2 prý 3 v 4 USA 5 a 6 hry 7 skončily
8 , 9 uvedl 10 de 11 Merode 12 . Find all valid
mentions: [MASK]

The total number of training and development
examples makes up 178,028 and 24,404 sentences,
respectively. Sentences without mentions are omit-
ted. As discontinuous mentions represent only a
tiny portion of all the mentions, we omit them as
well. We set the maximum input length to 256 to-
kens, and expect the generated output also to be
no longer than that. The training is done on one
NVIDIA GeForce GTX TITAN X GPU with 12
GB memory on all the available multilingual train-
ing data for five epochs with the batch size 1, the
AdamW optimizer, learning rate of 5e-5 and a lin-
ear schedule with warm-up. It takes about a week
to complete the training.

As we do not have access to the gold test data,
we evaluate our mention generation approach on
the development partition. The results in terms of
recall, precision and F1 are presented in Table 2.
The table also includes mention detection scores
achieved by the baseline. We see that the base-
line results are more than +10 points higher on the
combined data, with our approach showing better
F1 only for the de_parcorfull and tr_itcc corpora.
However, baseline scores are not directly compa-
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rable with the scores reached using the prompting
approach. To calculate the baseline’s scores we
use the predicted clusters with all singleton clusters
removed. To be fair, we also exclude all gold sin-
gleton clusters from the evaluation. In contrast to
that, our mention generation is done before coref-
erence resolution. Thus, it is impossible to remove
any singletons, as no clusters exist yet.

Table 2 shows that our method allows to get
decent results, with mT5-large typically produc-
ing much better scores than mT5-base. As ex-
pected, better scores are normally achieved for
larger datasets. However, there are some excep-
tions, e.g., the F1 score is 72.92 for de_potsdamcc
and only 62.46 for cs_pdt, which have 4,061 and
142,951 continuous mentions in the training data,
respectively. This points at the fact that some
datasets contain "easier" mentions than others. In-
terestingly, the precision is always higher than re-
call, except for two parcorfull corpora. This may be
an indication that the definition of a mention used
to annotate them differs a lot from those applied to
other datasets.

To better understand the results and find some
possible space for improvement, we analysed the
mistakes made by our approach. First, as expected,
we discovered that shorter mentions in shorter sen-
tences are more likely to be generated correctly -
the average length of correctly generated and miss-
ing (not generated) mentions makes 2.03 and 5.86
tokens, respectively. The average length of sen-
tences in which all mentions were identified cor-
rectly is about 11.67 tokens, while the sentences
in which at least one mention was generated in-
correctly (either a mention itself, or its indices, or
both) contain 23.41 tokens on average. Second,
among 21,133 wrong outputs (a) 379 (1.79%) do
not have brackets with indices, and only four in-
stances among them are correct mention strings;
(b) 752 (3.56%) have a wrong delimiter, thus rep-
resenting merged outputs, of which only 29 are
fully correct, five are correct but have wrong in-
dices, and 544 are wrong mentions with correct
indices. Example B.1 in the Appendix B illustrates
the problem. As for the rest 20,002 wrong outputs
(i.e. cases consisting of one mention and one index
pair), we found out that 245 (1.22%) of them have
wrong indices, and 5,690 (28.45%) - wrong men-
tion strings. Other 14,067 (70.33%) outputs have
both wrong mentions and wrong indices. Finally,
we detected that the average length of outputs with

correct indices but wrong strings varies from 10.85
to 13.03 tokens, which shows that the model is
still capable to deal with longer mentions. More
information on that can be found in Appendix B.

Based on the error analysis, we would suggest
the following modifications of the approach. First,
simplification of the desired output seems to be
promising. Our current output pattern is quite chal-
lenging, instead, we can ask the model to produce
only the indices of mentions, like ‘10-11’, or a di-
rect substring of the input string, like ‘10 de 11
Merode’. This would probably help to deal with
missing spaces before punctuation marks, which
make a large part of all mistakes. Next, we be-
lieve that training the prompt for more epochs, as
well as tuning some other hyperparameters, like the
number of prefix tokens, may lead to performance
improvements. Experiments with other types of
templates and a better prompt engineering may
also be beneficial. Finally, it is possible to group
the datasets depending on the mention definitions,
train several prompts, and do prompt ensembling.

5.2 Coreference resolution

As we have a separate module to identify the men-
tions, we slightly change the baseline so that it
performs only coreference resolution. This means
that the model does not need to create spans, as-
sign scores to them and do the pruning, because the
mentions are already known. We re-train the base-
line on gold mentions (including singletons) with
all the default hyperparameters, and then evaluate
it on mentions generated with our prefix prompt.
While the original baseline reaches 66.78 CoNLL
score on the combined development data, adding
our prompt-based module to it causes about -7
points drop in performance. This is not unex-
pected, as mention identification results achieved
by our method were in general worse than those
produced by the baseline. Only for three datasets
the CoNLL scores were higher, and for two out of
these three our approach also demonstrated better
mention identification results in comparison with
the baseline. All scores can be found in Table 9
in the Appendix B. On average, according to the
official leaderboard, our model reaches the CoNLL
scores of 57.22 and 53.76 on the development and
test data, respectively. In both cases it takes the
last place on the list of eight (development) and ten
(test) submissions. Still, we find the scores decent,
considering how little effort our method takes.
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Data
num mT5-base mT5-large baseline
men R P F1 R P F1 F1

all 108,006 55.42 72.56 62.84 63.53 75.80 69.13 79.90
ca_ancora 7,280 46.11 67.48 54.79 54.52 71.23 61.77 81.55
cs_pcedt 23,784 56.90 67.16 61.61 63.23 71.13 66.95 80.90
cs_pdt 20,955 47.79 71.34 57.24 54.12 73.83 62.46 78.76
en_gum 5,508 61.86 80.54 69.97 71.10 81.98 76.15 80.24
en_parcorfull 79 69.62 27.36 39.29 70.89 25.34 37.33 58.13
fr_democrat 7,032 61.52 78.21 68.87 72.16 80.01 75.88 78.63
de_parcorfull 93 65.59 44.20 52.81 72.04 44.67 55.14 53.89
de_potsdamcc 558 56.99 70.20 62.91 69.00 77.31 72.92 73.47
hu_korkor 448 47.54 66.15 55.32 54.91 68.72 61.04 70.85
hu_szegedkoref 1,458 54.87 61.73 58.10 60.84 66.10 63.36 68.23
lt_lcc 366 48.09 55.17 53.39 55.46 63.04 59.01 77.06
no_bokmaal 6,446 65.54 80.80 72.38 76.79 85.23 80.79 84.07
no_nynorsk 5,193 67.24 79.76 72.97 77.89 83.83 80.75 85.16
pl_pcc 18,857 56.77 75.88 64.95 66.27 79.03 72.09 77.49
ru_rucor 2,297 68.35 78.70 73.16 75.49 80.61 77.97 83.43
es_ancora 7,161 46.64 66.91 54.97 54.11 71.83 61.72 82.56
tr_itcc 491 58.45 75.13 65.75 65.38 76.98 70.70 54.65

Table 2: Mention identification results. All stands for all the development data taken together (not the average).

6 Conclusion

In this paper we presented our systems for multilin-
gual coreference resolution.

Our DFKI-Adapt submission leverages the ex-
isting data in different ways including joint pre-
training, integrating adapters, adding character em-
beddings and loss-based re-training. It achieves
61.86 F1 on the official test set and 68.06 F1 on
the development set. We provide a comparison of
different settings for 12 languages from the CRAC
shared task. Based on our analysis, joined pre-
training with further fine-tuning on the respective
dataset is the most beneficial setting per se but the
largest gains can be achieved with the combination
of different settings as implemented in the DFKI-
Adapt system. Our experiments also show that
while injecting the pre-trained adapter weights can
be helpful for many languages, these pre-trained
weights should not be further updated during train-
ing. In the future we would like to experiment
more with the language-specific vs. task-specific
adapters and test whether cross-lingual transfer via
adapters could further improve the performance on
the coreference resolution task.

Our second submission DFKI-MPrompt relies
on a novel prompt-based approach for mention
identification. It generates all possible mention
strings together with their indices, given a sentence.
Although the obtained scores were lower than base-
line scores for the majority of the datasets, our
method still has some potential. First, it can be

improved by applying a better template, more opti-
mal hyperparameters and a larger model. Second,
it could be used as an additional tool helping span-
based mention-ranking state-of-the-art models find
mentions that are especially challenging for them,
like split antecedents or discontinuous mentions.
As a possible next step we plan experiments to
check if our approach is capable of such a task.

Limitations

We believe that our DFKI-Adapt system could be
further improved by adding more adapter weights
and experimenting with the cross-lingual transfer
learning. The current system uses adapters as a
way of additional pre-training of the encoder but
it would be interesting to see whether adapters for
different languages can also benefit each other, sim-
ilarly to the combined_datasets setting.

Casting mention identification as a prompt-based
generation task also has its limitations. Using
prompting, good results (sometimes even better
than state-of-the-art) can be typically obtained with
very large models that are not always freely avail-
able and require lots of computational resources.
Even with relatively small models, like T5, prompt-
tuning/inference may take several days, if one does
not have access to powerful GPUs. This makes the
process of finding the optimal prompt and hyperpa-
rameters very time-consuming.
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A DFKI-Adapt vs. other configurations

Tables 3-6 present the evaluation results on the
development data for 12 languages. The CoNLL
score is compared with the scores achieved by sep-
arate metrics, namely MUC, B3 and CEAFE.

B Mention generation

B.1 Data statistics

Tables 7 and 8 present the main statistical facts
about the CorefUD 1.1 data that help explain men-
tion identification results. Table 7 illustrates the
differences between the datasets in terms of size
by providing information about the number of doc-
uments, sentences and tokens in the training and
development partitions of separate corpora.

Table 8 gives for each dataset information about
sentence lengths, number of continuous and discon-
tinuous mentions, average number of mentions in a
sentence, and average mention lengths. We see that
the sentences in CorefUD 1.1 may be of different
length and contain different number of mentions.
On average, a sentence consists of 21 tokens, the
shortest sentences (14.93 tokens on average) can be
found in the tr_itcc dataset, and the longest (34.06
tokens on average) - in es_ancora. The total num-
ber of continuous and discontinuous mentions in
all the training data makes up 794,643 and 5,543,
respectively. Typically, a sentence includes 4.46
mentions, and the number of mentions in a sen-
tence correlates with its length, e.g., in es_ancora
a sentence contains 5.32 mentions on average, and
in tr_itcc - only 1.80 mentions. Some sentences
do not contain any mentions. Normally, a mention
consists of 3.32 tokens, the longest mentions (4.98
tokens on average) occur in es_ancora, the shortest
(1.53 tokens on average) - in the lt_lcc dataset.

B.2 Coreference resolution results

Table 9 presents coreference resolution results for
all the development partitions of separate datasets.
Note that we also evaluate our approach on the
combined data (all). In contrast to this, the offi-
cial leaderboard shows the averaged score based
on separate results. Table 9 shows precision, recall
and F1 (CoNLL) score produced by two versions
of the baseline model. The predicted mentions sec-
tion contains the results achieved by the original
baseline trained on all the available training data.
The gold mentions part - the points produced by
baseline trained on all the gold mentions, given

gold development mentions. Finally, the generated
mentions section shows the scores reached by the
baseline trained on the gold mentions when eval-
uated on the mentions generated by our mention
identification module.

B.3 Mention generation errors
Example B.1 shows a typical error case. First, the
generated mentions can not be separated, because
the delimiter "|," is wrong. Second, one of the two
gold mentions, namely ", fundador de la aerolínea
Spantax" starts with a comma, which the model
fails to generate. However, despite the missing
comma, the indices (4-9) corresponding to this
mention are generated correctly.

Example B.1. Generated merged output
’Rodolfo Bay Wright, fundador de la aerolínea
Spantax (1-9) |, fundador de la aerolínea Span-
tax (4-9)’
Gold output

’Rodolfo Bay Wright, fundador de la aerolínea
Spantax (1-9) | , fundador de la aerolínea Spantax
(4-9)’

We additionally analysed cases where the gen-
erated mention strings were wrong but the indices
correct. It turned out that mT5 tends to skip spaces
before punctuation marks, while gold mentions
have them, e.g., the model generates ‘Eugene, Ore-
gon’ instead of ‘Eugene , Oregon’. Moreover, we
found out that many mentions in the gold data may
start and/or end with a comma, like ‘, Juan José
Ibarretxe ,’, which was obviously confusing for the
model.
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Setting
es_ancora de_potsdamcc tr_itcc

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 74.65 67.03 66.20 67.00 69.06 64.22 64.02 65.77 41.91 23.76 29.32 31.66
mbert-separate 71.87 64.14 63.09 66.37 63.52 58.03 55.22 58.92 41.48 22.64 29.94 31.35
char-embedding 73.42 66.03 64.52 67.99 61.98 54.88 48.63 55.16 26.89 10.83 16.20 17.98
joined-pre-training 74.97 68.00 66.50 69.82 66.67 59.99 59.44 62.03 43.30 21.06 28.03 30.80
combined-datasets 72.37 64.69 62.85 66.64 71.72 65.67 63.99 67.12 45.14 25.23 31.26 33.88
loss-re-training 71.87 64.34 62.67 66.29 64.98 58.03 56.28 59.77 36.28 15.87 17.68 23.28
task-adapters-frozen 72.67 64.90 63.38 66.99 67.08 62.14 63.63 64.28 30.47 12.38 19.20 20.68
task-adapters-tuned 68.69 60.28 58.61 62.53 65.02 57.45 58.33 60.27 7.51 3.79 9.45 6.91
DFKI-Adapt 75.26 68.21 66.74 70.07 72.99 67.46 67.40 69.29 50.64 29.69 33.06 37.80
CRAC-baseline - - - 67.00 - - - 56.07 - - - 16.15

Table 3: Coreference resolution results on the development data for Spanish, German and Turkish

Setting
pl_pcc cs_pdt hu_szegedkoref

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 72.44 63.48 60.30 65.41 71.21 64.12 63.72 66.35 61.91 57.62 59.80 59.78
mbert-separate 71.38 61.60 57.93 63.64 70.76 63.50 61.63 65.30 62.56 57.81 59.56 59.98
char-embedding 72.77 63.23 59.97 65.32 72.31 65.53 64.52 67.45 61.57 57.36 59.67 59.53
joined-pre-training 73.63 64.28 61.25 66.38 73.11 66.59 65.26 68.32 64.43 60.14 62.29 62.29
combined-datasets 73.31 64.09 61.24 66.21 71.86 64.75 63.25 66.62 62.55 57.91 60.78 60.42
loss-re-training 71.33 61.64 58.26 63.74 70.80 63.50 61.78 65.36 62.43 57.79 60.17 60.13
task-adapters-frozen 71.47 61.89 59.53 64.30 71.58 64.44 63.04 66.35 59.36 54.49 58.31 57.39
task-adapters-tuned 67.75 57.12 53.45 59.44 66.76 58.92 57.86 61.18 55.37 51.15 54.59 53.70
DFKI-Adapt 73.20 63.63 60.86 65.89 73.33 66.78 65.68 68.60 65.49 60.37 61.95 62.60
CRAC-baseline - - - 64.17 - - - 65.66 - - - 58.96

Table 4: Coreference resolution results on the development data for Polish, Czech and Hungarian

Setting
ca_ancora fr_democrat en_gum

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 74.30 65.87 66.74 68.97 71.41 51.74 56.05 59.74 77.66 63.28 56.45 65.80
mbert-separate 71.20 62.06 61.93 65.06 69.95 50.11 56.50 58.85 65.91 49.89 40.22 52.01
char-embedding 72.47 63.58 63.62 66.56 69.72 50.37 56.55 58.88 67.64 52.05 42.46 54.05
joined-pre-training 74.23 65.89 66.05 68.72 72.06 52.32 58.54 60.97 74.72 61.68 50.82 62.41
combined-datasets 72.27 63.30 63.31 66.29 72.43 52.27 58.56 61.09 42.01 32.46 31.27 35.25
loss-re-training 71.63 62.48 62.66 65.59 69.60 49.37 54.45 57.81 65.56 50.11 38.47 51.38
task-adapters-frozen 71.96 63.21 63.40 66.19 69.41 48.82 55.41 57.88 65.27 49.97 39.24 51.49
task-adapters-tuned 68.70 58.70 58.57 61.99 65.17 43.29 49.04 52.50 60.51 44.99 37.12 47.54
DFKI-Adapt 74.01 65.45 65.56 68.34 72.74 54.47 59.80 62.34 80.43 68.38 60.08 69.63
CRAC-baseline - - - 65.60 - - - 57.22 - - - 66.87

Table 5: Coreference resolution results on the development data for Catalan, French and English

Setting
lt_lcc ru_rucor no_bokmaal

MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL MUC B3 CEAFE CoNLL

mbert-joined 73.44 69.55 70.68 71.22 74.63 54.16 57.46 62.08 80.10 66.54 62.79 69.81
mbert-separate 69.92 66.49 70.86 69.09 73.83 55.23 57.27 62.11 77.07 67.31 61.04 68.47
char-embedding 71.08 66.91 70.66 69.55 75.24 56.65 59.64 63.84 78.00 67.33 61.99 69.11
joined-pre-training 75.49 71.88 72.17 73.18 77.28 59.43 62.92 66.54 81.32 71.09 64.36 72.26
combined-datasets 77.33 73.85 76.12 75.76 75.58 57.23 60.93 64.58 78.19 67.80 61.28 69.09
loss-re-training 71.25 67.59 69.58 69.47 74.60 55.91 59.27 63.26 76.92 66.26 59.76 67.65
task-adapters-frozen 70.97 66.82 66.37 68.05 73.52 54.46 57.20 61.73 77.81 66.85 61.83 68.83
task-adapters-tuned 66.92 62.62 65.32 64.95 69.18 51.08 53.65 57.97 74.46 62.70 56.44 64.53
DFKI-Adapt 74.79 71.39 73.06 73.08 78.77 60.32 63.40 67.50 81.39 70.95 65.01 72.45
CRAC-baseline - - - 66.96 - - - 63.04 - - - 58.44

Table 6: Coreference resolution results on the development data for Lithuanian, Russian and Norwegian
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Data
train dev

#doc #sent #tok #doc #sent #tok
all 9,595 194,460 3,899,182 1,325 26,698 547,869
ca_ancora 1,011 10,638 337,876 131 1,443 49,695
cs_pcedt 1,875 39,832 964,606 337 6,960 169,211
cs_pdt 2,533 38,725 670,889 316 5,228 90,645
en_gum 151 8,548 147,949 22 1,117 19,654
en_parcorfull 15 457 8,765 2 48 1,155
fr_democrat 50 10,382 228,100 46 1,192 28,279
de_parcorfull 15 457 8,649 2 48 1,098
de_potsdamcc 142 1,817 26,677 17 216 3,376
hu_korkor 76 1,086 21,063 9 130 2,715
hu_szegedkoref 320 7,138 104,428 40 846 12,355
lt_lcc 80 1,330 30,082 10 213 3,385
no_bokmaal 284 13,071 203,220 31 1,317 21,658
no_nynorsk 336 10,320 172,764 28 1,158 17,977
pl_pcc 1,463 28,722 431,999 183 3,573 53,999
ru_rucor 145 7,969 123,599 18 1,286 21,139
es_ancora 1,080 11,336 373,402 131 1,367 46,668
tr_itcc 19 3,532 45,114 2 556 4,860

Table 7: Number of documents, sentences and tokens in CorefUD 1.1

Data
Sent len num num # cont in sent men

max min avg cont disc max min avg len
all 405 1 21.00 794,643 5,543 156 0 4.46 3.32
ca_ancora 239 2 32.61 48,705 1 27 1 4.81 4.94
cs_pcedt 134 1 25.27 138,713 1,044 22 0 3.85 3.83
cs_pdt 195 1 18.25 142,951 1,958 25 0 3.99 3.22
en_gum 110 1 18.32 41,649 0 40 1 5.21 3.05
en_parcorfull 58 4 20.09 717 5 11 0 2.13 2.02
fr_democrat 125 1 22.34 63,562 0 40 1 6.25 2.37
de_parcorfull 60 4 20.67 749 2 11 1 2.33 1.94
de_potsdamcc 54 2 16.35 4,061 265 13 0 2.72 2.76
hu_korkor 79 5 19.85 3,167 19 16 0 3.12 2.46
hu_szegedkoref 123 2 15.89 12,555 45 19 0 2.23 1.75
lt_lcc 88 2 23.56 3,723 0 15 1 3.09 1.53
no_bokmaal 88 1 15.86 61,183 339 28 0 4.80 2.94
no_nynorsk 120 1 16.97 51,450 211 34 1 5.07 3.10
pl_pcc 405 1 15.46 149,057 1,618 156 0 5.38 2.87
ru_rucor 129 1 20.24 12,576 36 34 0 2.47 1.64
es_ancora 119 2 34.06 57,223 0 23 1 5.32 4.98
tr_itcc 82 2 14.93 2,602 0 11 1 1.80 1.94

Table 8: Sentence and mention properties in training data
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Data
predicted mentions gold mentions generated mentions

R P F1 (CoNLL) R P F1 (CoNLL) R P F1 (CoNLL)
all 61.14 73.73 66.78 75.05 82.22 78.42 50.56 72.76 59.58
ca_ancora 62.92 75.76 68.72 78.13 85.35 81.57 45.08 73.11 55.73
cs_pcedt 62.65 74.50 68.01 78.53 87.17 82.59 54.52 75.62 63.32
cs_pdt 58.64 75.91 66.10 74.38 81.43 77.70 44.63 74.52 55.76
en_gum 58.55 73.27 65.02 70.70 76.60 73.45 53.92 72.17 61.55
en_parcorful 65.61 38.18 48.16 90.98 91.96 91.05 65.23 35.38 45.54
fr_democrat 57.99 65.32 60.89 66.19 69.74 67.20 52.72 62.82 56.53
de_parcorfull 42.06 35.15 38.17 91.13 92.82 91.90 67.48 52.76 58.86
de_potsdamcc 58.81 70.72 64.16 71.65 82.51 76.56 65.02 68.25 66.38
hu_korkor 47.73 65.38 55.11 68.26 75.13 71.45 38.88 56.64 46.06
hu_szegedkoref 56.11 65.34 60.34 80.57 85.86 83.12 47.13 59.82 52.71
lt_lcc 65.85 80.70 72.47 89.84 92.72 91.17 55.10 73.40 62.94
no_bokmaal 66.83 76.47 71.13 69.73 77.20 72.97 60.24 74.30 66.16
no_nynorsk 67.93 75.28 71.07 70.58 76.58 73.10 63.56 74.39 68.18
pl_pcc 61.39 70.63 65.64 70.84 77.22 72.43 52.99 68.75 59.79
ru_rucor 60.91 67.73 63.26 69.07 80.78 73.81 52.18 69.33 58.92
es_ancora 62.80 77.36 69.31 76.86 86.18 81.25 46.14 76.06 57.41
tr_itcc 27.91 40.70 30.82 59.03 68.74 61.47 30.30 51.98 36.84

Table 9: Baseline’s coreference resolution results on the development data
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Abstract

In morphologically rich languages, words con-
sist of morphemes containing deeper informa-
tion in morphology, and thus such languages
may necessitate the use of morpheme-level
representations as well as word representa-
tions. This study introduces a neural multi-
lingual end-to-end coreference resolution sys-
tem by incorporating morphological informa-
tion in transformer-based word embeddings on
the baseline model. This proposed model par-
ticipated in the Sixth Workshop on Compu-
tational Models of Reference, Anaphora and
Coreference (CRAC 2023). Including morpho-
logical information explicitly into the coref-
erence resolution improves the performance,
especially in morphologically rich languages
(e.g., Catalan, Hungarian, and Turkish). The
introduced model outperforms the baseline sys-
tem by 2.57 percentage points on average by
obtaining 59.53% CoNLL F-score.

1 Introduction
Coreference Resolution (CR) is the task of deter-
mining coreferential relations between mentions re-
ferring to the same real-world entity in a document.
CR is one of the essential components of compre-
hending natural language and is investigated under
the semantic level of natural language processing
(NLP). An end-to-end CR system consists of two
stages which are trained jointly: 1) Mention detec-
tion and 2) Coreference linking. In the first, all
possibly referential mentions are extracted in a text.
Then, the coreferential relations between the auto-
matically predicted mentions are created during the
linking stage. When the CR task crosses with the
complex linguistic diversity of natural languages,
it becomes even more difficult, and morphological
richness is one of such diversity. Morphologically
rich languages require considering sub-word units
(or morphemes) which carry deeper information
at the morphology level. Therefore, this study ex-
plores the impact of including morphology informa-

tion explicitly in a neural multilingual end-to-end
CR system. Moreover, even if CR is an actively
studied topic for quite a long time, the multilingual
studies are currently in the process of development.
Most studies propose CR datasets in their own data
format and report their performances in one lan-
guage only. The lack of quality and standardized
datasets makes building multilingual CR systems
harder. CorefUD initiative fills this gap in the CR
literature by proposing a universal coreference rep-
resentation scheme which was built on top of the
Universal Dependencies (Nivre et al., 2017, 2020;
Grobol and Tyers, 2023) initiative.

In this paper, we propose a neural, multilingual,
end-to-end CR model trained with the data con-
vened in CorefUD v1.1 (Novák et al., 2022); we
extend the baseline model (Pražák et al., 2021) by
enhancing the transformer-based word embeddings
with dense and sparse (i.e., one/multi-hot encoding)
vector representations of morphological informa-
tion (i.e., POS tags and morphological features).
The CorefUD v1.1 contains 17 different datasets
for twelve languages in a harmonized, universal
scheme. The proposed CR model employing sparse
vector representations of morphological informa-
tion achieves 59.53% CoNLL score on the test set
(average across all languages), which means a 2.57
percentage points improvement over the baseline.
The results show that the impact of explicitly incor-
porated morphological information is particularly
high in the CR performance of morphologically
rich languages. The paper is structured as follows:
Section 2 gives the related work, Section 3 intro-
duces the proposed neural model in detail, Section
4 presents the experimental setup and results, and
Section 5 gives the conclusion.

2 Related Work
Deep learning-based CR approaches conforming
to the end-to-end fashion have begun to be studied
extensively in the last few years. Lee et al. (2017)
proposes the first end-to-end neural CR system,
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which creates a base for later studies. This study
is enhanced with transformer-based embeddings
via BERT (Kantor and Globerson, 2019) and Span-
BERT (Joshi et al., 2020) with the higher-order
inference (HOI) mechanism on top which are fea-
tured by Lee et al. (2018). Moreover, Liu et al.
(2020) proposes a neural CR system employing
entity-based features which were obtained by graph
neural networks. In parallel, Park et al. (2020) in-
troduce BERT-SRU-based Pointer Networks with
the integration of morpheme boundaries as features
for Korean. There are many studies proposed in the
previous multilingual CR shared task (CRAC 2022)
(Žabokrtský et al., 2022). The winning team of the
shared task was ÚFAL CorPipe with 2 of their 3
submissions being on the leaderboard. The best
model, straka, is trained jointly on all training data
in all languages, and provides 70.72% CoNLL F-
score by primary metric. ondfa (Pražák et al., 2021)
is a baseline-based model using pre-trained XLM-
RobertaLarge (Conneau et al., 2019) and also con-
taining mention-head prediction. With the power of
the mention-head prediction component, the model
ends up getting a higher head-match score. K-Sap
(Saputa, 2022) is introduced for only Polish. In
addition to neural CR systems, rule-based models
(berulasek, simple-rule-based, Moravec) also exist
in the CRAC 2022.

Available annotated CR datasets in the literature
are in a lack of standardization, which makes the de-
velopment of multilingual CR systems complicated.
By means of the CorefUD scheme (Novák et al.,
2022), a multilingual coreference dataset collection
is established and the task is shaped into a more
generalized form. In parallel, CRAC organizations
encourage researchers to develop and submit their
own systems utilizing CorefUD dataset under the
shared representation. CRAC 2022 was organized
with the CorefUD v1.0 (Nedoluzhko et al., 2022)
containing 13 datasets for 10 languages. CRAC
23 is organized with CorefUD v1.1 release. This
version consists of 17 different datasets for 12 lan-
guages. Recent contributions involve Hungarian
with one dataset, Turkish with one dataset, and Nor-
wegian with two datasets. These made Turkish and
Norwegian to appear in the CorefUD collection for
the first time.

3 The Proposed Model
The introduced model is a modified version of the
baseline model provided in the CRAC 2023 Shared
Task (Žabokrtský et al., 2023), with the span rep-

resentations updated. The baseline model (Pražák
et al., 2021) provides a multilingual, end-to-end
neural CR system which is a re-implementation
of an available study (Xu and Choi, 2020). Basi-
cally, the model learns the probability distribution
of coreferential links in the training data by max-
imizing the marginalized log-likelihood of gold
antecedents for each possible span. To rank au-
tomatically detected referential mentions and link
them with their possible antecedents, the model es-
timates the combination of two types of scores: 1)
individual mention score, and 2) paired antecedent
score. Individual mention score represents the like-
lihood of a span being a referential mention. An-
tecedent score entails a span pair and ranks their
possibility of being coreferent. Since spans are
considered as a sequence of words, they are repre-
sented by their words’ embeddings obtained from
a transformer, i.e., BERT.

This study introduces an enhanced span represen-
tation by incorporating morphological information
explicitly in addition to contextual embeddings ob-
tained by BERT. Each span embedding consists of
three main sub-parts1: the embeddings of its first
and last tokens, and the head attended embeddings
of all tokens, as formularized in Equation (1) in the
baseline model. In the equation, si represents the
ith span, and e(si) indicates the embedding of the
related span.

e(si) = e(sifirst)⊕ e(silast)⊕ e(sihead) (1)

This study extends the first and last tokens’ em-
beddings by incorporating one/multi-hot encoded
morphological information explicitly. There are
two types of morphological information utilized:
universal part-of-speech (UPOS) and universal
morphological features (Feats). The output sam-
ple of this procedure is shown for the first token’s
embedding in the Equation (2). The operation an-
notated by ⊕ is concatenation. Therefore the size
of e(si) is extended by the total unique number of
universal POS tags and morphological features in
the CorefUD collection. The same procedure is
also applied to the last token’s embedding.

e(sifirst) =e(sifirst [form])⊕
enc(sifirst [upos])⊕
enc(sifirst [feats]) (2)

1The span representation also contains various metadata
(speaker, genre, span width) embeddings, and also embedded
distance between a span and its antecedent. These secondary
information are not formularized in equations to make them
more readable.
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4 Experimental Setup & Results
This section introduces the performance of the pro-
posed model and also intermediate results.

4.1 Experimental Setup
The model utilizes a transformer-based neural lan-
guage model, BERT2 (Devlin et al., 2019), which
is multilingual, base, and case sensitive. The model
is trained using the default hyper-parameters, ex-
cept maximum segment length being 256 instead of
5123. The hardware used in training is Tesla v100
graphic card. We trained our model for 24 epochs
and the number of documents in the joint training
data is 9595. The gradient update frequency is 1 so
the total gradient update count is 230280 accord-
ingly. The total time for training is 25-30 hours on
average across the experiments.

Universal POS tags and morphological features
are employed as morphological information in
this study. One should note that, in the dataset,
multiple morphological features are collected
under the same information unit, separated by
pipe symbols. Therefore, while one-hot encoding
is suitable for POS tags, morphological features
require multi-hot encoding, e.g., UPOS="NOUN"
and FEATS="Case=Nom|Number=Plur" have
upos_one_hot = [00100000...] (supposing
NOUN is the third UPOS) and feats_multihot
= [0100100...] (supposing Number=Plur is the
second and Case=Nom the fifth feature). The total
numbers of unique POS tags and morphological
features are 20 and 210, respectively. Since mor-
phological information is inserted to both the first
and last tokens’ embeddings, the dimensionality of
the span embedding has increased by 460 for the
one/multi-hot encoding technique.

In the case of dense vector representation, em-
bedding layers with the dimensionality of 5 are
deployed for POS tags and morphological features
separately. To preserve the dimensionality, multi-
ple morphological features are averaged out. All
experiments are operated on a joined multilingual
training set containing training data from all Core-
fUD languages. The only official evaluation cri-
terion for the shared task is CoNLL, calculated
as the macro-average F1 values of MUC (Vilain
et al., 1995), B-cubed (Bagga and Baldwin, 1998)
and CEAFe (Pradhan et al., 2014) scores of the

2https://huggingface.co/
bert-base-multilingual-cased

3https://github.com/ondfa/coref-multiling/
blob/master/experiments.conf

predictions. The primary score is calculated using
the head-match. That is, if the heads of a gold-
standard and predicted mentions correspond to the
same token, they are considered as a match. For
that reason, the predicted mentions are reduced to
their head tokens during the evaluation, with the
help of MoveHead utility of Udapi4 (Popel et al.,
2017).

4.2 Results & Discussion
Several experiments were conducted to maximize
the performance while enhancing span representa-
tions with morphological information. The results
are given in Table 1. All contributions are made to
the baseline model.

System CoNLL
BASELINE 58.99
+{U,F}emb 60.75
+{U}enc 61.27
+{U,F}enc (morphbase) 61.35

Table 1: The performances of the intermediate and the
proposed models evaluated on the development sets
(CoNLL score in %).

While the first two rows below the BASELINE
indicate the intermediate systems, the final sys-
tem, named morphbase hereinafter, is the proposed
model which participates in the CRAC 2023 shared
task by our team, TrCR. As intermediate investiga-
tions, in Table 1, the models are named with the
employed linguistic information; U indicates the
use of universal POS tags and F indicates the use of
morphological features. The results show all mod-
els exploiting morphological information surpass
the performance of the baseline model by varying
amounts.

We try to use both dense embeddings and one
hot encodings for our morphological information
representations; The first attempt is to utilize dense
representations of both universal POS tags and mor-
phological features, named {U,F}emb. This model
provides 60.75% CoNLL score which is 1.76 per-
centage points higher than the baseline. The sec-
ond model, {U}enc uses a one-hot encoded ver-
sion of only universal POS tags, and surpasses our
first intermediate model by 0.52 percentage points.
The model submitted to the shared task, {U,F}enc
(named morphbase) employs encoded versions of
both universal POS tags and morphological fea-
tures. The morphbase model gives the best per-

4https://github.com/udapi/udapi-python
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BASELINE 58.99 65.60 65.72 65.66 57.25 56.07 66.87 56.56 67.00 57.22 58.96 66.96 64.17 63.04 48.38 58.44 68.78 16.15

morphbase 61.35 68.85 67.97 66.05 50.10 63.51 65.42 44.85 69.98 59.77 59.19 72.74 65.61 62.93 53.25 71.02 69.15 32.63

Diff ↑ 2.36 ↑ 3.25 ↑ 2.25 ↑ 0.39 ↓ 7.15 ↑ 7.44 ↓ 1.45 ↓ 11.71 ↑ 2.98 ↑ 2.55 ↑ 0.23 ↑ 5.78 ↑ 1.44 ↓ 0.11 ↑ 4.87 ↑ 12.58 ↑ 0.37 ↑ 16.48

Table 2: Dev set results for individual languages in the primary metric (CoNLL).
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BASELINE 56.96 65.26 67.72 65.22 44.11 57.13 63.08 35.19 66.93 55.31 55.32 63.57 66.08 69.03 40.71 65.10 65.78 22.75

morphbase 59.53 68.23 64.89 64.74 39.96 64.87 62.80 40.81 69.01 53.18 56.41 64.08 67.88 68.53 52.91 68.17 66.35 39.22

Diff ↑ 2.57 ↑ 2.97 ↓ 2.83 ↓ 0.48 ↓ 4.15 ↑ 7.74 ↓ 0.28 ↑ 5.62 ↑ 2.08 ↓ 2.13 ↑ 1.09 ↑ 0.51 ↑ 1.8 ↓ 0.5 ↑ 12.2 ↑ 3.07 ↑ 0.57 ↑ 16.47

Table 3: Test set results for individual languages in the primary metric (CoNLL).

formance among all investigated models with a
61.35% CoNLL score which is 2.36 percentage
points higher than the baseline. The one/multi-hot
encoding technique performs better in capturing
sparse tag combinations, which may be one reason
why models using this technique are more success-
ful than the model using dense representations.

There were 10 submissions in this year’s shared
task, CRAC 2023. The winner model of this year,
CorPipe (Straka and Straková, 2022) preserved
their positions on the leaderboard in the previous
shared task and provides 74.90% CoNLL scores
on average. We are ranked at 7th place (Table 5)
on the macro-averaged score, indicated as mor-
phbase in Table 5. On individual dataset scores,
our highest rank is on Catalan (ca_ancora), which
is the 5th place. Then it is followed by 6th place
on Turkish (tr_itcc), Hungarian (hu_korkor), Ger-
man (de_potsdamcc), and English (en_parcorfull)
datasets. Tables 2 and 3 present the performance
of the morphbase model, in all languages with
the primary metric. The top row lists the name
of datasets for each language. The row ‘Diff’ in-
dicates the improvement of the morphbase over
the baseline model. Enhanced span representation
achieves 61.35% and 59.53% CoNLL performance
on average, which are higher than 2.36 and 2.57
percentage points on development and test sets, re-
spectively. Including morphological information
explicitly into the baseline model improves the per-
formance of the following morphologically rich
languages: Catalan, Czech, Hungarian, Spanish,
French, Lithuanian, Polish, Norwegian, and Turk-
ish, however, in Czech and French, improvements

are only observed on the development sets.
The highest performance increment is on Turk-

ish (tr_itcc) by 16.48 percentage points on the de-
velopment set and 16.47 percentage points on the
test set. Since Turkish possesses prominently rich
morphology, such enhancement is not utterly sur-
prising. For Hungarian, a significant increase is
obtained on hu_korkor dataset by 4.87 percentage
points on the development set and 12.2 percentage
points on the test set. It is followed by Norwe-
gian which exhibits agglutinative characteristics
on verbal suffixes and the baseline model is sur-
passed by 12.58% percentage points on the develop-
ment set. The performance of Spanish is improved
by 2.98 and 2.08 percentage points compared to
baseline by obtaining 69.98% and 69.01% CoNLL
scores on development and test sets, orderly. While
there is an undeniable drop in performance for Ger-
man (de_parcorfull) and English (en_parcorfull)
datasets, there is no such drop in the remaining
datasets of these languages. The small sizes of
these datasets (for details, check Table 4) might be
the reason for such results. Moreover, it can be ob-
served that in the languages having large datasets
such as Czech, Spanish, and Polish, the effect of
morphological information integration seems not
as prominent as in medium-sized datasets.

5 Conclusion
This study proposed a neural, end-to-end, multilin-
gual CR model which is an improved version of
the baseline model incorporating morphological in-
formation into transformer-based span embeddings.
The results show that extending word representa-
tions with morphological information helps CR
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systems on average but especially for languages
with high morphological complexity and agglu-
tinative characteristics (e.g., Catalan, Hungarian,
Norwegian, and Turkish). The proposed model
completed the CRAC 2023 shared task at 7th place
on average. Besides, on individual dataset scores,
our highest rank is on Catalan (ca_ancora), which
is the 5th place. Then it is followed by 6th place on
Turkish (tr_itcc), Hungarian (hu_korkor), German
(de_potsdamcc), and English (en_parcorfull).

Limitations

The main limitation of this study is that the train-
ing is operated on the joined data including all
languages and there are no language-specific ad-
justments to the model. Therefore, the model treats
all data equally even if the language has specific
characteristics which might be useful to detect ref-
erential mentions and/or make coreferential rela-
tions between them. It is considered that it might
increase the performance of particular languages
having distinctive linguistic characteristics.

The proposed model is trained by only default
hyper-parameters with the baseline model, that is,
no hyper-parameter tuning could be done due to
the time and resource constraints. The introduced
model may need another set of parameters to per-
form better. For example, due to the hardware
constraints, the transformer’s segment size is used
as 256, which is smaller than the usual, 512. The
effect of such a constraint is most likely to be neg-
ative since it is a limiting factor when it comes to
capturing the longer context.

Beyond the listed limitations, this study showed
the positive impact of the interaction between
transformer-based word representations and mor-
phological information on the CR, despite the in-
creasing popularity of deep learning, and the power
of transformers. In future work, firstly, we plan
to conduct error-analysis on languages which our
model, morphbase, provided lower performances
than the baseline model. We also plan to apply
the proposed idea to other SOTA end-to-end neural
multilingual CR systems. Moreover, we will work
on increasing the performance of other languages
by representing language-specific features in the
model.
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sents 13,613 49,208 49,428 543 2,238 10,761 543 14,159 13,057 8,820 1,714 35,784 9,035 1,351 15,742 12,481 4,733

words 435,690 1,191,599 857,109 10,602 33,222 187,515 10,798 466,530 284,883 128,825 37,014 539,355 156,636 26,556 245,515 206,660 55,341

empty 6,377 35,844 22,389 0 0 99 0 8,112 0 4,857 0 470 0 1,988 0 0 0

train [%] 77.6 81.0 78.3 81.6 80.3 78.9 81.2 80.0 80.1 81.1 81.3 80.1 78.9 79.3 82.8 83.6 81.5

dev [%] 11.4 14.2 10.6 10.4 10.2 10.5 10.7 10.0 10.0 9.6 9.2 10.0 13.5 10.2 8.8 8.7 8.8

test [%] 11.0 4.9 11.2 8.1 9.5 10.6 8.1 10.0 10.0 9.4 9.6 9.9 7.6 10.5 8.4 7.7 9.7

Table 4: CorefUD v1.1 statistics. Last 4 datasets are newly introduced, the rest is presented in previous
versions.
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CorPipe 74.90 (1) 82.59 (1) 79.33 (1) 79.20 (1) 72.12 (1) 71.09 (1) 76.57 (1) 69.86 (1) 83.39 (1) 69.82 (1) 69.47 (1) 75.87 (1) 79.54 (1) 82.46 (1) 68.92 (1) 78.74 (1) 78.77 (1) 55.63 (1)

Anonymous 70.41 (2) 79.51 (2) 75.88 (2) 76.39 (2) 64.37 (3) 68.24 (5) 72.29 (2) 59.02 (3) 80.52 (2) 66.13 (2) 66.25 (2) 70.09 (2) 77.58 (2) 80.19 (2) 64.65 (3) 75.32 (2) 73.33 (2) 47.22 (2)

Ondfa 69.19 (3) 76.02 (3) 74.82 (3) 74.67 (3) 71.86 (2) 69.37 (3) 71.56 (3) 61.62 (2) 77.18 (3) 60.32 (4) 65.75 (4) 68.52 (3) 76.90 (3) 76.50 (4) 66.38 (2) 72.39 (4) 70.91 (4) 41.52 (4)

McGill 65.43 (4) 71.75 (4) 67.67 (7) 70.88 (4) 41.58 (7) 70.20 (2) 66.72 (4) 47.27 (4) 73.78 (4) 65.17 (3) 65.93 (3) 65.77 (6) 76.14 (4) 77.28 (3) 60.74 (4) 73.73 (3) 72.43 (3) 45.28 (3)

DeepBlueAI 62.29 (5) 67.55 (7) 70.38 (4) 69.93 (5) 48.81 (5) 63.90 (7) 63.58 (6) 43.33 (5) 69.52 (5) 55.69 (6) 63.14 (5) 66.75 (4) 73.11 (5) 74.41 (5) 54.38 (5) 69.86 (6) 68.53 (5) 36.14 (8)

DFKI-Adapt 61.86 (6) 68.21 (6) 68.72 (5) 67.34 (6) 52.52 (4) 69.28 (4) 65.11 (5) 36.87 (7) 69.19 (6) 58.96 (5) 58.56 (6) 66.01 (5) 67.98 (6) 72.48 (6) 51.53 (7) 70.05 (5) 68.21 (6) 40.67 (5)

Morphbase 59.53 (7) 68.23 (5) 64.89 (8) 64.74 (8) 39.96 (9) 64.87 (6) 62.80 (8) 40.81 (6) 69.01 (7) 53.18 (8) 56.41 (7) 64.08 (7) 67.88 (7) 68.53 (8) 52.91 (6) 68.17 (7) 66.35 (7) 39.22 (6)

BASELINE 56.96 (8) 65.26 (8) 67.72 (6) 65.22 (7) 44.11 (6) 57.13 (9) 63.08 (7) 35.19 (8) 66.93 (8) 55.31 (7) 55.32 (8) 63.57 (8) 66.08 (8) 69.03 (7) 40.71 (9) 65.10 (9) 65.78 (8) 22.75 (9)

DFKI-MPrompt 53.76 (9) 55.45 (9) 60.39 (9) 56.13 (9) 40.34 (8) 59.75 (8) 57.83 (9) 34.32 (9) 58.31 (9) 52.96 (9) 48.79 (9) 56.52 (9) 61.15 (9) 61.96 (9) 44.53 (8) 65.12 (8) 62.99 (9) 37.44 (7)

Table 5: This table presents the performances of the participated models in the CRAC 2023 Shared Task. These
scores are the average CoNLL F-scores of the all languages. The numbers existing in parentheses indicate the rank
of the team for each related language and dataset.
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Abstract
We present CorPipe, the winning entry to
the CRAC 2023 Shared Task on Multilingual
Coreference Resolution. Our system is an
improved version of our earlier multilingual
coreference pipeline, and it surpasses other
participants by a large margin of 4.5 percent
points. CorPipe first performs mention detec-
tion, followed by coreference linking via an
antecedent-maximization approach on the re-
trieved spans. Both tasks are trained jointly on
all available corpora using a shared pretrained
language model. Our main improvements com-
prise inputs larger than 512 subwords and
changing the mention decoding to support en-
sembling. The source code is available at
https://github.com/ufal/crac2023-corpipe.

1 Introduction

The goal of coreference resolution is to identify
and cluster multiple occurrences of entities in the
input text. The CRAC 2023 Shared Task on Multi-
lingual Coreference Resolution (Žabokrtský et al.,
2023) aims to stimulate research in this area by
featuring coreference resolution on 17 corpora in
12 languages from the CorefUD 1.1 dataset (Novák
et al., 2022). The current shared task is a reiter-
ation of the previous year’s CRAC 2022 Shared
Task (Žabokrtský et al., 2022).

CorPipe, our entry to the CRAC 2023 Shared
Task, is an improved version of our earlier multi-
lingual coreference pipeline (Straka and Straková,
2022), which was the winner of the last year’s
shared task. Our system first performs mention de-
tection, followed by the coreference linking via an
antecedent-maximization approach on the retrieved
spans. However, CorPipe is not a pure pipeline,
because we train both tasks jointly using a shared
pretrained language model. Performing mention
detection first avoids the challenge of end-to-end
systems that need to consider an overwhelming
number of possible spans, and also permits recog-
nition of single-mention entities. Finally, all our

models are multilingual and are trained on all avail-
able corpora.

Our contributions are as follows:
• We present a winning entry to the CRAC 2023

Shared Task with state-of-the-art results, sur-
passing other shared task participants by a
large margin of 4.5 percent points.

• We improve our last year’s system by (a) in-
creasing the size of the inputs during predic-
tion, while keeping it smaller during training,
(b) using larger pretrained language models,
(c) proposing a different mention decoding
approach, that allows (d) implementing en-
sembling to further improve the performance.

• We perform a thorough examination of the
newly introduced components.

• The source code of our system is available at
https://github.com/ufal/crac2023-corpipe.

2 Related Work

While coreference resolution was traditionally car-
ried out by first performing mention detection fol-
lowed by coreference linking (clustering), recent
approaches are often end-to-end (Lee et al., 2017,
2018). Likewise, the baseline of CRAC 2022 and
2023 Shared Tasks (Pražák et al., 2021) as well as
the CRAC 2022 second-best solution (Pražák and
Konopik, 2022) follow this approach.

The recent work of Bohnet et al. (2023)
pushes the end-to-end approach even further,
solving both mention detection and corefer-
ence linking jointly via a text-to-text paradigm,
reaching state-of-the-art results on the CoNLL
2012 dataset (Pradhan et al., 2012). Given
that our system uses the same pretrained en-
coder but a custom decoder designed specifi-
cally for coreference resolution instead of a gen-
eral but pretrained decoder, it would be interest-
ing to perform a direct comparison of these sys-
tems.
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Coreference Linking

Charles University is the oldest university in Czech Republic . It is ...

mT5 large/xl

Token representation, dim 

Charles University is the oldest university in Czech Republic . It is

Mention Detection

Dense layer + ReLU, dim 

tag logits: dense layer, dim number_of_tags

PUSH POP 1 0 0 0 PUSH,
POP 1 0 PUSH POP 1 0  PUSH,

POP 1 0

first token rep. last token rep. first token rep. last token rep.first token rep. last token rep.first token rep. last token rep.

Pretrained Masked Language Model

 hidden: dense layer + ReLU, dim 

 (mention representation): dense layer, dim 

 hidden: dense layer + ReLU, dim 

 (antecedent representation): dense layer, dim 

Charles University is the oldest university in Czech Republic . It is

Inference only: dynamic decoding algorithm producing correctly balanced sequence of instructions

Figure 1: The proposed CorPipe model architecture.

3 CorPipe Architecture

The CorPipe architecture is based heavily on our
earlier system (Straka and Straková, 2022), which
won the CRAC 2022 Shared Task (Žabokrtský
et al., 2022). We describe just the changes we pro-
pose; please refer to (Straka and Straková, 2022)
for the description of our original system.

In short, our system first obtains a contextual-
ized representation of the input by employing a
pretrained model. These representations are then
used first to perform mention detection, and then,
together with the predicted mentions, to perform
coreference linking. The mentions are predicted
one sentence at a time, but both previous and fol-
lowing contexts are included up to the specified
context length. The architecture overview is dis-
played in Figure 1.

3.1 The mT5 Pretrained Models

In the original architecture, we employed large-
sized models XLM-R large (Conneau et al., 2020)

and RemBERT (Chung et al., 2021). However,
even bigger models consistently deliver better per-
formance in various applications (Kale and Rastogi,
2020; Xue et al., 2021; Rothe et al., 2021; Bohnet
et al., 2023). We therefore decided to utilize the
largest possible pretrained multilingual model. To
our best knowledge, we are aware of a single family
of such models, the mT5 (Xue et al., 2021), a mul-
tilingual variant of the encoder-decoder pretrained
model T5 (Kale and Rastogi, 2020) based on the
Transformer architecture (Vaswani et al., 2017).1

The mT5 pretrained models have one more con-
siderable advantage – because of relative positional
embeddings, they are capable of processing inputs
longer than 512 subwords, compared to both XLM-
R large and RemBERT. In Section 5.1, we demon-
strate that processing longer inputs is advantageous
for coreference resolution.

1The ByT5 (Xue et al., 2022), a byte version of multilin-
gual T5, is also available, but because it represents words as
individual UTF-8 bytes, it processes smaller inputs compared
to mT5, which is undesirable for coreference resolution.
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3.2 Mention Decoding

In the original architecture, we reduce the represen-
tation of embedded and possibly crossing mentions
to a sequence classification problem using an exten-
sion of BIO encoding. Each input token is assigned
a single tag, which is a concatenation of a sequence
of stack-manipulating instructions:

• any number of POP(i) instructions, each clos-
ing an opened mention from the stack. To
support crossing mentions, any mention on
the stack (not just the top one) can be closed,
identified by its index i from the top of the
stack (i.e., POP(1) closes the mention on the
top of the stack, POP(2) closes the mention
below the top of the stack);

• any number of PUSH instructions, each starting
a new mention added to the top of the stack;

• any number of POP(1) instructions, each clos-
ing a single-token mention started by a PUSH
instruction from the same tag (such single-
token mentions could be also represented by a
dedicated instruction like UNIT, but we prefer
smaller number of instructions).

To produce hopefully valid (well-balanced) se-
quences of tags, we originally used a linear-chain
conditional random fields (CRF; Lafferty et al.
2001). Because of the Markovian property, ev-
ery tag had to be parametrized also with the size of
the stack before the first instruction (we call these
tags the depth-dependent tags).

The described approach has two drawbacks.
First, the predicted sequence of tags might still
be unbalanced (which we observed repeatedly in
the predictions). Furthermore, it would be more
challenging to perform ensembling, because ev-
ery model would have a different sequence-based
partition function.2

To alleviate both mentioned issues, we propose
to replace the CRF with per-token classification
during training and perform a constrained dynamic
programming decoding during inference using the

2When ensembling models, we average the distributions
the models predict; in other words, unnormalized logits must
first be normalized into (log-)probabilities. While this is
straightforward for simple classification, CRF models nor-
malize over all possible label sequences. Ensembling several
CRF models would therefore require that, during each step
of the sequential decoding of token labels, every model com-
puted the (log-)probabilities of all sequences with the label in
question conditioned on the already decoded labels. Such an
algorithm would have the same asymptotic complexity as the
usual CRF decoding times the number of models. However,
we did not implement it ourselves.

Viterbi algorithm.3 Such approach admits ensem-
bling in a straightforward manner by averaging pre-
dicted distributions for each token independently.

Without the CRF, the tags no longer need to be
parametrized by the current size of the stack – the
depth of the stack can be tracked just during de-
coding (we consider stack depths of at most 10;
Section 5.2 demonstrates that depth 3 is actually
sufficient). Such depth-independent tags have the
advantage of being scarcer,4 admitting better statis-
tical efficiency, and we utilize them in our primary
submission. The comparison of both tag sets as
well as the CRF and dynamic programmic decod-
ing is performed in Section 5.2.

3.3 Multilingual Training Data

All our models are trained on all 17 CorefUD 1.1
corpora. Given that their size range from tiny (457
training sentences in de and en parcorfull) to
large (almost 40k training sentences in cs pdt and
cs pcedt), we try to level the individual corpora
performances by sub-/over-sampling the datasets.
Concretely, we sample each batch example (a sen-
tence with its context) proportionally to mix ratios,
the corpora-specific weights. We consider the fol-
lowing possibilities:

• uniform: we sample uniformly from all cor-
pora, ignoring their sizes;

• linear: we sample proportionally to the sizes
of individual corpora;

• square root: following (van der Goot et al.,
2021), we sample proportionally to the square
roots of corpora sizes;

• logarithmic: similar to (Straka and Straková,
2022), we sample proportionally to the cor-
pora sizes logarithms, which are linearly
rescaled so that the largest corpus is ten times
more probable than the smallest corpus.

Since different corpora might require particu-
lar annotations, we also consider adding a corpus
id subword (dataset label) to the input to indicate
the dataset of origin and the required style of an-
notations. These corpus ids, evaluated already in
(Straka and Straková, 2022), are just a different
implementation of treebank embeddings proposed
in Stymne et al. (2018).

3The decoding algorithm differs from CRF decoding in just
two aspects: (a) the logits are normalized into log-probabilities
for each token separately, (b) the transition matrix only forbids
invalid transitions, all valid transitions have the same weight.

4There are 54 and 207 unique depth-independent and
depth-dependent tags in the whole training data, respectively.
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ÚFAL CorPipe 74.90
1

82.59
1

79.33
1

79.20
1

72.12
1

71.09
1

76.57
1

69.86
1

83.39
1

69.82
1

68.92
1

69.47
1

75.87
1

78.74
1

78.77
1

79.54
1

82.46
1

55.63
1

Anonymous 70.41
2

79.51
2

75.88
2

76.39
2

64.37
3

68.24
5

72.29
2

59.02
3

80.52
2

66.13
2

64.65
3

66.25
2

70.09
2

75.32
2

73.33
2

77.58
2

80.19
2

47.22
2

Ondfa 69.19
3

76.02
3

74.82
3

74.67
3

71.86
2

69.37
3

71.56
3

61.62
2

77.18
3

60.32
4

66.38
2

65.75
4

68.52
3

72.39
4

70.91
4

76.90
3

76.50
4

41.52
4

McGill 65.43
4

71.75
4

67.67
7

70.88
4

41.58
7

70.20
2

66.72
4

47.27
4

73.78
4

65.17
3

60.74
4

65.93
3

65.77
6

73.73
3

72.43
3

76.14
4

77.28
3

45.28
3

DeepBlueAI 62.29
5

67.55
7

70.38
4

69.93
5

48.81
5

63.90
7

63.58
6

43.33
5

69.52
5

55.69
6

54.38
5

63.14
5

66.75
4

69.86
6

68.53
5

73.11
5

74.41
5

36.14
8

DFKI-Adapt 61.86
6

68.21
6

68.72
5

67.34
6

52.52
4

69.28
4

65.11
5

36.87
7

69.19
6

58.96
5

51.53
7

58.56
6

66.01
5

70.05
5

68.21
6

67.98
6

72.48
6

40.67
5

Morfbase 59.53
7

68.23
5

64.89
8

64.74
8

39.96
9

64.87
6

62.80
8

40.81
6

69.01
7

53.18
8

52.91
6

56.41
7

64.08
7

68.17
7

66.35
7

67.88
7

68.53
8

39.22
6

BASELINE† 56.96
8

65.26
8

67.72
6

65.22
7

44.11
6

57.13
9

63.08
7

35.19
8

66.93
8

55.31
7

40.71
9

55.32
8

63.57
8

65.10
9

65.78
8

66.08
8

69.03
7

22.75
9

DFKI-MPrompt 53.76
9

55.45
9

60.39
9

56.13
9

40.34
8

59.75
8

57.83
9

34.32
9

58.31
9

52.96
9

44.53
8

48.79
9

56.52
9

65.12
8

62.99
9

61.15
9

61.96
9

37.44
7

Table 1: Official results of CRAC 2023 Shared Task on the test set (CoNLL score in %). The system † is described
in Pražák et al. (2021); the rest in Žabokrtský et al. (2023).

Our primary submission relies on logarithmic
mix ratios with corpus ids. The concrete values of
all proposed mix ratios together with their perfor-
mance comparison are presented in Section 5.5.

3.4 Training

When utilizing the mT5 pretrained models, we
train CorPipe models with the Adafactor opti-
mizer (Shazeer and Stern, 2018) using a slanted
triangular learning schedule – we first linearly in-
crease the learning rate from 0 to 5e-4 in the first
10% of the training, and then linearly decay it to 0
at the end of the training. The models are trained
for 15 epochs, each comprising 8000 batches. For
models up to size large, we utilize batch size 8,
which is the maximum one fitting on a single A100
GPU with 40GB RAM. The xl-sized models are
trained on four 40GB A100, with a maximum possi-
ble batch size 12. The training took 10 and 20 hours
for the mT5-large and mT5-xl models, respectively.

For the XLM-R and RemBERT ablation exper-
iments, we utilize the lazy variant of the Adam
optimizer (Kingma and Ba, 2015) and the learning
rates of 2e-5 and 1e-5, respectively.

All classification heads employ label smooth-
ing (Szegedy et al., 2016) of 0.2.

During training, we use context length of 512
subwords and limit the right context length to 50,
but we use context length of 2560 subwords during
inference with the mT5 models.

The competition submissions were selected from
a pool of 30 models based on mT5-large and mT5-
xl pretrained models with different random seeds
and slightly perturbed hyperparameters,5 by con-

5Learning rate 5e-4, 6e-4, 7e-4; double or quadruple
batch size; 8k or 10k batches per epoch.

System Head-match Partial-match Exact-match +Singletons

ÚFAL CorPipe 74.90 (1) 73.33 (1) 71.46 (1) 76.82 (1)
Anonymous 70.41 (2) 69.23 (2) 67.09 (2) 73.20 (2)
Ondfa 69.19 (3) 68.93 (3) 53.01 (8) 68.37 (3)
McGill 65.43 (4) 64.56 (4) 63.13 (3) 68.23 (4)
DeepBlueAI 62.29 (5) 61.32 (5) 59.95 (4) 54.51 (5)
DFKI-Adapt 61.86 (6) 60.83 (6) 59.18 (5) 53.94 (6)
Morfbase 59.53 (7) 58.49 (7) 56.89 (6) 52.07 (7)
BASELINE 56.96 (8) 56.28 (8) 54.75 (7) 49.32 (8)
DFKI-MPrompt 53.76 (9) 51.62 (9) 50.42 (9) 46.83 (9)

Table 2: Official results of CRAC 2023 Shared Task on
the test set with various metrics in %.

sidering for each corpus the best performing check-
point of every epoch of every trained model. Our
primary submission is for each corpus an ensemble
of 3 best checkpoints of 3 models.6

4 Shared Task Results

The official results of the CRAC 2023 Shared Task
are presented in Table 1. Our CorPipe system de-
livers the best overall score of 74.9%, surpassing
the other participants by a large margin of 4.5 per-
cent points, and also achieves the best scores for
all individual corpora.

4.1 Results of Additional Metrics

The CRAC 2023 Shared Task primary metric em-
ploys head matching, where a predicted mention is
considered correct if it has the same mention head
as the gold mention, and excludes singletons. Com-
parison with other metrics is performed in Table 2.
Apart from the head matching, the organizers eval-
uated also partial matching (a predicted mention is
correct if it is a subsequence of the gold mention

6We implemented ensembling by loading each model to
its dedicated A100 GPU, thus parallelizing the execution of
the individual models.
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Original CorPipe 2022 70.3 79.9 76.0 76.8 63.3 72.6 72.3 57.6 81.2 65.4 66.2 65.4 68.6 75.4 73.6 79.0 78.4 42.5
Single mT5 large model +2.6 +2.2 +2.1 +0.8 +6.7 –1.2 +1.6 +4.0 +0.9 +0.1 +1.6 +3.3 +7.4 +3.5 +2.2 –0.5 +2.4 +7.6
Single mT5 xl model +2.7 +2.0 +2.0 +1.5 +2.7 –3.0 +2.9 +6.8 +1.6 +2.6 –0.7 +4.1 +4.7 +3.3 +3.7 –0.3 +2.6 +10.3
Per-treebank best mT5 model +3.4 +2.6 +1.7 +1.6 +13.1 –4.1 +3.2 +10.3 +1.2 +3.3 –0.2 +2.0 +6.6 +3.0 +4.2 –0.8 +3.8 +7.6
Per-treebank 3-model ensemble +4.6 +2.7 +3.3 +2.4 +8.8 –1.5 +4.3 +12.3 +2.2 +4.4 +2.7 +4.1 +7.3 +3.3 +5.2 +0.5 +4.1 +13.1

Per-treebank 8-model ensemble +4.9 +3.3 +3.3 +2.7 +7.7 –0.8 +4.2 +13.4 +2.3 +3.2 +3.3 +5.4 +7.8 +4.2 +5.4 +0.8 +4.2 +14.0

Table 3: Official results of ablation experiments on the test set (CoNLL score in %). The 8-model ensemble (in
italics) was evaluated during the post-competition phase.

and contains the gold mention head), exact match-
ing (a predicted mention is correct if it is exactly
equal to the gold mention), and head matching in-
cluding singletons (entities with a single mention).

The ranking of all systems is unchanged in all
evaluated metrics, with a single exception – the
system Ondfa exhibits low exact-matching perfor-
mance, presumably because it reduces predicted
mentions to just their heads.7

4.2 Results of Our Additional Submissions

To quantify this year’s CorPipe improvements, we
present the official results of our additional submis-
sions in Table 3.

We first trained the original CorPipe on this
year’s data, achieving a 70.3% CoNLL score,
which is 0.1 percent points below the second-best
submission. Incorporating mT5-large/mT5-xl mod-
els, context size of 2560, and constrained decoding
with depth-independent tags resulted in an increase
of 3.4 percent points. Furthermore, employing a
3-model ensemble provides another 1.2 percent
points raise. In the post-competition phase, we also
evaluated an 8-model ensemble, which delivered
a final modest improvement of 0.3 percent points
and reached our best performance of 75.2%.

All these submissions choose the best model
checkpoints for every corpus independently. How-
ever, for deployment, a single checkpoint is more
appropriate – therefore, we also assessed the single
best-performing mT5-large checkpoint, resulting in
a 72.9% score (0.8 percent points lower than choos-
ing the best mT5-large/mT5-xl checkpoint per cor-
pus). The single best-performing mT5-xl check-
point achieved very similar performance of 73.0%.
We note that these single-checkpoint submissions
would comfortably win the shared task too.

7Reducing mentions to heads was a strategy for improving
partial-matching score in the previous edition of the shared
task; with the head-matching score, it can be avoided, which
allows also correct evaluation of the exact matching.

5 Ablations on the Development Set

To evaluate the effect of various hyperparameters,
we perform further experiments on the develop-
ment set. Because we observed a significant vari-
ance with different random seeds and we also ob-
served divergence in some training runs, we de-
vised the following procedure to obtain credible
results: For each configuration, we perform 7 train-
ing runs and keep only the 5 ones with the best
overall performance. We then want to perform
early stopping for every corpus. However, choos-
ing for every corpus a different epoch in every run
could lead to maximization bias in case the results
oscillate considerably – therefore, for every corpus,
we choose the single epoch achieving the highest
average 5-run score (i.e., we use this epoch for all
5 runs). Finally, we either average or ensemble the
5 runs for every corpus.

5.1 Pretrained Models and Context Sizes
The effect of increasing context sizes on the mT5-
large pretrained model is presented in Table 4.A.
The performance improves consistently with in-
creasing context size up to 2560; however, con-
text size 4096 deteriorates the performance slightly.
Considering context size 512, decreasing the con-
text size by 128 to 384 decreases the performance
by 1.6 percent points, while increasing the context
size by 128 to 768 increases it by 1.2 percent points,
with performance improving up to 2 percent points
for context length 2560.

For the mT5-xl pretrained model, the behavior
is virtually analogous, as captured by Table 4.B.

In Table 4.C, we compare the performance of dif-
ferent pretrained models using the context size 512.
We include different sizes of the mT5 model (Xue
et al., 2021), together with RemBERT (Chung et al.,
2021), XLM-R base, and XLM-R large (Conneau
et al., 2020).8

8We do not include other base-sized models like XLM-
V (Liang et al., 2023) or mDeBERTaV3 (He et al., 2023),
because they lack behind the large-sized models.
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A) CONTEXT SIZES FOR THE MT5-LARGE MODEL

mT5-large 512 72.8 78.1 78.1 76.9 70.7 75.4 75.6 67.4 80.3 68.6 70.6 67.3 77.4 77.8 78.7 75.8 71.1 48.6
mT5-large 256 –5.9 –8.8 –4.0 –5.3 –7.1 –3.2 –5.3 –11.7 –6.0 –4.1 –2.9 –4.5 –8.6 –6.4 –6.4 –4.8 –6.7 –4.6
mT5-large 384 –1.6 –2.9 –1.3 –1.8 –0.6 –0.3 –2.0 –1.6 –2.2 –1.3 –1.4 –1.1 –2.7 –2.4 –2.6 –1.2 –2.0 –1.5
mT5-large 768 +1.2 +2.5 +1.2 +1.5 –0.7 +0.0 +0.9 –1.4 +1.5 +1.3 –0.6 +2.1 +0.4 +2.7 +2.2 +0.4 +2.7 +3.3
mT5-large 1024 +1.6 +3.2 +1.8 +1.9 –1.0 +0.0 +1.1 –1.4 +2.1 +1.7 –1.1 +2.3 +0.5 +3.5 +2.6 +0.7 +3.6 +4.7
mT5-large 1536 +1.9 +3.3 +2.2 +2.1 –1.0 +0.0 +1.2 –1.4 +2.4 +1.5 –1.1 +2.4 +0.5 +3.8 +3.1 +1.0 +4.1 +6.8
mT5-large 2048 +2.0 +3.5 +2.2 +2.1 –1.0 +0.0 +1.2 –1.4 +2.5 +2.0 –1.1 +2.4 +0.5 +3.8 +3.0 +1.2 +4.1 +7.4
mT5-large 2560 +2.0 +3.5 +2.2 +2.1 –1.0 +0.0 +1.2 –1.4 +2.5 +1.7 –1.1 +2.5 +0.5 +3.7 +3.0 +1.3 +4.1 +8.6
mT5-large 4096 +1.7 +3.4 +2.1 +2.0 –1.0 +0.0 +1.2 –1.4 +2.5 +1.5 –1.1 +2.5 +0.5 +3.7 +2.8 +1.2 +4.4 +3.1

B) CONTEXT SIZES FOR THE MT5-XL MODEL

mT5-xl 512 73.3 77.5 78.4 77.2 73.9 76.1 75.4 72.9 80.1 68.4 70.3 67.2 77.2 77.7 78.3 76.1 71.3 47.6
mT5-xl 256 –6.1 –8.6 –3.9 –5.4 –9.2 –3.7 –5.8 –9.6 –5.7 –4.9 –2.8 –4.6 –10.1 –6.1 –6.5 –4.7 –6.7 –4.7
mT5-xl 384 –1.7 –2.6 –1.3 –1.9 –2.4 +0.1 –1.6 –0.4 –2.2 –1.5 –1.6 –1.2 –2.5 –2.2 –2.3 –1.3 –2.5 –0.6
mT5-xl 768 +1.1 +2.2 +1.3 +1.7 –4.4 +0.1 +1.3 +0.9 +1.7 +1.5 –1.3 +1.9 +1.5 +2.6 +2.2 +0.5 +2.6 +2.4
mT5-xl 1024 +1.5 +3.2 +1.9 +2.3 –4.4 +0.1 +1.5 +1.0 +2.3 +2.1 –1.5 +2.1 +1.2 +3.3 +2.9 +0.8 +3.9 +3.2
mT5-xl 1536 +1.8 +3.4 +2.4 +2.6 –4.4 +0.1 +1.7 +1.0 +2.7 +2.1 –1.5 +2.2 +1.2 +3.8 +3.5 +1.1 +5.2 +3.5
mT5-xl 2048 +1.8 +3.5 +2.6 +2.6 –4.4 +0.1 +1.7 +1.0 +2.8 +2.1 –1.5 +2.2 +1.2 +3.7 +3.9 +1.3 +5.5 +3.6
mT5-xl 2560 +1.9 +3.4 +2.6 +2.6 –4.4 +0.1 +1.7 +1.0 +2.8 +2.0 –1.5 +2.2 +1.2 +3.7 +3.6 +1.4 +5.3 +5.7
mT5-xl 4096 +1.7 +3.5 +2.6 +2.5 –4.4 +0.1 +1.7 +1.0 +2.8 +1.8 –1.5 +2.2 +1.2 +3.6 +3.6 +1.4 +5.3 +2.6

C) PRETRAINED LANGUAGE MODELS WITH CONTEXT SIZE 512

mT5-large 512 72.8 78.1 78.1 76.9 70.7 75.4 75.6 67.4 80.3 68.6 70.6 67.3 77.4 77.8 78.7 75.8 71.1 48.6
mT5-small 512 –9.7 –10.2 –11.3 –11.9 –10.6 –11.9 –8.0 –2.8 –9.5 –8.4 –12.7 –8.6 –8.1 –7.0 –9.2 –11.2 –11.6 –12.8
mT5-base 512 –3.9 –4.2 –4.1 –4.5 –3.8 –5.2 –3.8 +1.2 –3.6 –3.3 –8.3 –3.8 –1.6 –3.3 –3.0 –4.3 –4.6 –7.1
XLM-R-base 512 –1.9 –2.8 –3.4 –4.0 –0.5 –3.9 –3.5 +2.4 –2.6 –1.5 –2.8 –1.7 +0.9 –1.8 –2.3 –3.3 –0.8 –2.3
XLM-R-large 512 +1.1 +1.2 +0.7 +0.9 +1.5 +0.8 +0.8 +2.7 +0.9 +1.7 –0.9 +2.7 +1.0 +1.2 +1.0 +0.6 +2.1 –0.8
RemBERT 512 +0.2 +0.7 +1.2 +0.7 +3.4 +2.5 +0.1 +4.2 +0.5 +1.0 –3.3 +0.0 –1.1 +0.0 +0.0 +0.9 +2.2 –10.0
mT5-xl 512 +0.5 –0.6 +0.3 +0.3 +3.2 +0.7 –0.2 +5.5 –0.2 –0.2 –0.3 –0.1 –0.2 –0.1 –0.4 +0.3 +0.2 –1.0

D) COMPARISON OF PRETRAINED LANGUAGE MODELS WITH DIFFERENT CONTEXT SIZES

mT5-large 512 72.8 78.1 78.1 76.9 70.7 75.4 75.6 67.4 80.3 68.6 70.6 67.3 77.4 77.8 78.7 75.8 71.1 48.6
mT5-base 512 –3.9 –4.2 –4.1 –4.5 –3.8 –5.2 –3.8 +1.2 –3.6 –3.3 –8.3 –3.8 –1.6 –3.3 –3.0 –4.3 –4.6 –7.1
XLM-R-base 256 –7.3 –10.0 –6.6 –8.0 –15.1 –5.5 –7.1 –9.8 –7.6 –4.6 –4.4 –4.7 –8.0 –6.3 –8.5 –6.5 –6.9 –5.3
XLM-R-base 384 –4.0 –5.2 –5.0 –5.6 –3.2 –4.1 –5.0 –2.2 –4.9 –2.9 –5.3 –2.8 –2.6 –3.8 –5.2 –3.8 –3.9 –2.5
XLM-R-base 512 –1.9 –2.8 –3.4 –4.0 –0.5 –3.9 –3.5 +2.4 –2.6 –1.5 –2.8 –1.7 +0.9 –1.8 –2.3 –3.3 –0.8 –2.3
XLM-R-base mT5-512 –3.4 –4.9 –5.0 –5.6 –3.4 –4.1 –4.4 –0.6 –4.6 –2.3 –5.0 –3.5 +0.1 –2.9 –3.9 –3.6 –2.3 –2.2
XLM-R-large 256 –3.9 –6.0 –2.8 –3.5 –7.6 –2.1 –3.9 –2.3 –4.1 –2.6 –2.3 –0.7 –7.6 –3.8 –5.0 –2.4 –4.6 –5.3
XLM-R-large 384 –0.7 –1.0 –0.6 –0.5 –1.6 +0.2 +0.0 +1.6 –1.3 +0.1 –2.1 +1.5 –2.5 –1.2 –1.8 +0.0 –0.9 –3.4
XLM-R-large 512 +1.1 +1.2 +0.7 +0.9 +1.5 +0.8 +0.8 +2.7 +0.9 +1.7 –0.9 +2.7 +1.0 +1.2 +1.0 +0.6 +2.1 –0.8
XLM-R-large mT5-512 –0.1 –0.9 –0.6 –0.6 +0.5 +0.4 +0.0 +2.3 –0.9 +0.8 –2.1 +0.8 –0.7 +0.2 –0.4 +0.3 +0.5 –3.0
RemBERT 256 –4.9 –7.3 –2.4 –3.9 –4.2 +1.0 –4.5 –4.7 –5.4 –3.0 –5.9 –3.5 –9.9 –5.8 –6.3 –3.1 –4.1 –11.3
RemBERT 384 –1.5 –1.9 –0.1 –0.8 +1.1 +2.8 –1.5 +0.8 –1.9 –0.3 –5.3 –1.1 –3.6 –2.6 –2.0 –0.1 –0.4 –9.5
RemBERT 512 +0.2 +0.7 +1.2 +0.7 +3.4 +2.5 +0.1 +4.2 +0.5 +1.0 –3.3 +0.0 –1.1 +0.0 +0.0 +0.9 +2.2 –10.0
RemBERT mT5-512 –0.6 –1.0 +0.1 –0.6 +5.4 +2.6 –0.5 +2.3 –1.3 +0.4 –5.4 –0.3 –1.2 –1.0 –0.5 +0.7 +0.5 –10.5
mT5-large 768 +1.2 +2.5 +1.2 +1.5 –0.7 +0.0 +0.9 –1.4 +1.5 +1.3 –0.6 +2.1 +0.4 +2.7 +2.2 +0.4 +2.7 +3.3
mT5-large 2560 +2.0 +3.5 +2.2 +2.1 –1.0 +0.0 +1.2 –1.4 +2.5 +1.7 –1.1 +2.5 +0.5 +3.7 +3.0 +1.3 +4.1 +8.6
mT5-xl 512 +0.5 –0.6 +0.3 +0.3 +3.2 +0.7 –0.2 +5.5 –0.2 –0.2 –0.3 –0.1 –0.2 –0.1 –0.4 +0.3 +0.2 –1.0
mT5-xl 2560 +2.4 +2.8 +2.9 +2.9 –1.2 +0.8 +1.5 +6.5 +2.6 +1.8 –1.8 +2.1 +1.0 +3.6 +3.2 +1.7 +5.5 +4.7

Table 4: Ablation experiments evaluated on the development sets (CoNLL score in %). We report the average of
best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average 5-run score. The runs in
italics use largest context length not exceeding 512 subwords when tokenized with the mT5 tokenizer.

As expected, the increasingly bigger mT5 mod-
els improve the performance. Somewhat surpris-
ingly, the XLM-R-base surpasses mT5-base and
XLM-R-large and RemBERT surpass mT5-large.
However, we discovered that the difference is
caused primarily by different tokenization: The
mT5 tokenizer produces on average more subwords
than the XLM-R and RemBERT tokenizers, which
effectively decreases the context size of the mT5
models – but the performance is considerably de-
pendent on the context size.

To expose the issue, Table 4.D compares vari-
ous pretrained models with different context sizes.
Most importantly, we include the performance of

the XLM-R and RemBERT models using a context
that would be tokenized into 512 subwords by the
mT5 tokenizer (presented in italics and denoted
by the mT5-512 context size). In these cases, the
performance is quite similar to the performance of
the corresponding mT5 model (with the notable
exception of RemBERT’s performance on Turkish,
which is considerably worse). However, the mT5
models support larger context sizes (due to rela-
tive positional embeddings); already with context
size 768, the mT5 models surpass all models of
corresponding size and context size 512, ultimately
providing the best results.
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A) CONSTRAING DECODING WITH VARYING DEPTH AND DEPTH-INDEPENDENT TAGS

Depth 10 0.2 74.8 81.6 80.3 79.0 69.7 75.4 76.8 66.0 82.8 70.3 69.5 69.8 77.9 81.5 81.7 77.1 75.2 57.2
Depth 3 0.2 +0.0 –0.1 +0.0 –0.1 +0.0 +0.0 +0.0 +0.0 –0.3 +0.0 +0.0 +0.0 +0.0 –0.1 +0.0 +0.0 +0.0 +0.0
Depth 2 0.2 –0.2 –0.7 –0.6 –0.9 +0.4 +0.5 –0.4 +0.0 –0.9 –0.1 +0.0 +0.0 +0.0 –0.2 –0.1 –0.4 +0.0 +0.0
Depth 1 0.2 –2.3 –5.9 –5.8 –6.1 –2.3 –1.1 –3.5 –0.4 –7.0 –1.3 –0.7 +0.1 +0.2 –2.0 –1.1 –1.9 –0.5 –0.6
Depth 10 0.0 –0.1 –0.4 –0.3 –0.2 +1.3 –0.8 –0.6 +0.0 –0.2 –0.2 –1.1 +0.0 +1.0 –0.1 –0.8 –0.1 +1.1 –0.6
Depth 3 0.0 –0.1 –0.5 –0.3 –0.2 +1.3 –0.8 –0.6 +0.0 –0.4 –0.2 –1.1 +0.0 +1.0 –0.1 –0.8 –0.2 +1.1 –0.6
Depth 2 0.0 –0.3 –1.0 –0.8 –1.0 +1.3 –0.5 –1.0 +0.0 –1.3 –0.2 –1.0 +0.0 +1.0 –0.1 –0.8 –0.6 +1.1 –0.6
Depth 1 0.0 –2.5 –6.7 –5.8 –6.3 –1.7 –2.2 –4.8 +0.2 –7.9 –1.6 –1.0 +0.1 +1.0 –1.7 –1.5 –2.2 +0.7 –1.1
Depth 10 0.1 –0.2 –0.1 –0.2 –0.2 +0.2 +0.2 –0.4 +0.1 +0.2 –0.1 –1.4 –0.5 +0.5 +0.1 –0.5 +0.1 +0.0 –1.6
Depth 3 0.1 –0.2 –0.2 –0.2 –0.3 +0.2 +0.2 –0.5 +0.1 +0.0 –0.1 –1.4 –0.5 +0.5 +0.0 –0.5 +0.0 +0.0 –1.6
Depth 2 0.1 –0.5 –0.8 –0.7 –1.1 +0.2 +0.4 –0.9 +0.1 –0.8 –0.2 –1.4 –0.5 +0.5 +0.0 –0.7 –0.5 +0.0 –1.6
Depth 1 0.1 –2.5 –6.2 –5.9 –6.2 –1.8 –0.9 –4.1 +0.5 –7.2 –1.4 –1.7 –0.4 +0.6 –1.8 –1.6 –2.0 –0.5 –2.0

B) COMPARISON OF DIFFERENT DECODING STRATEGIES

Constraint decoding, depth 10,
depth-independent tags 0.2 74.8 81.6 80.3 79.0 69.7 75.4 76.8 66.0 82.8 70.3 69.5 69.8 77.9 81.5 81.7 77.1 75.2 57.2

Greedy, depth-dependent tags 0.0 –1.3 –1.1 –1.1 –1.3 –4.6 –0.3 –0.8 –1.5 –1.0 –0.7 –2.4 –1.0 –1.3 –0.8 –0.4 –0.4 –0.2 –3.1
+ constraint decoding 0.0 –0.4 –0.6 –0.2 +0.1 –1.6 +0.7 –0.4 –0.1 –0.4 –0.5 –0.5 –0.1 –0.6 –0.5 –0.1 –0.2 –0.3 –1.2

Greedy, depth-dependent tags 0.1 –1.3 –1.2 –1.2 –1.4 –3.2 –1.2 –1.0 –7.7 –1.1 –0.1 –1.6 –0.9 +0.5 –0.2 –0.1 –0.1 +1.4 –2.6
+ constraint decoding 0.1 –0.3 –0.6 –0.4 –0.1 +1.3 –0.1 –0.6 –4.9 –0.5 +0.2 +0.9 –0.1 +0.7 +0.1 +0.0 +0.2 +1.2 –2.2

Greedy, depth-dependent tags 0.2 –1.3 –1.3 –0.9 –1.2 –2.3 –1.0 –0.8 +0.8 –1.1 –0.2 –3.1 –1.1 –2.0 –1.3 –0.6 –0.7 –0.1 –5.4
+ constraint decoding 0.2 –0.3 –1.0 –0.3 +0.0 +2.5 –0.6 –0.4 +3.3 –0.4 +0.0 –0.9 –0.4 –0.3 –0.9 –0.3 –0.5 +0.0 –4.8

Conditional random fields 0.0 –0.2 –0.4 –0.3 –0.1 +1.7 –0.7 +0.0 +1.5 –0.5 –0.6 –0.3 +0.3 +0.4 –0.9 –0.4 –0.4 –0.3 –2.2
+ constraint decoding 0.0 –0.1 –0.3 –0.3 +0.0 +1.7 –0.6 +0.0 +1.8 –0.3 –0.6 –0.2 +0.3 +0.5 –1.0 –0.5 –0.4 –0.3 –2.2

Conditional random fields 0.1 –0.2 –0.4 +0.1 +0.3 +0.3 –1.1 +0.2 +1.1 –0.1 –0.3 –0.3 –0.2 –0.3 –0.2 –0.1 +0.0 +0.6 –3.6
+ constraint decoding 0.1 –0.2 –0.3 +0.1 +0.4 +0.5 –1.2 +0.2 +0.6 –0.1 –0.2 –0.3 –0.2 –0.2 –0.1 –0.1 –0.1 +0.5 –3.6

Conditional random fields 0.2 –0.3 +0.2 –0.3 +0.0 –1.2 +1.1 +0.1 +0.1 –0.2 +0.0 +0.0 +0.0 –1.5 +0.2 +0.0 +0.0 +0.9 –3.9
+ constraint decoding 0.2 –0.2 +0.2 –0.3 +0.1 –1.4 +1.2 +0.1 +0.4 –0.1 +0.1 +0.2 +0.0 –1.5 +0.2 –0.1 +0.0 +0.8 –3.9

Table 5: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model
with context size 2560. We report the average of best 5 out of 7 runs, using for every corpus the single epoch
achieving the highest average 5-run score.

5.2 Mention Decoding Algorithms

The effects of the mention decoding algorithm and
label smoothing are elaborated in Table 5. First,
label smoothing has very little effect on the results.

When predicting mentions via depth-
independent tags, the maximum possible
number of opened multi-word mentions (depth)
must be specified. The effect of using depths 1,
2, 3, and 10 is presented in Table 5.A. While the
maximum depth in the training data is 12, the
performance of using depth 10 and 3 is virtually
unchanged; only depth 2 and depth 1 deteriorate
performance. If the speed of the decoding is an
issue, using depth 3 provides the fastest decoder
without decreasing performance.

The difference between using depth-independent
and depth-dependent tags during constrained
decoding is quantified in Table 5.B – depth-
independent tags provide a minor improvement of
0.3 percent points. When greedy decoding is used
instead of constrained decoding, the performance
drops by one percent point.

Using conditional random fields for mention de-
coding provides marginally worse performance
compared to using constrained decoding with
depth-independent tags. Furthermore, explicitly

disallowing invalid transitions (by assigning them
transition weight −∞ in the transition weight ma-
trix manually) has virtually no effect, demonstrat-
ing that the CRF decoder has learned the transition
weights successfully.

5.3 The Effect Of Multilingual Data

In Table 6, we analyze the effect of using various
combinations of corpora during training.

Compared to using all corpora for single-model
training, relying solely on the training data of a
given corpus deteriorates the performance dramat-
ically by 3.7 percent points on average. The de-
crease is smallest for the largest corpora (Czech
and Polish ones).

Concatenating all corpora of a given language
(and both ParCorFull corpora that are translations
of each other; we utilized uniform mix ratios) gen-
erally improves the performance compared to using
the individual corpora, but does not reach the per-
formance of using all corpora together.

5.4 Zero-shot Multilingual Evaluation

When training without the corpus ids, the model is
able to perform prediction on unknown languages.
Leveraging this observation, we perform zero-shot
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Single Multilingual Model 74.8 81.6 80.3 79.0 69.7 75.4 76.8 66.0 82.8 70.3 69.5 69.8 77.9 81.5 81.7 77.1 75.2 57.2
Per-Corpus Models –3.7 –1.4 –0.5 –0.4 –7.7 –3.3 –1.6 –7.6 –1.5 –2.0 –9.1 –1.0 –3.0 –2.3 –2.9 –1.0 –2.0 –15.8
Joint Czech Model –0.1 –0.3
Joint German Model –4.8 –3.9
Joint English Model –1.9 –4.5
Joint Parcorfull Model –4.4 –2.5
Joint Hungarian Model –5.9 –1.1
Joint Norwegian Model –1.3 –1.8
Zero-Shot Multilingual Models –13.2 –4.8 –24.2 –16.0 –13.7 –10.6 –14.4 –13.8 –1.9 –5.4 –15.1 –15.0 –23.4 –14.3 –18.0 –17.5 –15.5 –0.8

Table 6: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model
with context size 2560. We report the average of best 5 out of 7 runs, using for every corpus the single epoch
achieving the highest average 5-run score.
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MIX RATIO WEIGHTS OF INDIVIDUAL CORPORA IN PERCENTS

Logarithmic 8.1 10.0 9.4 1.0 3.2 6.6 1.0 8.3 7.4 2.6 5.8 3.4 7.2 6.9 8.6 6.2 4.2
Uniform 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9
Square Root 8.4 14.0 11.7 1.4 2.4 5.6 1.4 8.8 6.9 2.0 4.6 2.5 6.5 6.0 9.5 5.1 3.1
Linear 8.7 24.4 17.0 0.2 0.7 3.9 0.2 9.6 5.9 0.5 2.6 0.8 5.3 4.5 11.3 3.2 1.2

A) AVERAGE OF 5 RUNS USING FOR EVERY CORPUS THE SINGLE EPOCH ACHIEVING THE HIGHEST AVERAGE 5-RUN SCORE

Logarithmic 74.8 81.6 80.3 79.0 69.7 75.4 76.8 66.0 82.8 70.3 69.5 69.7 77.9 81.5 81.7 77.1 75.2 57.2
w/o corpus id –0.2 +0.2 –0.1 +0.1 –0.4 +0.1 –0.3 –0.2 +0.0 +0.0 –0.2 –0.3 +0.5 +0.2 –0.4 +0.2 +0.2 –2.4

Uniform –0.3 –0.1 –1.2 –0.9 +1.7 +0.0 –0.8 –4.2 –0.3 +0.1 +0.2 –0.4 +1.0 +0.0 –0.1 +0.0 –0.2 –0.1
w/o corpus id –0.4 –0.4 –0.7 –0.6 +2.3 +0.3 –0.8 +1.5 –0.1 –0.4 –1.3 –0.5 –0.7 –0.4 –1.3 –0.5 –0.2 –3.0

Square Root +0.0 +0.2 +0.5 +0.4 –0.2 +0.9 –0.6 –2.1 –0.1 +0.1 –0.7 –0.1 +0.8 +0.1 –0.2 +0.2 +0.9 –0.7
w/o corpus id +0.2 +0.1 +0.4 +0.3 +2.7 –0.9 –0.3 +1.1 +0.1 +0.0 –0.4 –0.2 +0.1 +0.1 –0.1 +0.1 +0.5 –0.7

Linear +0.4 +0.1 +0.8 +0.7 +0.6 –0.1 –0.2 +4.8 +0.3 +0.4 –0.9 –0.4 +0.6 –0.3 +0.1 +0.2 +1.1 –0.3
w/o corpus id +0.0 +0.0 +0.7 +0.6 –2.0 –1.4 –0.8 +4.0 +0.3 –0.1 –0.4 –0.9 +0.4 +0.1 –0.1 +0.2 +0.7 –0.8

B) AVERAGE OF 5 RUNS USING FOR EVERY RUN THE SINGLE EPOCH ACHIEVING THE HIGHEST SCORE ACROSS ALL CORPORA

Logarithmic 74.8 81.7 79.9 78.6 71.5 76.2 76.6 67.9 82.8 70.4 68.3 69.4 78.0 81.4 81.5 76.9 74.6 55.5
w/o corpus id –0.2 +0.0 +0.1 +0.2 –1.9 –0.3 –0.3 –0.9 –0.2 –0.4 +0.0 –0.2 –0.2 +0.1 –0.2 +0.3 +1.0 –0.3

Uniform –0.6 –0.4 –1.1 –0.9 +0.1 –1.0 –0.8 –6.7 –0.4 –0.2 +1.0 +0.1 –0.2 –0.1 +0.2 –0.1 +0.5 +0.0
w/o corpus id –0.6 –0.7 –0.6 –0.5 +1.0 –1.6 –0.5 –0.6 –0.1 –0.6 +0.3 –0.5 –0.9 –0.1 –1.3 –0.5 +0.8 –3.0

Square Root –0.2 –0.1 +0.8 +0.7 –2.5 –0.2 –0.1 –4.2 –0.1 +0.0 +0.9 –0.4 +0.2 +0.3 +0.0 +0.4 +1.5 +0.4
w/o corpus id +0.1 –0.2 +0.6 +0.6 +1.3 –2.1 –0.2 –0.7 +0.2 +0.1 +0.0 –0.4 –0.1 +0.2 +0.1 +0.1 +1.2 +1.1

Linear +0.3 +0.2 +1.1 +1.1 –0.7 –1.9 –0.2 +3.8 +0.5 –0.1 –0.7 –0.1 +0.3 –0.4 +0.3 +0.1 +1.6 +0.0
w/o corpus id +0.1 +0.0 +1.0 +1.0 –2.1 –2.5 –0.2 +1.3 +0.2 –0.1 +0.4 –0.5 +0.5 +0.4 +0.3 +0.4 +1.0 +0.8

Table 7: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model
with context size 2560. We report the average of best 5 out of 7 runs.

evaluation by training multilingual models on cor-
pora from all but one language and then evaluating
the performance on the omitted-language corpora.
The results are displayed on the last line of Table 6.

Overall, the results are significantly worse by
13.2 percent points. However, such performance
is most likely better than the performance of the
baseline system of Pražák et al. (2021), which has
17.9 less percent points on the test set than CorPipe.

Turkish demonstrates the smallest decrease in
the zero-shot evaluation, even when it uses an al-
phabet with several unique characters. On the other
hand, the small decrease in the performance of
Catalan, Spanish, and French can be explained by
similarities among these languages.

5.5 Mix Ratios of the Multilingual Data

Next, we compare the effect of various mix ratios
during all-corpora training.

We consider logarithmic, uniform, square root,
and linear mix ratios described in Section 3.3.
First, their values normalized to percentages are
presented in the first part of Table 7.

We then evaluate the effect of using a specific
mix ratio and either utilizing or omitting the corpus
ids during training in Table 7.A. In accordance with
findings in Straka and Straková (2022), the corpus
ids have no deterministic effect, and the mix ra-
tios influence the system performance surprisingly
little (with uniform being the worst, logarithmic
and square root very similar and better, and linear
the best). When considering the largest corpora
(especially Czech, Polish, and Spanish), their per-
formance improves with increasing mix ratios, pre-
sumably because of underfitting with small mix ra-
tios; however, the effect on other corpora is mixed.

The evaluation methodology allows each corpus
to use a checkpoint from a different epoch of the
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A) ENSEMBLES FOR THE MT5-LARGE MODEL FOR VARIOUS CONTEXT SIZES

Average of 5 runs, 512 72.8 78.1 78.1 76.9 70.7 75.4 75.6 67.4 80.3 68.6 70.6 67.3 77.4 77.8 78.7 75.8 71.1 48.6
Ensemble of 5 runs, 512 +1.0 +0.8 +0.8 +0.7 +3.1 +1.3 +0.5 –0.4 +0.8 +0.6 +1.2 +0.7 +1.6 +0.9 +0.9 +1.0 +1.5 +0.8
Average of 5 runs, 768 +1.2 +2.5 +1.2 +1.5 –0.7 +0.0 +0.9 –1.4 +1.5 +1.3 –0.6 +2.1 +0.4 +2.7 +2.2 +0.4 +2.7 +3.3
Average of 5 runs, 2560 +2.0 +3.5 +2.2 +2.1 –1.0 +0.0 +1.2 –1.4 +2.5 +1.7 –1.1 +2.5 +0.5 +3.7 +3.0 +1.3 +4.1 +8.6
Ensemble of 5 runs, 2560 +3.3 +4.3 +3.0 +3.0 +2.3 +1.3 +1.3 –0.8 +3.6 +2.5 +1.1 +3.5 +1.8 +4.6 +3.5 +2.3 +6.3 +11.5

B) ENSEMBLES FOR THE MT5-XL MODEL FOR VARIOUS CONTEXT SIZES

Average of 5 runs, 512 73.3 77.5 78.4 77.2 73.9 76.1 75.4 72.9 80.1 68.4 70.3 67.2 77.2 77.7 78.3 76.1 71.3 47.6
Ensemble of 5 runs, 512 +0.8 +1.1 +0.9 +0.8 –2.3 +0.2 +0.8 +1.9 +1.1 +1.1 +0.9 +1.8 +1.6 +1.1 +0.8 +1.0 +1.3 +0.3
Average of 5 runs, 768 +1.1 +2.2 +1.3 +1.7 –4.4 +0.1 +1.3 +0.9 +1.7 +1.5 –1.3 +1.9 +1.5 +2.6 +2.2 +0.5 +2.6 +2.4
Average of 5 runs, 2560 +1.9 +3.4 +2.6 +2.6 –4.4 +0.1 +1.7 +1.0 +2.8 +2.0 –1.5 +2.2 +1.2 +3.7 +3.6 +1.4 +5.3 +5.7
Ensemble of 5 runs, 2560 +3.5 +4.9 +3.6 +3.7 +2.4 +0.2 +2.3 +1.1 +3.6 +3.3 +1.3 +4.0 +3.0 +4.1 +5.0 +2.5 +7.1 +7.6

Table 8: Ablation experiments evaluated on the development sets (CoNLL score in %). We report the aver-
age/ensemble of best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average score.

training. Therefore, it could be possible that differ-
ent mixing ratios influence the best epochs of in-
dividual corpora and that with some mixing ratios,
the best epochs are more homogeneous. On that
account, Table 7.B performs the evaluation differ-
ently – for each of the 5 runs, we choose the epoch
with the best overall performance on all corpora,
and employ the checkpoint from this epoch for all
corpora; different runs can utilize different epochs.
Nevertheless, the results are very much similar.

5.6 Ensembling
The effect of ensembling the 5 runs (instead of aver-
aging them) is captured in Table 8. For the context
size 512, the ensemble delivers an additional 1 per-
cent point with the mT5-large pretrained model and
0.8 percent points with the mT5-xl model. For the
context size 2560, the improvement is even slightly
larger, 1.3 and 1.6 percent points for the mT5-large
and mT5-xl models, respectively.

6 Conclusions

We presented the winning entry to the CRAC 2023
Shared Task on Multilingual Coreference Resolu-
tion (Žabokrtský et al., 2023). The system is an im-
proved version of our earlier multilingual corefer-
ence pipeline CorPipe (Straka and Straková, 2022),
and it surpasses other participants by a large margin
of 4.5 percent points. When ensembling is not de-
sired, we also offer a single multilingual checkpoint
for all 17 corpora surpassing other submissions by
2.6 percent points. The source code is available at
https://github.com/ufal/crac2023-corpipe.
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Limitations

The presented system has demonstrated its perfor-
mance only on a limited set of 12 languages, and
heavily depends on a large pretrained model, tran-
sitively receiving its limitations and biases.

Furthermore, the practical applicability on plain
text inputs depends also on empty node prediction,
whose performance has not yet been evaluated.

Training with the mT5-large pretrained model
requires a 40GB GPU, which we consider afford-
able; however, training with the mT5-xl pretrained
model needs nearly four times as much GPU mem-
ory.
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Martin Popel, Ondřej Pražák, Jakub Sido, and
Daniel Zeman. 2023. Findings of the Second
Shared Task on Multilingual Coreference Resolution.
In Proceedings of the CRAC 2023 Shared Task
on Multilingual Coreference Resolution, pages
1–18, Singapore. Association for Computational
Linguistics.
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Abstract
Our submission to the CRAC 2023 shared task,
described herein, is an adapted entity-ranking
model jointly trained on all 17 datasets span-
ning 12 languages. Our model outperforms
the shared task baselines by a difference in F1
score of +8.47, achieving an ultimate F1 score
of 65.43 and fourth place in the shared task.
We explore design decisions related to data pre-
processing, the pretrained encoder, and data
mixing.

1 Introduction

The goal of the CRAC 2023 shared task (Žabokrt-
ský et al., 2023) is to evaluate coreference reso-
lution models on the CorefUD 1.1 collection of
datasets (Novák et al., 2022). In this paper, we
describe our submission to the task, which is an
adaptation of the entity-ranking model described
in Toshniwal et al. (2020) with some exploration
of the design decisions needed to apply this model
to multiple datasets spanning multiple languages.
Our final submission achieves fourth place out of
nine submissions based on head-match F1 score,
and third place based on exact-match F1 score.

The CRAC 2023 shared task is specifically based
on the public portion of CorefUD 1.1, which in-
cludes 17 datasets spanning 12 languages: Cata-
lan, Czech, English, French, German, Hungarian,
Lithuanian, Norwegian, Polish, Russian, Spanish,
and Turkish. For the final evaluation, gold and pre-
dicted mentions are considered matching if they
have overlapping head words, referred to as head-
match score, and the CoNLL F1 head-match score
is then macro-averaged over all 17 datasets.

For our submission, we adapt the model de-
scribed in Toshniwal et al. (2020), which is based
on the entity-ranking model originally proposed
by Xia et al. (2020). We explore design decisions
necessary to apply this English-based model to mul-
tilingual coreference resolution: data preprocessing
steps, the pretrained language model encoder, and

methods of joint training. Our best configuration
outperforms the shared task baselines by a differ-
ence in head-match F1 score of +8.47, achieving
an ultimate score of 65.43.

2 Related Work

Shared tasks have been instrumental in the devel-
opment and evaluation of coreference resolution
systems. Previous examples include CoNLL 2011
(Pradhan et al., 2011), CoNLL 2012 (Pradhan et al.,
2012), and GAP (Webster et al., 2018, 2019). The
CRAC 2023 shared task builds off the previous iter-
ation, CRAC 2022 (Žabokrtský et al., 2022), with
some modification of the datasets and evaluation
procedure.

Entity-ranking models (Lee et al., 2017) of coref-
erence resolution function by ranking a set of can-
didate entities to which each mention might refer.
Xia et al. (2020) proposed a competitive neural
entity-ranking model that processes mentions in-
crementally left-to-right. We analyze this method
as implemented by Toshniwal et al. (2020). In con-
trast to existing work, we explore the potential of
this model for multilingual generalization.

The best model of the previous CRAC 2022
shared task was that of Straka and Straková (2022),
which consists of two stages: mention detection
and coreference linking. The authors found that
jointly training on multiple datasets led to better
performance on the shared task than training sev-
eral models, one per each individual dataset. The
same finding was found in other submissions as
well (Pražák and Konopik, 2022).

Existing analyses have considered the general-
ization of entity-ranking models across datasets,
including when jointly trained on multiple datasets
(Toshniwal et al., 2021; Xia and Van Durme, 2021;
Porada et al., 2023). Although such work has fo-
cused on English-language coreference and not
evaluated generalization to a multilingual collec-
tion of datasets. It is not clear, a priori, how well
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the constraints of an entity ranking model will gen-
eralize to phenomena not present in English coref-
erence datasets such as zero anaphora.

3 Model

We evaluate the entity-ranking model implemented
by Toshniwal et al. (2020). In this section, we
first overview the model configuration and then
outline the design decisions that we explore related
to preprocessing, the pretrained encoder, and joint
training. The high-level idea of the model is to first
use a mention scorer to produce a set of mention
candidates, then process the mentions left-to-right
to determine if they refer to either a new or existing
entity.

Configuration We start with the implementation
and hyperparameters of Toshniwal et al. (2021).
The model calculates coreference clusters for a
document in the following way: first, embeddings
are calculated for all spans of ≤ 20 subword tokens
using a pretrained encoder. Each span embedding
is scored using the mention scoring head described
in Joshi et al. (2019), which is based on that origi-
nally proposed by Lee et al. (2017). This scoring
head is trained with binary cross entropy loss to
assign a positive score to annotated mentions and a
negative score to all other spans. The top 0.4× ℓ
spans are considered as mention candidates and
kept for the next step, where ℓ is the length of the
document in terms of subword tokens. This set of
mention candidates is further filtered by removing
all spans with a negative score.

Then, the set of entities is initialized as E = {}
and the mention candidates are processed in a left-
to-right order. When processed, each candidate m
is scored against all entities e ∈ E using a scoring
function s(m, e). If ∀e ∈ E, s(m, e) < 0 then m
is added to the set E as a new entity. Otherwise,
m is said to belong to the entity representation
with the highest score e∗ = argmaxe∈E s(m, e)
and the representation of e∗ is updated to be the
mean of all mention representations that the entity
represents thus far. This method is referred to as
the Unbounded Memory (U-MEM) model in the
original work.

For training we use the default hyperparameters
except for those that are specific to the pretrained
encoder or number of training steps. We use the
default optimizer of AdamW with a learning rate
of 1e-5 for the pretrained encoder and 3e-4 for all
other parameters.

Mention Heads The shared task evaluation re-
quires the annotation of mention heads for each
mention. We estimate mention heads from the
provided dependency tree using heuristics pro-
vided by the Udapi library (Popel et al., 2017).
Specifically, we use the command ‘udapy -s
corefud.MoveHead’.

3.1 Preprocessing

We first convert the CoNLL-U files to a standard-
ized JSON format using the file reader available in
the Udapi Python library (Popel et al., 2017). We
then tokenize each word independently using the
pretrained encoder’s tokenizer as implemented in
Huggingface Transformers (Wolf et al., 2020). Fi-
nally, we concatenate all tokens together to produce
a sequence of tokens representing the document.

Speaker Information We extract speaker infor-
mation for each sentence from the sentence headers
in the original CoNLL-U file. For example, the
CorefUD_English-GUM corpora includes headers
of the form “# speaker = <SPEAKER_NAME>” for
certain documents. We include each speaker name
s in the input at the beginning of the respective
sentence. The name is formatted as “<speaker> s
</speaker>” where <speaker> and </speaker>
are randomly initialized tokens added to the model
vocabulary. Including speakers as part of the text
input such as in our approach was originally pro-
posed by Wu et al. (2020).

Language Embedding We represent each lan-
guage by a latent vector which is concatenated to
the input of the entity-mention scoring function
s(m, e). The shared task datasets include 12 unique
languages, so we define 12 such vectors. These
language features are analogous to the OntoNotes
genre features originally proposed by Wiseman
et al. (2016).

Zero-anaphora When zeros appear in input (i.e.,
omitted pronouns that have been reconstructed in
the coreference dataset), we represent these zeros
as the underscore character ‘_’ at training and test
time since this is how they are represented in the
CoNLL-U format.

3.2 Pretrained Encoder

We experimented with two pretrained encoders:
XLM-RoBERTa (XLM-R; Conneau et al. 2020)
and MT5 (Xue et al., 2021). To encode the docu-
ment represented as a sequence of tokens, we split
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the sequence into chunks of maximum length L,
encode the chunks using the pretrained encoder,
and then concatenate the token encodings. Based
on the sequence lengths the models were originally
pretrained with, we use L = 512 for XLM-R and
L = 1024 for MT5. We test using both the base
and large model sizes for each encoder, up to 559M
parameters for XLM-R and 995M parameters for
MT5. In future work, it might be interesting to test
RemBERT (Chung et al., 2021) as well, which was
found by Straka and Straková (2022) to outperform
XLM-R for multilingual coreference resolution.

3.3 Joint Training
We experiment with three methods for jointly train-
ing the model on all datasets: 1) uniform weight-
ing where all datasets are sampled from equally; 2)
proportional weighting where datasets are sam-
pled proportional to the number of training exam-
ples in the dataset; and 3) maximum weighting
where datasets are sampled from proportional to
their training set size, except that training sets over
some maximum threshold size are treated as if they
are of that maximum size. This amounts to down-
scaling larger datasets to a maximum size. In our
experiments we use 500 training examples as the
maximum threshold.

4 Results

In this section we first present the results ex-
perimenting with each design decision, and then
present the final submission performance. In pre-
liminary experiments, we micro-average CoNLL
F1 scores across all datasets for simplicity. For
the final evaluation, CoNLL F1 scores are macro-
averaged across datasets.

4.1 Pretrained Encoder
We experiment with both XLM-R and MT5 at the
base and large model sizes. For these experiments,
we report micro-averaged, exact-match CoNLL F1

Model CoNLL F1

XLM-R
Base 71.9
Large 74.4

MT5
Base 70.3
Large 71.5

Table 1: Effects of the pre-trained encoder. CoNLL F1
score micro-averaged across all development sets.

Sample Weighting CoNLL F1

Uniform 70.8
Proportional 71.9
Maximum 72.9

Table 2: Effects of the joint training method using the
XLM-R base encoder. CoNLL F1 score micro-averaged
across all development sets.

on the development set (Table 1). We find that
XLM-R, despite having fewer parameters and a
shorter sequence length than MT5 outperforms the
MT5 model. Possible explanations might be that:
1) MT5 was trained as an encoder-decoder model,
while we use only the encoder for these experi-
ments which creates a pretraining versus finetuning
disparity that could hurt performance; or, 2) we
finetuned the models with FP16 mixed precision
whereas MT5 was pretrained with BF16 mixed pre-
cision.

4.2 Joint Training

Next, we experiment with the three methods of
joint training. For this experiment we use the
XLM-R base encoder. We again evaluate using
exact-match CoNLL F1 micro-averaged on the de-
velopment set (Table 2). We find that the maximum
weighting sampling method outperformed propor-
tional sampling in this evaluation. For our final
submission, we use a model first trained with pro-
portional weighting for 50 epochs and next trained
with maximum weighting for 50 epochs using early
stopping on the development set.

4.3 Final Submission

Our final model achieves 65.43 F1 on the test set
and fourth place in the competition (Table 3). We
see a relatively high variance of the model ranking
across languages (Table 4): for example, achiev-
ing second place on German-PotsdamCC and yet
seventh place on both Czech-PDT and German-
ParCorFull. This seems to be correlated with the
relative size of the datasets, German-PotsdamCC
being much larger than German-ParCorFull. Better
performance on low-resource datasets is therefore
a possible way to improve the performance of mul-
tilingual, entity-ranking models.
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system head-match partial-match exact-match with singletons

1. CorPipe 74.90 73.33 71.46 76.82
2. Anonymous 70.41 69.23 67.09 73.20
3. Ondfa 69.19 68.93 53.01 68.37
4. McGill 65.43 64.56 63.13 68.23
5. DeepBlueAI 62.29 61.32 59.95 54.51
6. DFKI-Adapt 61.86 60.83 59.18 53.94
7. ITUNLP 59.53 58.49 56.89 52.07
8. BASELINE 56.96 56.28 54.75 49.32
9. DFKI-MPrompt 53.76 51.62 50.42 46.83

Table 3: Final F1 scores of all submissions. McGill (bolded) refers to our final submission which achieves fourth
place in all categories except exact-match, for which it is in third place.

ca cs1 cs2 de1 de2 en1 en2 es fr hu lt pl ru hu no1 no2 tr

Baseline 65.26 67.72 65.22 44.11 57.13 63.08 35.19 66.93 55.31 55.32 63.57 66.08 69.03 40.71 65.10 65.78 22.75
McGill 71.75 67.67 70.88 41.58 70.20 66.72 47.27 73.78 65.17 65.93 65.77 76.14 77.28 60.74 73.73 72.43 45.28

∆ 6.49 -0.05 5.66 -2.53 13.07 3.64 12.08 6.85 9.86 10.61 2.2 10.06 8.25 20.03 8.63 6.65 22.53

Table 4: Head-match CoNLL F1 scores of our final submission (McGill) as compared to the shared-task baseline for
each language. Delta is the difference in F1 score of both models. The datasets for each language, from left to right,
are: ca_ancora, cs_pcedt, cs_pdt, de_parcorfull, de_potsdamcc, en_gum, en_parcorfull, es_ancora, fr_democrat,
hu_szegedkoref, lt_lcc, pl_pcc, ru_rucor, hu_korkor, no_bokmaalnarc, no_nynorsknarc, and tr_itcc.

5 Conclusion

We adapt an entity-ranking coreference resolution
model to multilingual coreference resolution for the
CRAC 2023 shared task. We explore the method
of training and joint encoder, finally using XLM-
R large and a rescaled dataset weighting in our
submission. This method achieved fourth place of
nine submissions in the shared task.
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Zeman, Daniel, 1

59


	Program
	Findings of the Second Shared Task on Multilingual Coreference Resolution
	Multilingual coreference resolution: Adapt and Generate
	Neural End-to-End Coreference Resolution using Morphological Information
	ÚFAL CorPipe at CRAC 2023: Larger Context Improves Multilingual Coreference Resolution
	McGill at CRAC 2023: Multilingual Generalization of Entity-Ranking Coreference Resolution Models

