
Training and integration of neural machine translation
with MTUOC

Antoni Oliver, Sergi Álvarez
Universitat Oberta de Catalunya (UOC)

{aoliverg,salvarezvid}@uoc.edu

Abstract

In this paper the goals and main objectives
of the project MTUOC are presented. This
project aims to ease the process of training
and integrating neural machine translation
(NMT) systems into professional transla-
tion environments. The MTUOC project
distributes a series of auxiliary tools that
allow to perform parallel corpus compila-
tion and preprocessing, as well as the train-
ing of NMT systems. The project also dis-
tributes a server that implements most of
the communication protocols used in com-
puter assisted translation tools.

1 Introduction

1.1 The MTUOC project
MTUOC is a project that is being developed in the
Arts and Humanities Department of the Universitat
Oberta de Catalunya (UOC). The main objective of
the project is to facilitate the training, use and in-
tegration of neural machine translation systems. It
also provides tools for training statistical systems.
Most of the software needed to train such systems
is distributed in the form of complete toolkits un-
der permissive free licenses. This makes, in princi-
ple, all this technology freely available to any pro-
fessional, company or institution. However, the
use of these toolkits brings with it a number of
problems:

• Technical skills: A relatively high level of
computer literacy is required to use these pro-
grammes. Knowledge of programming lan-
guages (e.g. Python) or scripting (e.g. Bash)

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

is required. On the other hand, the docu-
mentation of these tools is not always suffi-
ciently detailed and not always properly up-
dated. This means that a lot of time is wasted
in trial and error processes until the tools can
be used effectively.

• Integration: The resulting translation engines
cannot be easily integrated into existing pro-
fessional translation workflows. Most tools
provide access through some kind of API,
usually in a server-client configuration. Some
CAT tools provide access to some translation
systems, but not all CAT tool - translation sys-
tem combinations are available.

• Hardware: some high hardware requirements
are necessary, especially for training systems.
To train statistical systems, a lot of RAM is
necessary. To train neural systems, one or
more powerful GPUs (Graphical Processing
Units) are essential.

The MTUOC project offers solutions for the first
two problems. Regarding the technical skills it
provides a number of easy-to-use Python and Bash
scripts for corpus pre-processing and system train-
ing. All these scripts are well documented and
can be easily adapted to specific needs. Regard-
ing integration issues, a fully configurable server is
provided that supports many communication pro-
tocols. This ensures compatibility with numer-
ous CAT tools. For example, the server can use
a neural engine based on Marian, but behave as
a Moses server, so it can be directly integrated
with OmegaT1, a very popular free CAT tool. The
project also provides a translation client that can

1https://omegat.org/

Esplà-Gomis, Forcada, Kuzman, Ljubešić, van Noord, Ramı́rez-Sánchez, Tiedemann, Toral (eds.)

Proceedings of the 1st Workshop on Open Community-Driven Machine Translation, p. 5–13
Tampere, Finland, June 2023.

translate text and files in a variety of formats, in-
cluding XLIFF. The client can also generate trans-
lation memories in TMX with the content of the
machine translation, which facilitates integration
into almost all CAT tools. Finally, with reference
to the hardware problem, it should be noted that
the computing requirements for training are much
higher than for translation with already trained sys-
tems. Once a system is trained, it can be used
for translation on any average consumer computer.
In this way, many potential users can benefit from
the various free engines distributed in the MTUOC
project. To train customised systems, powerful
GPU units are required. It is possible to purchase
these units at affordable prices and install them in
consumer computers. In addition, the UOC of-
fers the possibility to establish technology transfer
agreements for the training of customised systems
at very competitive prices. This service is free of
charge for NGOs. Since all the components of the
MTUOC project are distributed under free license,
any institution or company can offer customised
training services using our components.

1.2 MT toolkits

As already mentioned, the MTUOC project pro-
vides auxiliary tools to work with the main neural
(and statistical) machine translation toolkits. Al-
though in principle the components can be adapted
to work with any toolkit, the following have been
considered and verified:

• Moses2 (Koehn et al., 2007): is a toolkit for
statistical MT systems training. Some of its
pre-processing tools (such as tokenizers and
truecasers) are still used for training neural
engines.

• Marian3 (Junczys-Dowmunt et al., 2018): is
a toolkit for neural MT systems training. It is
developed in C++ so it is very fast and effi-
cient.

• OpenNMT4 (Klein et al., 2017): it is also a
toolkit for neural MT systems training. Two
implementations are available: one based on
Python and PyTorch (OpenNMT-py) and one
based on TensorFlow (OpenNMT-tf). It in-
cludes a number of sub-projects as CTrans-

2http://www.statmt.org/moses/
3https://marian-nmt.github.io/
4https://opennmt.net/

late25, a fast inference engine for models
trained with OpenNMT, and Tokenizer, a to-
kenisation library with APIs for C++ and
Python.

• ModernMT6 (Bertoldi et al., 2018): until ver-
sion 2.5 it provided the possibility of train-
ing both statistical and neural engines, but
later versions only allow training of neural en-
gines. It stands out for its ease of training
and for providing adaptive machine transla-
tion. In this way, the translation provided will
depend on the context in which the sentence
to be translated is found.

1.3 Similar projects
There are a number of projects similar to MTUOC
that also distribute neural engines and auxiliary
programs that can be run on personal computers.
One notable project is OpusMT7. (Tiedemann and
Thottingal, 2020), which provides around 1,000
ready-to-run neural machine translation models to
run on a machine translation server. Specifically,
this project provides:

• Translation engines based on Marian-NMT.

• The engines are trained with corpora from the
Opus-MT-Train collection8

• The provided scripts can be used to train your
own systems.

• SentencePiece (Kudo and Richardson, 2018)
is used in most engines for the calculation of
subword units.

• Most engines have been trained using guided
alignment based on word-level alignment us-
ing eflomal9 (Östling, 2016).

• The related project Opus-Translator10 pro-
vides a server that can run the trained engines.

• The related project OPUS-CAT11 implements
a plug-in for Trados Studio, a computer-

5https://github.com/OpenNMT/CTranslate2
6https://github.com/modernmt/modernmt
7https://github.com/Helsinki-NLP/Opus-MT
8https://github.com/Helsinki-NLP/
Opus-MT-train
9https://github.com/robertostling/eflomal
10https://github.com/Helsinki-NLP/
OPUS-translator
11https://github.com/Helsinki-NLP/
OPUS-CAT

6

assisted translation tool widely used in pro-
fessional environments.

The models trained in the Opus-MT project are
also distributed in HuggingFace12 (Wolf et al.,
2019), further facilitating the use of these engines.

Softcatalà13 is a non-profit association whose
main objective is to promote the use of the Cata-
lan language in computing, Internet and new tech-
nologies. This association leads numerous projects
for the localisation of free software projects into
Catalan. To facilitate this localisation, they use
machine translation engines and for some years
now they have been training their own neural en-
gines, which they distribute under a free licence
(Irigoyen et al., 2020). At the time of writing,
the following engines including Catalan were of-
fered with the following languages in the two di-
rections: German, Spanish, French, Dutch, Italian,
Portuguese and Spanish. The models are trained
with OpenNMT and can be used with the compo-
nents of this toolkit and also with CTranslate2. In
addition Softcatalà provides a set of tools to use
the trained models:

• A tool for processing texts in various formats
into the OpenNMT input text format.

• A server program that provides an API to
translate through a web service.

• Tools to directly translate text files or files in
PO format.

2 Components of the MTUOC project

The MTUOC project offers a series of programs
and scripts covering all steps from the creation of
parallel corpora, their cleaning and corpus com-
bination, to a program that allows to evaluate the
trained systems using the most common automatic
metrics. It also offers a series of scripts for corpus
preparation and pre-processing and training using
the toolkits presented in section 1.2. It also pro-
vides a complete server that is able to communi-
cate with the servers provided by the main toolkits
and to communicate with the client using a large
number of protocols. The programs and scripts
of the MTUOC project are programmed in Python
version 3 or are Bash scripts. All components can
be downloaded from the project’s Github page and
12https://huggingface.co/
13https://www.softcatala.org/

are distributed under a free licence. In this sec-
tion we present a brief description of each of these
components.

2.1 Programs for the creation of parallel
corpora

Training neural machine translation systems re-
quires large and good quality parallel corpora.
While there are methods and toolkits for unsu-
pervised training from monolingual corpora, su-
pervised systems using parallel corpora achieve
much higher levels of quality. Systems can be
trained with parallel corpora available in a number
of repositories, including OPUS14 (Tiedemann,
2012). However, in professional environments it is
common to have large amounts of parallel texts for
specific topics and clients, usually in some trans-
lation memory format (TMX, SDLTM, etc.) or in
the form of completed translation projects (often
in the standard XLIFF format). To take advantage
of these resources in system training, the MTUOC
project provides a number of utilities:

• TMXdetectlanguages: detects the lan-
guage codes present in a given TMX file or
in all TMX files in a given directory.

• TMX2tabtxt: converts a TMX file or all
TMX files in a given directory to tabular text.
It supports more than one possible language
code for the source language and the target
language.

• sdltm2tabtxt: converts one SDL-Trados
(SDLTM) memory or all memories in a given
directory to tabular text format.

• XLIFF2tabtxt: converts a translation
project interchange file (XLIFF) or all files in
a given directory to tabular text format.

Another very common situation in professional
environments is to have a large set of original and
translated documents of a given subject and client,
although the corresponding translation memories
are not available. The MTUOC project provides
a series of auxiliary tools that facilitate the align-
ment of these documents with hunalign15 (Varga et
al., 2007):

• a program for segmenting using SRX files
(Segmentation Rules eXchange). It allows to

14https://opus.nlpl.eu/
15https://github.com/danielvarga/hunalign

7

segment a single file or all files in a directory.
The program can include the paragraph marks
(<p>) required by hunalign.

• a series of bilingual dictionaries for various
language pairs in the format required by hu-
nalign. These dictionaries have been created
from the transfer dictionaries of the Apertium
machine translation system Apertium16 (For-
cada et al., 2011).

• A program for creating the alignment script
with hunalign to speed up the alignment of
large numbers of documents.

• A program to select aligned segments above a
certain value of the confidence index provided
by hunalign.

When the files to align are parallel, that is, there
is a quite good correspondence between the source
and target documents, using hunalign we can get
very accurate alignments. It can handle missing
segments in one of the languages, and it can also
handle different relations between source and tar-
get segments (1 to many and many to one).

In some cases, we can get a set of documents
in the source language and a set in the target lan-
guage. These documents can be translation equiv-
alents but we don’t know which document is the
translation, as the names doesn’t’ match. The doc-
uments can talk about similar concept but they are
different, and some parallel segments might ex-
ists. In these cases, techniques for mining parallel
segments in comparable corpora (Schwenk, 2018)
may be very productive. The MTUOC project
includes a program that can perform this min-
ing using SBERT (Reimers and Gurevych, 2019).
The program provides you with parallel segments
sorted by a confidence score. A visual inspec-
tion of the results is usual enough to select the
lower score limit and reject parallel segments with
a lower score.

2.2 Parallel corpus cleaning program

When obtaining or creating a parallel corpus,
it is useful to clean up the corpus. MTUOC
provides a parallel corpus cleaning program
(MTUOC clean parallel corpus.py) that
can perform the following actions:

16https://www.apertium.org/

• Replace the typographical apostro-
phe with the standard apostrophe
(norm apostrophe).

• Remove HMTL and XML tags (remove
tags).

• Replace HTML/XML entities with their cor-
responding characters (unescape html).

• Remove parallel segments with empty seg-
ments (remove empty).

• Remove segments that are too short by
setting a minimum number of characters
(remove short).

• Remove segments where the segment in the
source language and the segment in the target
language are the same (remove equal).

• Remove the segments in which the percent-
age of numbers in either language is higher
than a certain value (remove NUMPC).

• If you want to preprocess to train Moses sys-
tems, replace the characters [and | in the
corpus by their corresponding HMTL entities
(escapeforMoses).

• Remove segments containing the specified el-
ements from a file (stringFromFile).

• Remove segments that match at some point
the regular expressions indicated in a file
(regexFromFile).

• Check that the language of the source seg-
ment is correct (vSL).

• Check that the language of the target segment
is correct (vSL).

• Check that the language of the target segment
is not a certain language (vNOTL).

• The number of languages detected by the au-
tomatic language detection algorithm can be
limited by using the vSetLanguages op-
tion.

• Remove segments written in upper case
(noUPPER).

8

2.3 Parallel corpora rescoring
Once we have cleaned the corpus, we have a set of
segment pairs that do not have any of the selected
problems. Anyway, both segments in the segment
pair can be clean, but they may not be translation
equivalents. It is possible to calculate a score that
provides an idea of the translation equivalence be-
tween the source and target segments in the seg-
ment pair. This can be achieved calculating the
sentence embedding of the source and target seg-
ment using a multilingual model, and calculating
a distance measure, as the cosine distance, for ex-
ample.

The toolkit provides a program that performs
two actions:

• Language detection of the source and target
segments, using fasttext. This tool offers two
interesting features: it returns the detected
language along with a detection confidence
score and users can easily train their own lan-
guage detection models.

• Scoring all the segments with the cosine dis-
tance of the sentence embedding representa-
tion calculated using a multilingual model,
LaBSE (Feng et al., 2022) by default.

After the scoring process is completed, we use
a companion program to select the parallel seg-
ments matching a series of conditions: languages
detected and language detection confidence score;
and a minimum confidence score based on the co-
sine distance.

2.4 Parallel corpus combination program
Another common situation in professional envi-
ronments is to have a large number of translation
memories and original and translated texts which,
once processed with the programs described in
section 2.1, generate a parallel corpus of insuf-
ficient size for system training. The MTUOC
project provides a series of programs to select
from a parallel corpus the segments most similar
to those of another parallel corpus. For example,
we have a parallel corpus A of the pair L1 - L2
but it is not large enough to train a system. We
also have a much larger corpus B for the same lan-
guage pair. We are interested in selecting from cor-
pus B the segments that are most similar to those
of corpus A. The program calculates the L1 lan-
guage model from corpus A and from this lan-
guage model it selects the most similar segments

from corpus B (verifying the perplexity of the L1
segments of corpus B with respect to the language
model). The program also divides the A+B corpus
into three parts:

• training (train): will contain segments from A
and B.

• validation (val): will contain only segments
from A.

• evaluation (eval): will contain only segments
from A.

In this way, corpus B extends only the training
corpus, as the validation is carried out exclusively
with segments of corpus A.

The same program can be used in the case we
only have a monolingual corpus A and a parallel
corpus B. We can select the most similar parallel
segments from B using the corpus A. In this case,
when dividing the resulting corpus into training,
validation and evaluation, all these sets will con-
tain only segments from corpus B.

2.5 Script for the preparation of parallel
corpora

MTUOC distributes all the necessary components
to prepare the parallel corpus for further prepro-
cessing. We have made a distinction between these
two phases, preparation and preprocessing, since
the preparation steps are (or at least can be) com-
mon for the training of statistical and neural sys-
tems. In contrast, the preprocessing step will be
different. The components for corpus preparation
are:

• Tokenisers for the following languages:
Aragonese (arg), Asturian (ast), Catalan (cat),
German (deu), English (eng), French (fra),
Galician (gal), Italian (ita), japanese (jap),
Portuguese (por), Russian (rus), Sardinian
(srd), Spanish (spa) and Chinese (zho). A
generic tokeniser (gen) is also distributed
which can be used for other languages. In
addition, a pseudo-tokeniser is distributed for
Chinese (zho-pseudo) which simply separates
all characters in the file by whitespace and
another Chinese tokeniser based on the jieba
footnote library17 (zho jieba). These tokenis-
ers have different modes of operation and can

17https://github.com/fxsjy/jieba

9

represent tokens with either joiners or split-
ters to facilitate subsequent detokenisation.
Tokenisers also function as detokenisers. To-
kenisers give the option to separate digits
from numerical expressions, a common prac-
tice in neural engine training. New language-
specific tokenisers for other languages will be
added in the future.

• Truecasers, both the training program and the
program that carries out the truecasing pro-
cess. The truecaser can be trained with a cor-
pus and a dictionary of language forms.

• Programs to replace emails and URLs with
configurable codes.

• Program for splitting the corpus into frag-
ments of different number of segments. It is
useful to divide the corpus into training, vali-
dation and evaluation fragments.

All these steps can be performed with a single
program that is fully configurable by means of a
yaml configuration file, which can be easily edited
in any text editor.

2.6 Scripts for the preprocessment of parallel
corpora

In this step we perform a series of operations that
depend on the type of engine we want to train.
Three different programs are provided, which are
configured by means of yaml files.

• For statistical engines, the steps of replac-
ing numerical expressions with codes are per-
formed and the characters [and | are replaced
by their corresponding entities.

• For neural engines using BPE (Byte Pair
Encoding) (Sennrich et al., 2016) for sub-
word calculation using the subword-nmt al-
gorithm18.

• For neural engines using SentencePiece19

(Kudo and Richardson, 2018) for subword
computation.

2.7 Training scripts
Scripts for training translation systems are pro-
vided for several toolkits, namely
18https://github.com/rsennrich/
subword-nmt
19https://github.com/google/sentencepiece

• Moses: scripts are provided to perform all the
training in one step or to perform the differ-
ent steps individually: training (of the lan-
guage and translation model), SALM (Suffix
Array tool kit for empirical Language Manip-
ulations), optimisation and binarisation.

• Marian: scripts for s2s and transformer sys-
tems.

• OpenNMT: scripts for transformer type sys-
tems.

2.8 MTUOC server

The models we train, whether statistical with
Moses or neural with Marian or OpenNMT, can be
implemented in a program that works as a transla-
tion server, that is, as a program that waits to re-
ceive segments to be translated and returns these
translated segments. Figure 1 shows the opera-
tion scheme of the client-server configuration. The
client can be the MTUOC-Translator (see section
2.9) or a CAT tool. This client program sends the
segments to the MTUOC server. The segments can
be sent and received in different protocols, which
allows this machine translation system to be com-
patible with various computer-assisted translation
tools. Specifically, it can use the following proto-
cols:

• MTUOC: a simple protocol specific to the
project. We have developed a plug-in for Tra-
dos Studio 2019, 2021 and 2022.20

• Moses: the same protocol used by the server
provided by this toolkit. It can be used, for ex-
ample, with OmegaT and Trados Studio 2017
and 2019.

• ModernMT: the same protocol as the server
provided by this toolkit. It can be used, for
example, with Okapi tools21 (Tikal and Rain-
bow).

• OpenNMT: the same protocol as the server
provide by this toolkit.

• NMTWizard: the same protocol used by this
server.22.

20https://github.com/aoliverg/
MTUOC-Trados-plugin
21https://okapiframework.org/
22https://github.com/OpenNMT/nmt-wizard

10

Figure 1: Client-Server configuration in MTUOC engines

The client sends the segment as it is, and the
MTUOC server preprocesses it (e.g. tokenises,
truecases and SentencePiece) and sends it to the
appropriate translation server (e.g. marian-server).
When the MTUOC server receives the translated
segment it post-processes it (e.g. detokenises, de-
truecases and undoes the SentencePiece subword)
and sends it back to the client program.

Do not confuse the protocol that the MTUOC
server will use with the translation system it will
use. For example, we may have a neural engine
trained with Marian but we want to use it with a
tool that is only compatible with the Moses server
protocol. In this case we can run the MTUOC
server in Moses mode and it will be compatible
with the desired tool, but it will actually be trans-
lating with a Marian neural engine.

MTUOC-server can be run in personal com-
puters or in physical or virtual servers. Running
the server in your own computer or server ensures
you full confidentiality, as no information goes out
from your premises. No GPU is required to run
the server, but using GPUs will speed up scientif-
ically the translation speed. Having your own en-
gines integrated in MTUOC-server allows you to
run as much instances as necessary in case of very
heavy use. For very heavy use scenarios, a wsgi
server such as gunicorn23 can be used along with

23https://gunicorn.org/

MTUOC-server.

2.9 MTUOC Translator

The MTUOC project provides a client program
with a simple user interface that allows to translate
segments and files in different formats. It also pro-
vides a version without graphical interface that is
useful in the evaluation process of trained engines.

2.10 Tag processing in MTUOC

The MTUOC server includes an automatic
XML/HTML tag retrieval algorithm. The train-
ing of the engines is carried out with corpora in
which all tags have been removed and the trans-
lation is carried out with untagged segments. If
the segment to be translated contains tags, these
are removed. Once the segment has been trans-
lated, the tags are retrieved from the original seg-
ment with tags, from the untagged translation and
from the alignment information provided by the
translation engine. Statistical engines trained with
Moses are able to return reliable alignment infor-
mation. Neural engines, especially if they are of
the transformer type, do not return reliable align-
ment if they are not trained with guided alignment.
If trained with guided alignment they are able to
return quite accurate alignment information, but
this information will be relative to the sub-words.

The tag retrieval algorithm is able to retrieve
tags even if subword-based information is avail-

11

able.

2.11 Evaluation program
The project distributes an evaluation program
that provides several automatic evaluation metrics:
BLEU (Papineni et al., 2002), NIST (Dodding-
ton, 2002), WER (Word Error Rate) (Nießen et
al., 2000), %Ed. dist., TER (Translation Error
Rate) (Klakow and Peters, 2002) and COMET24

(Reimers and Gurevych, 2019).
To facilitate the use of this program, it is pro-

vided in two versions: one with a graphical user
interface and one to be used from the terminal. The
program calculates global values and it can also
calculate detailed values by segment.

3 Free MT engines

The MTUOC project provides a growing number
of freely downloadable MT engines. Most of the
engines are based on Marian with a transformer
configuration and guided-alignment. At the time
of writing this paper, the following engines were
available:

• General language: spa↔cat, eng↔spa,
eng↔cat, fra↔spa, fra↔cat, rus↔spa,
rus ↔cat

• International relations (using UNPC corpus):
ara↔spa, eng ↔spa, fra ↔spa, rus ↔spa,
zho ↔spa. Catalan version with synthetic
corpora through Spanish using Apertium:
ara↔cat, eng ↔cat, fra ↔cat, rus ↔cat,
zho ↔cat.

• Patents (using EuroPat corpus): eng ↔spa,
eng ↔fra, eng ↔deu.

• Legislation (using the DOGC corpus):
cat ↔spa

The complete and up-to-date list of MT en-
gines can be seen in the MTUOC project
wiki.25

4 Conclusions and future work

In this paper we have presented the MTUOC
project, aiming to make the process of train-
ing and integrating NMT systems easier.

24https://unbabel.github.io/COMET/html/
index.html
25https://github.com/aoliverg/
MTUOC-project/wiki

With the components of this project, any pro-
fessional or translation company will be able
to use their own MT systems. One of the
goals of the project is to make the developed
tools usable for most users, regardless of their
technical skills. We are now working on con-
verting the scripts into programs with GUI in-
terfaces to make them even easier to use.

This set of tools is being actively used in
teaching activities at the bachelor and mas-
ter levels at the UOC, and students with no
previous knowledge of the use of terminal
and scripts are able to perform all the pro-
cesses involved in the training of statistical
and neural systems. The tools are also be-
ing used in production environments, where
custom NMT systems have been trained and
used in translation projects.

In the future we plan to train and make freely
available more NMT systems. We also want
to offer NMT systems for low resourced lan-
guage pairs, starting for some Romance lan-
guages in Spain: Asturian, Aragonses and
Aranese.

Acknowledgments

This work is partially supported by the project
TAN-IBE: Neural Machine Translation for
the romance languages of the Iberian Penin-
sula, founded by the Spanish Ministry of Sci-
ence and Innovation Proyectos de generación
de conocimiento 2021. Reference: PID2021-
124663OB-I00.

References
Bertoldi, Nicola, Davide Caroselli, and Marcello Fed-

erico. 2018. The ModernMT project. In Proceed-
ings of the 21st Annual Conference of the European
Association for Machine Translation.

Doddington, George. 2002. Automatic Evaluation
of Machine Translation Quality Using N-gram Co-
occurrence Statistics. Proceedings of the Second In-
ternational Conference on Human Language Tech-
nology Research, pages 138–145.

Feng, Fangxiaoyu, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2022. Language-
agnostic bert sentence embedding. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 878–891.

12

Forcada, Mikel L, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. 2011.
Apertium: a free/open-source platform for rule-
based machine translation. Machine translation,
25(2):127–144.

Irigoyen, Marc Riera, Xavier Ivars Ribes, Pere Orga Es-
teve, Joan Montané Camacho, Jordi Mas Hernández,
and Artur Vicedo Cremades. 2020. Softcatalà: nous
reptes per garantir la vitalitat del català a les tecnolo-
gies. Revista de Llengua i Dret, (73):146–153.

Junczys-Dowmunt, Marcin, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceed-
ings of ACL 2018, System Demonstrations, pages
116–121, Melbourne, Australia, July. Association
for Computational Linguistics.

Klakow, Dietrich and Jochen Peters. 2002. Testing the
correlation of word error rate and perplexity. Speech
Communication, 38(1-2):19–28.

Klein, Guillaume, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proceedings of ACL 2017, System Demon-
strations, page 67–72.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associa-
tion for computational linguistics companion volume
proceedings of the demo and poster sessions, pages
177–180.

Kudo, Taku and John Richardson. 2018. Sentence-
piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

Nießen, Sonja, Franz Josef Och, Gregor Leusch, Her-
mann Ney, et al. 2000. An evaluation tool for ma-
chine translation: Fast evaluation for MT research.
In Proceedings of the LREC Conference Athens,
Greece, 2000. Citeseer.

Östling, Robert. 2016. Efficient word alignment with
markov chain monte carlo. The Prague Bulletin of
Mathematical Linguistics, (106):125–146.

Papineni, Kishore, Salim Roukos, Todd Ward, and
Wj Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Reimers, Nils and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11.

Schwenk, Holger. 2018. Filtering and mining paral-
lel data in a joint multilingual space. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 228–234.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.

Tiedemann, Jörg and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

Tiedemann, Jörg. 2012. Parallel data, tools and inter-
faces in opus. In Lrec, volume 2012, pages 2214–
2218.

Varga, Dániel, Péter Halácsy, András Kornai, Viktor
Nagy, László Németh, and Viktor Trón. 2007. Paral-
lel corpora for medium density languages. In Recent
Advances in Natural Language Processing IV, pages
247–258. John Benjamins.

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

13

