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Abstract

With the power of large pretrained language
models, various research works have integrated
knowledge into dialogue systems. The tradi-
tional techniques treat knowledge as part of
the input sequence for the dialogue system,
prepending a set of knowledge statements in
front of dialogue history. However, such a
mechanism forces knowledge sets to be con-
catenated in an ordered manner, making models
implicitly pay imbalanced attention to the sets
during training. In this paper, we first investi-
gate how the order of the knowledge set can
influence autoregressive dialogue systems’ re-
sponses. We conduct experiments on two com-
monly used dialogue datasets with two types of
transformer-based models and find that models
view the input knowledge unequally. To this
end, we propose a simple and novel technique
to alleviate the order effect by modifying the po-
sition embeddings of knowledge input in these
models. With the proposed position embed-
ding method, the experimental results show that
each knowledge statement is uniformly consid-
ered to generate responses.

1 Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained language models are widely used to build di-
alogue systems (Zhang et al., 2020; Xu et al., 2021;
Komeili et al., 2021; Roller et al., 2020; Thoppilan
et al., 2022; Rae et al., 2021; Chen et al., 2021;
Ham et al., 2020; Hosseini-Asl et al., 2020; Bao
et al., 2021). In addition to general-purpose dia-
logue systems, many specialized dialogue systems
have been proposed. Representative examples in-
clude personalized dialogue systems (Wolf et al.,
2019; Zhang et al., 2018; Wu et al., 2021; Cao et al.,
2022; Song et al., 2020), knowledge-grounded dia-
logue systems (Dinan et al., 2019; Kim et al., 2021;
Tao et al., 2021; Cai et al., 2020; Liu et al., 2021),
and prompting dialogue systems (Su et al., 2022).
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I'm 22 years old What's your plan today?

I'm 22 years, I am not sure.

I am an teacher What's your plan today?

I teach Math in a school.

I love baseball What's your plan today?

Play baseball at the park.

Imbalanced
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K1
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Knowledge History

Figure 1: The order effect illustration. Models’ re-
sponses are influenced by the order of the input knowl-
edge set.

To build specialized dialogue systems, integrat-
ing additional information into the input sequence
is necessary. Wolf et al. (2019) prepend persona
sentences to personalize the history; while Su et al.
(2022); Dinan et al. (2020); Keskar et al. (2019);
Xu et al. (2020a) prepending task-specific signals
to prompt and control the model.

These methods prepend additional information
in front of the history as a sequence for models’
input. Furthermore, the approach generates an un-
necessary order among equal knowledge sets since
the knowledge is connected in the sequence. Thus
models might be influenced by the order and gen-
erate imbalanced responses.

Previous works focus on how perturbations in
dialog history affect models’ responses (Sankar
et al., 2019; O’Connor and Andreas, 2021; Sinha
et al., 2021; Lampinen et al., 2022; Webson and
Pavlick, 2021; Xu et al., 2020b; Khandelwal et al.,
2018). They conduct many experiments and mea-
sure the effect of perturbations from the aspect of
response quality and information theory to show
that these language models are robust and not sen-
sitive to the perturbations in input history. How-
ever, dialog history and knowledge are inherently
different aspects of a conversation. Dialog his-
tory has a temporal property, i.e., the topic and
specificity of conversation change as the dialog
progresses, whereas knowledge facts are informa-
tion referenced to generate a response. Although
the perturbation in history does not influence the
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I live in NYCI have a dog I love baseballI like to go shopping I'm 22 years old What's your plan today?

Knowledge History

t1 x 4t1 x 4 t1 x 3t1 x 5 t1 x 4 t2 x 4
Word Embedding

12, 13, 14, 155, 6, 7, 8 9, 10, 110, 1, 2, 3, 4 16, 17, 18, 19 20, 21, 22, 23
Token Embedding

Position Embedding

Multiple Position Embedding

0, 1, 2, 30, 1, 2, 3 0, 1, 20, 1, 2, 3, 4 0, 1, 2, 3 0, 1, 2, 3Updated 
Position Embedding

Figure 2: Input format for GPT-series models. The position ids do not treat knowledge equally but as a sequence.
The updated position embeddings show our proposed method, where each knowledge statement is encoded with its
own position embeddings, hence, models can treat each input sentence equally during training. The same color of
blocks indicates using the same layer to generate embeddings.

results generated by the model (Sankar et al., 2019;
O’Connor and Andreas, 2021), in our early obser-
vation, we found that prepending knowledge influ-
ences models’ responses. For example, Figure 1
demonstrates an example where the model exhibits
imbalanced attention to input knowledge, and the
order of knowledge influences the generated re-
sponses. This might cause the model to generate
inappropriate responses since it attends to knowl-
edge that might not be relevant to a dialog context.
The contributions of this work are as follows:

• We conduct experiments across two typical
methods and two models on multiple datasets
to show that the order of knowledge sentences
does affect generated responses.

• We propose a simple approach to alleviate this
sentence-level order effect by manipulating
the position embedding layers.

2 Knowledge-grounded Dialogue
Methods

In this work, we study the order effect in Trans-
ferTransfo (Wolf et al., 2019), which is a state-
of-the-art knowledge-grounded method. We train
TransferTransfo on two datasets and measure the
sentence-level order effect on the test datasets.

2.1 TransferTransfo

The TransferTransfo architecture is built on top of
GPT-series models, which simply concatenates the
knowledge sets and context in a single sequence,
putting the reply at the end. To help models dis-
tinguish speakers and position of input tokens, it
builds three parallel input sequences for word, po-
sition, and segments, and fuses them into a single
sequence. For the loss function, in addition to a

language modeling loss, a next sentence predic-
tion loss is added. The total loss is the weighted
sum of the 1) language modeling loss, which is
computed as the cross-entropy loss between the
predicted logits and the ground truth response and
2) the next-sentence prediction loss, which is a
classification loss to distinguish the ground truth re-
sponse from distractors that are randomly sampled
from the dataset.

In the original TransferTransfo implementation,
the authors have already pointed out that the order
of the knowledge set influences the model’s perfor-
mance. To this end, they augment training data by
permuting the knowledge sets several times.

2.2 Experimental Setups

We conduct experiments on two datasets:
Persona-Chat (Zhang et al., 2018): This persona-
grounded dialogue dataset consists of crowd-
sourced dialogues between a pair of annotators
provided with 4-5 persona statements each.
Topical-Chat (Gopalakrishnan et al., 2019): This
is a knowledge-grounded dialogue dataset, where
the dialogs are constructed by a pair of annotators
conversing about specific topics. The annotators
are provided with wiki data with 4-5 facts as knowl-
edge sources.

In our experimental setup, we shuffle the knowl-
edge set’s order 50 times during testing and im-
plement TransferTransfo on GPT (Radford et al.,
2018) and GPT-2 (Radford et al., 2019) models.

3 The Order Effect of the Knowledge Set

Models are said to have an order effect of input
if the generated responses are sensitive and influ-
enced by order of input sequence. Previous works
(Sankar et al., 2019; O’Connor and Andreas, 2021;
Sinha et al., 2021; Lampinen et al., 2022; Webson
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(h) GPT-2 on Topical-Chat

Figure 3: Experimental results under TransferTransfo method, the lines indicate the average of 50 times shuffling
results with standard deviation represented in the area. The data with 4 and 5 knowledge sets are displayed
separately.
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Figure 4: Experimental results under LM loss only method, the lines indicate the average of 50 times shuffling results
with standard deviation represented in the area. The data with 4 and 5 knowledge sets are displayed separately.

and Pavlick, 2021; Xu et al., 2020b; Khandelwal
et al., 2018) focus on whether perturbation in di-
alogue history affect models’ responses. In this
work, to be more specific, we investigate if sen-
tence level change in the order of input knowledge
sets will result in substantial semantic differences
in the generated responses.

3.1 The Order Effect Measurement

To address the sentence-level order effect of the
input knowledge set in models, we aim to measure
the semantic difference given different orders of
knowledge sentences. It is intuitive to measure if
the response content is influenced by knowledge
sets order. In other words, we measure the distri-
bution of response-knowledge relationship in dif-
ferent positions. We build a Natural Language

Inference (NLI) classifier to evaluate the degree of
entailment between responses and each knowledge
in the set.

The Natural Language Inference Classifier is
built with BERT model (Devlin et al., 2019),
trained on the Dialogue NLI dataset (Welleck et al.,
2019), which is built on top of Persona-Chat dataset
(Zhang et al., 2018). The annotators label the rela-
tionship between persona and response in Persona-
Chat with entail, neutral, and contradict classes.

3.2 Results and Discussions for Order Effect

Figures 3 and 4 show the entailment scores of the
response with each position of knowledge. Fig-
ure 3 presents the experiments of TransferTransfo
with GPT and GPT-2 models across Persona-Chat
and Topical-Chat datasets. Figure 4 shows the re-
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Model Method Persona Topical
TT. LM. TT. LM.

Entailment Max - Min

GPT Origin .048 / .037 .052 / .035 .037 / .022 .046 / .041
Multi Pos .023 / .028 .051 / .041 .031 / .016 .058 / .044

GPT-2 Origin .062 / .062 .075 / .085 .052 / .036 .052 / .027
Multi Pos .039 / .044 .038 / .045 .027 / .018 .035 / .021

Perplexity ↓
GPT Origin 52.29 54.31 39.31 36.80

Multi Pos 55.47 58.43 42.37 42.98

GPT-2 Origin 61.69 61.80 20.50 18.84
Multi Pos 60.18 58.91 17.40 17.30

Coherence

GPT Origin 0.633 0.636 0.793 0.770
Multi Pos 0.644 0.621 0.732 0.744

GPT-2 Origin 0.661 0.667 0.840 0.843
Multi Pos 0.648 0.662 0.830 0.831

Diverstiy ↓
GPT Origin 0.815 0.822 0.844 0.846

Multi Pos 0.821 0.833 0.870 0.862

GPT-2 Origin 0.808 0.811 0.833 0.833
Multi Pos 0.816 0.817 0.843 0.845

Table 1: The results of measurements. The Max-Min of
entailment are reported in 4 knowledge / 5 knowledge.
The mean of quality across 50 runs are reported and
standard deviation are reported in Appendix A.3.

sults with "LM Loss only Method", which refers
to TransferTransfo without the next sentence pre-
diction. We observe that the distribution of data
containing only four knowledge statements is very
different compared to data containing five knowl-
edge statements. Hence we show them separately.

The NLI classification results are shown with
BLUE lines. We can see that the distribution of
entailment scores on different positions are imbal-
anced. In the experiments on the GPT model, (fig-
ures 3a, 3b, 3c, 3d, 4a, 4b, 4c, and 4d), it can
be observed under both TransferTransfo and LM
loss only methods, the entailment score on the last
position is always the highest. In fact, there is a
huge gap between the entailment scores with the
first knowledge and the last knowledge statements.
This indicates that GPT model focuses more on the
last position of knowledge.

However, the behavior of GPT-2 is very different
from GPT model. From Figures 3e, 3f, 3g, 3h, 4e,
4f, 4g, and 4h, we can see that GPT-2 models focus
more on the earlier knowledge statements in the
sequence rather than the later ones.

These results show that the order effect exists
across GPT and GPT-2 models (although different)
and is influencing models’ responses and this needs
to be solved.

4 Alleviate the Order Effect

In this section, we analyse the reason for the or-
der effect in the GPT-series models and propose
a method to alleviate the phenomenon. Figure 2
shows the input format of the classic GPT-series.
There are three types of embeddings in the model:
word embedding to capture the semantic meaning
of each word, token embedding to represent the
speaker and absolute position embedding that en-
codes position information of input sequence.

Figure 2 shows that the position ids for each
knowledge start from zero with different positional
embedding layers. In this naive setting, knowledge
of the set are treated equally and not input with the
order during training.

4.1 Results and Discussion
In the same Figures 3 and 4, the RED lines demon-
strate the entailment result after applying multiple
position embedding. We observe that all the red
lines, which are the GPT-series applied multiple po-
sition embeddings, are much smoother compared
to BLUE lines in both figures. Furthermore, we
report the difference between maximum and mini-
mum entailment across the positions in Table 1. It
shows that the difference is negligible after apply-
ing multiple position embeddings. This indicates
that we can alleviate the order effect under mod-
els trained with with multiple position embedding.
However, we also observed that on Figure 4 some
red lines are still as steep as before, which means
the order effect still exists. We think that the model
trained only with LM loss treats knowledge like
history and does not ground models on knowledge
sets. Under this scenario, the multiple position
embedding doesn’t work well.

For the measurement of quality, Table 1 shows
the perplexity, coherence, and diversity. The de-
tails are included in Appendix A.2. We found tiny
drops between origin and multiple position embed-
ding. More specifically, our proposed method does
not crash the models and can still make models
generate plausible responses.

5 Conclusions

In this paper, we investigate whether the order of
knowledge set will influence dialogue models’ re-
sponses. Our experiments across several datasets
show that the GPT-series models unfairly pay atten-
tion to the knowledge set and are influenced by or-
der of knowledge. To solve this problem, we study

39



the reason for the phenomenon and propose sim-
ple method to alleviate the order effect in models.
The experimental results show that our approach
reduces the order effect and makes the model select
the knowledge uniformly.

Limitations

This work has potential limitations:

• We found that on the Figure 3 and 4, The en-
tailment of the methods after applying multi-
ple position embedding (RED lines) are some-
times lower than origin methods(BLUE lines).
This is not meet our expectations since we
don’t want our method to decrease perfor-
mance. In our opinion, we think the reason
might be the embedding method has never
been seen before during the pretraining of
models, which requires the model’s additional
efforts to adapt the embedding, thus hurts the
performance.. We leave it as future work to
be improved.

• We also found that the multiple position em-
bedding does not work very well to alleviate
the order effect in the LM loss-only settings4.
We have discussed this in previous sections.
Since LM loss only does not help the model
distinguish which parts in the input sequence
are knowledge set and thus treat them the
same as history. The multiple position em-
bedding will not be trained finely to help the
model distinguish. We also left this as a future
work to be improved.
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A Appendix

A.1 Experimental Details

• Hyperparameters: For the Hyperpa-
rameters we use to conduct experi-
ments, we follow TransferTransfo link
https://github.com/huggingface/
transfer-learning-conv-ai. They obtain
these Hyperparameters by grid searching.
More specifically, They finetuned the model
with a batch size of 32 sequences , and
finetune the models approximately 2 epochs
over training dataset. They used Adam with
a learning rate of 6.25e-5, and a coefficient
of 2 on the LM loss when summing with the
next-sentence prediction loss . The learning
rate was linearly decayed to zero over the
course of the training.

• Datasets: The link to download Persona-Chat
https://parl.ai/docs/tasks.html#
persona-chat and the train/valid/test
split is 9907/1000/968 dialogues.. For
the link to download Topical-Chat https:
//github.com/alexa/Topical-Chat and
the train/valid/test split is 8628/1078/1078
dialogues.

• Pretrained Models: For GPT model we use
gpt-medium as our pretrain model and use
microsoft/DialoGPT-medium as initial check-
point for GPT-2 model.

A.2 Evaluation Metrics

In addition to entailment, we aimed to employ other
metrics that are also important to measure a dia-
logue system.
Perplexity (Chen et al., 1998): Here we employed
the pretrained GPT-2 language model GPT to
judge if the output sentence C(x) was an accept-
able sentence. The computation of Perplexity
(Chen et al., 1998) is shown below.

PPL =
T∏

i=1

1

(GPT (C(x,D)i|x))1/T
(1)

Coherence: We employed the DialogRPT (Gao
et al., 2020) to calculate the coherence between
conversation model’s output and the input context.
DialogRPT (Gao et al., 2020) is a GPT2-based
ranker that finetuned on 133M human feedback
data. With the contrastive learning approach that
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DialogRPT used. The ranker has better understand-
ing on how relevant the response is for the given
context. In our evaluation, we take the the proba-
bility that output by DialogRPT coherence model
(human_vs_rand) as our coherence metric.
Diversity: BLEU score (Papineni et al., 2002) is a
commonly used metric for automatically evaluat-
ing machine translation. However, the Self-BLEU
(Zhu et al., 2018) score here was applied to mea-
sure the diversity of chatbot responses. Regarding
one sentence as the prediction and the others as the
reference, we can calculate BLEU score for every
sentence, and the average is the Self-BLEU score.
A lower Self-BLEU score implies more diversity
of the chatbot responses.

A.3 Standard Deviation of Quality Metrics

Model Method Persona Topical
TT. LM. TT. LM.

Perplexity

GPT Origin 0.23 0.27 0.20 0.25
Multi Pos 0.22 0.26 0.27 0.22

GPT-2 Origin 0.31 0.29 0.120 0.09
Multi Pos 0.28 0.23 0.10 0.110

Coherence

GPT Origin 0.001 0.001 0.002 0.002
Multi Pos 0.001 0.001 0.002 0.002

GPT-2 Origin 0.002 0.001 0.001 0.001
Multi Pos 0.001 0.001 0.001 0.001

Diverstiy

GPT Origin 0.002 0.002 0.002 0.002
Multi Pos 0.002 0.002 0.002 0.002

GPT-2 Origin 0.002 0.002 0.002 0.002
Multi Pos 0.002 0.002 0.002 0.001

Table 2: The results of quality measurements. The
standard deviation across 50 runs are reported.
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