
Proceedings of the 4th International Workshop on Designing Meaning Representations, pages 34–44
June, 2023. ©2023 Association for Computational Linguistics

34

Abstract Meaning Representation for Grounded Human-Robot
Communication

Claire Bonial1, Julie Foresta1, Nicholas C. Fung1, Cory J. Hayes1,
Philip Osteen1, Jacob Arkin2, Benned Hedegaard2, Thomas M. Howard2

1 Army Research Lab, 2 University of Rochester
claire.n.bonial.civ@army.mil,

Abstract

To collaborate effectively in physically situated
tasks, robots must be able to ground concepts
in natural language to the physical objects in
the environment as well as their own capabili-
ties. We describe the implementation and the
demonstration of a system architecture that sup-
ports tasking robots using natural language. In
this architecture, natural language instructions
are first handled by a dialogue management
component, which provides feedback to the
user and passes executable instructions along
to an Abstract Meaning Representation (AMR)
parser. The parse distills the action primitives
and parameters of the instructed behavior in
the form of a directed a-cyclic graph, passed
on to the grounding component. We find AMR
to be an efficient formalism for grounding the
nodes of the graph using a Distributed Corre-
spondence Graph. Thus, in our approach, the
concepts of language are grounded to entities in
the robot’s world model, which is populated by
its sensors, thereby enabling grounded natural
language communication. The demonstration
of this system will allow users to issue naviga-
tion commands in natural language to direct a
simulated ground robot (running the Robot Op-
erating System) to various landmarks observed
by the user within a simulated environment.

1 Introduction

Robots are increasingly used for their potential in
disaster relief and search and rescue tasks (Mur-
phy, 2014). There is a clear benefit to this, as
robots can be used to provide aid and give situa-
tional awareness of the environment to people, who
can remain at a safe distance and use information
gathered by the robot to knowledgeably address
the situation. Using robots in this way has required
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advances in robotics; however, robots in the cur-
rent paradigm are still treated more as tools—often
requiring human teleoperation, which inhibits the
operator’s awareness of their own immediate sur-
roundings in potentially dangerous situations. The
ability to speak to a robot as one would another
human teammate would reduce the training time
and cognitive burden on the operator, making the
collaborative response more efficient. While there
have also been relevant advances in task-oriented
dialogue systems, such as Siri and Alexa, as well
as widespread interest in systems leveraging large
language models such as ChatGPT, these systems
are limited in their applicability to physically situ-
ated tasks because they do not address grounding
natural language to the physical environment of an
embodied platform. In this paper, we describe a
novel system architecture that supports grounded,
bi-directional human-robot dialogue. This architec-
ture is depicted in Figure 1.

In the sections to follow, we first provide a con-
ceptual overview of the system capabilities (§2),
and then detail the components of this architec-
ture (§3) while highlighting the novel and primary
contribution of the symbol grounding components:
the Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) parser (§3.4), which we show
to be uniquely suited to distill the action primitives
and their parameters in a way that can be efficiently
grounded, using our updated Distributed Corre-
spondence Graph (DCG) (Howard et al., 2014)
grounding component (§3.5). We then describe
the demo (§4) and detail how distinct demo modes
(§4.1) allow users to experience performance dif-
ferences when the grounding component receives
input from either a syntactic constituency parser
or the meaning-based, AMR parser. We provide a
brief comparison to related work (§5) and conclude
with directions for ongoing and future work (§6).
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Figure 1: System architecture, supporting bi-directional, grounded communication between an operator and a
remotely located robot.

2 System Capabilities

The implemented system in this research allows
a human operator to speak to a remotely located
robot in natural language, providing search and nav-
igation instructions for the robot to execute. The
current system has been successfully implemented
for natural language control of a Clearpath Husky
Unmanned Ground Vehicle (Clearpath Robotics,
2023) (shown in Figure 1), measuring about 39
inches in length and weighing about 110 pounds,
which autonomously executes the natural language
navigation instructions. In our implementation,
the Husky is equipped with a LORD Microstrain
3DM-GDX5-25 IMU, Ouster OS1-64 Gen 1 Light
Detection and Ranging (LIDAR) unit, and a Tele-
dyne FLIR Blackfly GigE camera with a KOWA
LMVZ41 high resolution camera lens. The robot
computers consist of two Intel i7 equipped comput-
ers with NVIDIA 1650Ti graphics cards installed.

The robot runs on the Robot Operating System
(ROS); thus, part of our research here includes
creating a ROS wrapper around the AMR parsing
component. The same ROS software stack can
be used either within real-world robots or in sim-
ulation, and we have implemented and tested our
architecture in both environments.

Because connectivity and bandwidth can be lim-
ited in disaster relief scenarios, our setup does not
require internet connectivity, but it does currently
require a stand-alone machine to run the natural
language communication interface and dialogue

management capabilities (shown in the top half
of the architecture diagram in Figure 1), whereas
the rest of the system architecture components run
fully onboard the robot (shown in the bottom half
of the architecture diagram in Figure 1).

3 System Components

In the following sections, we provide an overview
of each of the architecture’s components. We de-
vote the most description to the primary novel
contribution of this paper: the symbol grounding,
which leverages an AMR parser together with a
DCG grounding component.

3.1 Speech Recognition

The operator speaks to the robot using a micro-
phone, currently implemented as the standard mi-
crophone capability of the computer running the
user-facing dialogue interface components. The op-
erator presses on an assigned key and speaks their
instructions.

The speech recognition server listens to the
user’s speech and sends it to the speech recognizer
component; we are currently leveraging the open-
source Kaldi speech recognition toolkit (Povey
et al., 2011). Kaldi provides automatic speech
recognition (ASR), producing a text transcription
of the user’s speech. We selected Kaldi because we
find that it gives relatively high-accuracy ASR but
does not require internet connectivity.
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3.2 Intent Classification & Dialogue
Management

The text output from Kaldi is passed along to the
joint intent classification and dialogue management
component. This component has two elements:
first, a classifier interprets the language with re-
spect to the basic intent, and second, a dialogue
manager dictates what the system should do next.
For example, if the operator provides the instruc-
tion Okay, Husky, check the path in front of you,
the system retrieves the most similar example to
this seen in the training data, for example, Scout
the path in front. The system would then provide
an associated response message such as executing
to provide feedback to the user. Finally, the sys-
tem would pass the text instruction Scout the path
in front along to the parsing component operating
within the software stack for processing and even-
tual execution. This component is an adaptation
of the Virtual Human Toolkit described in Hartholt
et al. (2013), refined to support a robot platform
(Marge et al., 2016).

Intent classification is treated as a retrieval prob-
lem, such that given the transcribed speech from
the recognizer, the system can infer the intent by
retrieving the most similar example from training
data. The training data is organized into instruction-
response pairs, where instructions are previously
seen operator instructions, and responses are ei-
ther messages sent back to the operator (such
as feedback or clarification questions) or mes-
sages sent on to the robot software stack for fur-
ther processing and execution. The training data
instruction-response pairs are curated for a particu-
lar domain within a spreadsheet used to learn the
weights of association such that a ranked list of
potential matches is returned and the most similar
instruction-response pair is selected (Leuski and
Traum, 2011). In our implementation, the training
data pairs are drawn from a corpus of human-robot
collaborative dialogue for search and navigation,
collected in a wizard-of-oz experimental paradigm
(Marge et al., 2016) and subsequently annotated
for relevant features of dialogue structure (Traum
et al., 2018).

Dialogue management policies are defined based
upon the matches obtained from the intent classifier,
with two basic categories of response policies. The
first is for actionable messages, where the robot
is able to execute the instruction. For actionable
commands, the basic policy is to jointly respond to

the operator with feedback, demonstrating success-
ful receipt of the instruction, and to send a simple
text message of the instruction on to the robot soft-
ware stack. The second policy is for non-actionable
messages, which require clarification through fur-
ther dialogue. The basic policy for non-actionable
messages is to prompt the operator for clarifica-
tion, such that any inability to infer the intent of the
instruction can be overcome immediately through
dialogue.

3.3 Message Bridge
A message bridge enabled by the Virtual Human
Toolkit from Hartholt et al. (2013) connects the
operator-facing natural language interface (which
runs on a computer used by the operator) to the
robot’s software autonomy stack (which runs on
the robot’s onboard computer). The bridge enables
connectivity between the two computers—sending
synchronous messages from the operator-facing
computer to the robot’s computer and back again.
Additionally, it enables the transfer between the
two operating systems, where the output of the
operator-facing computer is simply text, and is for-
matted as Robot Operating System (ROS) mes-
sages delivered to the software autonomy stack via
a ROS topic for the robot to process.

3.4 Language Parser
We leverage the open-source AMR parser from
Lindemann et al. (2019), specifically a model that
has been retrained on a portion of the same human-
robot dialogue corpus used to derive the instruction-
response pairs described in §3.2. We selected this
parser because the retrained model outperformed
other competitive parsers retrained on the same
small set of robot-directed instructions (Bonial
et al., 2020), but we are working to make our im-
plementation agnostic to any particular parser so
that we can swap it out based on the current state
of the art.

We implement wrapper code to interface the
open-source AMR parser with ROS code that op-
erates the automated systems aboard the robot in-
cluding perception and motor control. The wrapper
code takes in commands through ROS messages.
These messages can be generated by the autonomy
stack running on the robot, piped directly to the
AMR parser as a string through ROS commands,
or generated by other software. In our case, the
dialogue manager generates these commands and
the message bridge publishes them as a string to a
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ROS topic. The command string is extracted from
the ROS message and used as input for the AMR
parser.

Thus, the parser accepts the text instructions out-
put by the dialogue manager, and parses this into
an AMR directed, a-cyclic graph (DAG). Because
AMR abstracts away from some idiosyncratic lin-
guistic variation in favor of representing core con-
cepts, the AMR parse is a very effective distilla-
tion of action primitives and the parameters of that
action. For example, regardless of whether the
operator instructs the robot to Drive to the barrel
on the left or Take a drive to the left barrel, these
instructions will be encoded with identical AMR
graphs, shown in Figure 2 in the textual, Penman
style (Penman Natural Language Group, 1989) as
opposed to a DAG.

(d / drive-01 :mode imperative
:ARG0 (y / you)
:ARG1 y
:destination (b / barrel

:ARG1-of (l / left-20)))

Figure 2: AMR graph for the input Drive to the barrel
on the left and the alternatively-worded input Take a
drive to the left barrel.

AMR therefore offers a level of abstraction that
is suitable for a robot to act upon as it glosses
over some of the linguistic complexity that does
not carry any meaningful difference for execution.
Furthermore, we find that AMR is well-suited as an
input representation to the grounding component
because the node concepts of the graph that are
grounded are restricted to the action concept and its
parameters (such as the destination of a movement
instruction). Leveraging AMR allows us to directly
associate the meaning of the instructions with the
physical world, instead of attempting to ground all
of the words of the instruction, which may include
syntactic scaffolding, such as take in take a drive,
that has no grounding in a robot’s behavior or the
objects in its environment. Benefits of leveraging
AMR are further described in §4.1.

After parsing, the wrapper code will interpret
the textual representation output from the AMR
parser and generate outgoing ROS messages to be
published on an established ROS topic. Any ROS
software can obtain these messages by subscribing
to this topic. In our case, the grounding software
component running on the robot will take in these
messages and ground the instruction into mission

Figure 3: The constituency parse-based DCG on the left
exhibits the same number of factors but lacks the infor-
mative relational structures of the AMR-based DCG on
the right.

commands for the robot.

3.5 Grounding Component
We take a graphical approach to grounding using
a model based on the Distributed Correspondence
Graph (Howard et al., 2014). A DCG consists of a
set of constituents of language Λ = {λ1, . . . , λN}
(e.g., phrases in a parse tree or nodes/edges in an
AMR graph), a world model Υ (typically a metric-
semantic object-level model), a set of grounding
symbols Γ = {γ1, . . . γM} that represent physical
concepts (e.g., objects, spatial relationships, robot
actions), and a set of binary correspondence vari-
ables Φ = {ϕ11, . . . ϕNM} representing True or
False correspondence between an individual phrase
and individual grounding symbol.

The formulation of DCGs assumes conditional
independence of both grounding symbols and lin-
guistic constituents excepting child constituents,
resulting in a factor graph hierarchically structured
according to the representation of language. Each
factor computes the probability of correspondence
(ϕ) between a given phrase (λ) and grounding sym-
bol (γ), in the context of a model of the environ-
ment. The probabilities are computed by a sin-
gle log-linear model (Collins, 2005) consisting of
expert-designed binary features with associated op-
timized weights trained from a corpus of annotated
data. The features jointly evaluate properties of
language and the world, such as a unigram feature
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for barrier and an indicator feature for an object
grounding symbol that is True if the object is a
barrier type, thereby allowing the log-linear model
to learn to ground language in physical concepts.
Inference is performed via bottom-up beam search
to find the most likely True correspondences for
each linguistic constituent; this process propagates
up the hierarchy of the graph. The grounded inter-
pretation of the instruction is represented by the
True corresponding symbols at the root.

In previous works (Paul et al., 2018; Patki
et al., 2020; Howard et al., 2021), a syntac-
tic constituency parse tree, produced by the
Cocke-Younger-Kasami (CYK) parsing algorithm
(Younger, 1967), was used to represent language
instructions; the resulting DCGs inherited the com-
positional structure of the hierarchy of phrases. A
novelty of this work is that we construct a DCG
from an AMR parse. A DCG constructed from
an AMR parse differs than one constructed from
a constituency parse tree because the edges in an
AMR parse are labeled. In this work, we assume
that there are no cycles in the AMR parse. Con-
sider the example illustrated in Figure 3. For the
same language, a parse tree is shown on the left
and an AMR parse is on the right. The correspond-
ing constituency parse-based DCG, also shown on
the left, expresses a set of symbols for the phrases
the barrier, to the barrier, and go to the barrier,
where the symbols corresponding to the last phrase
represent the grounding of the entire statement.
The structure of the AMR-based DCG, shown on
the right, differs. Here the AMR-based DCG ex-
presses a set of symbols for the node concepts y /
you, b / barrier, and g / go-02. How y
/ you and b / barrier are interpreted by g
/ go-02 is influenced by the labels of each edge,
which are :ARG0 and :ARG4, respectively. To
properly capture the structure of this AMR parse,
the associated DCG must incorporate the labels of
each edge into its own structure; this provides the
edge label context to the log-linear model features
at each factor, which is necessary to correctly inter-
pret the expressed symbols at child nodes. These
differently labeled edges, illustrated in red and blue
respectively, are now used in the construction of
DCGs so that the engineered features that compose
the log-linear model-based factors can utilize this
information when determining if a feature is active
or inactive. AMR also differs from parse trees in
that nodes are permitted to have more than one par-

ent (reentrancy). These are naturally handled by the
conditional independence of linguistic constituents
that is assumed in the DCG formulation.

In this example, although both models exhibit
the same number of factors, the structure of the
AMR-based DCG provides richer information, in-
cluding an explicit representation of who is meant
to execute the command. This information is left
out of the CYK-based DCG when the imperative
is used, as the subject is omitted in the English
imperative form.

There are other situations where an AMR-based
DCG is preferable to a constituency parse tree-
based DCG. For example, the approach leveraging
CYK parses required training instances reflecting
alternative wordings of what is semantically the
same instruction, such as for light-verb construc-
tions. In contrast, our approach enables grounding
with less training data since we are grounding the
deeper meaning instead of the surface word-forms
of the instruction. Another benefit to grounding
the meaning behind the instruction, as opposed to
the words themselves, is that our implementation
is able to more efficiently ground instructions in-
volving co-reference and complex spatial relations,
both of which are represented explicitly and con-
sistently in AMR (see §4.1 for further discussion).

3.6 Mission Planner and Executor

Once the action and the action parameters, includ-
ing any objects mentioned in the instruction, have
been grounded, the grounding component sends
the action specification to the mission planner. The
grounded action includes specifications such as
path end points as specified by the location of
grounded objects in the robot’s world model. For
this implementation, we use Cohen et al. (2010)’s
Search Based Planning Library global planner and
Howard and Kelly (2007)’s Nonlinear Optimiza-
tion (NLOPT) local planner. Once a plan has been
established, the robot mission executor generates
and performs the appropriate actions, taking into
account real-time feedback from the robot such
as the perception of moving obstacles. This com-
pletes the loop from natural language instruction
to execution within the robot’s current physical
environment.

4 Demo Description

In the demo, audience members will be invited to
interact with the system at a computer workstation
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Figure 4: Screen capture of demo, where the left pane of the screen shows the robot’s position within the simulation
and the right pane of the screen shows the robot’s world model view, populated by a LIDAR terrain map and labeled,
recognized objects.

where the audience can see a view of the robot
in the simulated environment on one side of the
screen and what is essentially the robot’s view of
the world, or its world model, on the other side of
the screen. The world model pane shows a LIDAR-
derived map of the simulated environment where
detected objects in the environment are represented
by white boxes with pink labels.

Figure 4 is a screen capture of the demo work-
station. In the left pane, visitors can see that the
robot is approaching a set of three barrels extend-
ing out to the right, and two cones with a small
bench in between them ahead of the robot and to
its left. In the right pane, visitors can see a visual
representation of what the robot “sees” in this same
environment using its LIDAR and computer vision
sensors. There is a snapshot of exactly what the
robot sees from it’s onboard camera in the small
pane in the top left corner of the right pane. The
rest of the right pane populates with light grey in
the areas reached by the LIDAR that have been clas-
sified as open space; thus, there are some darker
grey unknown or unexplored areas beyond the grey
barrier that encloses the demo environment. The
robot recognizes the three barrels, the cones and
the bench. These objects are labeled with the basic
object type label as well as a unique identifier num-
ber that tracks these objects in the robot’s world
model. For example, the robot labels the closest
barrel as “barrel-4”. Demo audience members will

be able to direct the robot to any of the objects in
the scene that the robot has identified and success-
fully labeled thus far.

4.1 Demo Modes Comparing AMR & CYK
Parsers

In order to showcase the novel contribution of
this research, the demo host can toggle the im-
plementation back and forth between the same ar-
chitecture with either the AMR parser described
in Section 3.4, or the syntactic CYK parser
(Younger, 1967) of previous implementations, such
as Howard et al. (2021). This setup allows us to
compare our architecture to comparable systems
where the CYK parser was used. However, to make
this a fair comparison that focuses only on the
language parse and the grounding component, we
hold the rest of the architecture constant while only
swapping out and comparing the symbol grounding
components. This will allow audience members to
use different variations of navigation instructions
in order to see how a small amount of complexity
in the surface form can affect the grounding when
using meaning-based (this work) or syntax-based
(baseline) parsers.

For example, in our own preliminary compar-
isons, an experimenter issued the following set of
three instructions, given in the same simulated en-
vironment to a robot with the same sensors and
resulting world model. Only the AMR-based sys-
tem was able to ground the final two instructions,
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which involve a light verb construction (2), and
coreference as well as a complex spatial expression
(3):

1. Go to the left barrel.

2. Take a drive to the left barrel.

3. Drive to the cone and the rock closest to it.

While sufficient for the simple instruction in (1), the
syntactic CYK parser output fails to be grounded
for instruction (2) because the system cannot
ground what it presumes to be the primary take
action, which has not been seen in training data
for either the constituency parse or AMR-based
grounding. In the AMR input, take is abstracted
away and this instruction is grounded to a driving
behavior.

For instruction (3), the CYK parser output
includes the words cone and it, which are co-
referential expressions for the same object in the
environment; thus, the constituency parse tree-
based grounding component attempts to separately
ground each word. Although this may eventually
result in the correct grounding, it is much more
computationally expensive and requires a larger
space of potential groundings, including symbols
for each co-referential expression, in order to com-
positionally build the grounded meaning of each
linguistic constituent. In contrast, AMR represents
co-referential expressions as a single node, which
is then grounded to a single symbolic meaning.

Instruction (3) also includes the complex spa-
tial expression the rock closest to it, which, com-
bined with the coreference, causes the syntax-based
grounding to fail altogether. The AMR specifies
this as the close relation between the concepts of
rock and cone, abstracting away any explicit con-
stituent for the word it. Thus, the AMR enables
grounding of such spatial concepts to real-world
spatial relations between objects in the world model
observed in training data.

5 Related Work

This research is at the intersection of NLP, includ-
ing semantic parsing and dialogue systems, and
robotics. We limit our direct comparison here to
similarly interdisciplinary work; see Tellex et al.
(2020) for a full review of research in robotics and
language. Outside of the work on the DCG ground-
ing approach that we directly augment for AMR
(Howard et al., 2021), field robotics has largely

focused on robots that receive an initial, static task-
ing and then operate autonomously (e.g., Williams
et al. (2012); Arvidson et al. (2010); Camilli et al.
(2010)), or robots that are tele-operated (e.g., Kang
et al. (2003); Ryu et al. (2004); Yamauchi (2004)).
In contrast, there is relatively little work like ours,
seeking to develop robots that are able to be tasked
dynamically and interactively via natural language.

There are, however, several notable exceptions.
Walter et al. (2015) describe the development of a
voice-controlled fork lift. In contrast to our own re-
search, however, the natural language instructions
are more constrained to particular hard-coded com-
mands mentioning a more limited range of objects
that are classified in their world model. Addition-
ally, Heikkilä et al. (2012) develop a mobile manip-
ulator designed for space operations that is capable
of accepting spoken commands. Unlike both of
the previously mentioned voice-controlled robots,
it is important to note that our architecture aims
to support bi-directional communication between
the robot and the operator, such that ambiguities
that might arise in changing environments can be
resolved.

There is also relevant research leveraging large,
pretrained language models to map or translate
between unconstrained natural language and the
controlled planning languages of robots. Song
et al. (2022) utilize GPT for deciding upon the
appropriate high-level plan given natural language
instructions, and then use a more traditional low-
level planning component to execute specific motor
movements to specific grounded points in the envi-
ronment. The high-level and low-level models are
also able to communicate, such that the high-level
model can be queried for new and updated plans
if conflicts arise in the low-level planning model.
Driess et al. (2023) develop their own multi-modal
“embodied” language model, called PaLM-E, which
accepts both sensor data, such as image data, and
natural language text. The model outputs text data
that can be interpreted as robot policies. In gen-
eral, we see potential for leveraging language mod-
els in the future both for providing some apriori,
zero-shot knowledge of objects that the robot might
encounter in its environment, which can be used
to inform the interpretation of natural language
instructions, as well as for providing a likely map-
ping between unconstrained natural language and
the constrained set of robot behaviors.

However, explainability is critical for adoption
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of robotic systems in high-stakes tasks such as dis-
aster relief; thus, further research enabling trans-
parency and explainability of systems leveraging
language models is needed. Neuro-symbolic ap-
proaches (e.g., Dipta et al. (2022)) are promising
for providing greater transparency. For example,
Zhang et al. (2022) develop DANLI, which symbol-
ically represents subgoals as predicates on objects
in the robot’s world model.

There is a growing body of research leveraging
AMR for NLU in human-agent interaction. The
present research is part of a broader ongoing re-
search effort leveraging a two-step NLU pipeline
that first parses natural language into AMR, which
abstracts away from some surface variation, but
then in a second step converts the Standard-AMR
into a formalism called Dialogue-AMR (Bonial
et al., 2020). Dialogue-AMR is augmented to
capture features of language found to be criti-
cal for human-robot dialogue, but not included
in Standard-AMR (Bonial et al., 2019). Specifi-
cally, the Dialogue-AMR adds information on the
input instruction’s tense and aspect, and further nor-
malizes varying expressions for a desired behavior
(e.g., turn, rotate, pivot) to a single designated role-
set for a particular robot behavior (e.g., turn-01).
While the present research leverages Standard-
AMR as the input to the grounding component,
we will shift to using Dialogue-AMR as the input
parse, as we expect that the further normalization
will allow us to achieve comparable results with
even less training data. Furthermore, Dialogue-
AMR leverages spatial rolesets from Spatial-AMR
(Bonn et al., 2020), which provides detailed rela-
tions for spatial relations for expressions such as
in front of, which currently does not have a de-
tailed representation with a relational concept in
Standard-AMR.

Other research to augment AMR for interaction
includes work to further develop multi-modal, ges-
tural AMR (Brutti et al., 2022) as well as efforts
to further develop aspect and modality in AMR to
support NLU (Donatelli et al., 2020). Finally, there
is research in leveraging AMR parses of image cap-
tions in order to develop scene graphs, which can
help agents to summarize and process visual scenes
(Choi et al., 2022a,b). Together, all of these threads
of research demonstrate ways in which AMR can
serve as a unified representation for making sense
of multiple modalities of information.

6 Conclusions and Future Work

We are currently engaged in experimentation to
evaluate the AMR-based grounding. Our ongo-
ing extrinsic evaluation compares natural language
interaction with the current paradigm of teleoper-
ation. Specifically, we compare the time it takes
for a robot operating autonomously to complete
natural language instructions, using the architec-
ture shown in Figure 1, to the time that it takes
a relatively experienced person to teleoperate the
robot and complete the same instruction. This com-
parison is made with and without the introduction
of latency, which can occur when operators teleop-
erate a robot from distant, remote locations. The
latency, or delay, between the manual teleoperation
and the robot’s execution of the teleoperation can
be disorienting to operators (imagine, for exam-
ple, if movements of your own body were delayed
for some time after your brain sending the signal
to move). This disorientation can cause delays in
reaching the destination, an inability to reach pre-
cise locations, or even crashes. Such latency does
not have a dramatic effect on natural language in-
structions, since although these might be delayed
momentarily in getting to the robot, the robot is
then navigating autonomously based upon the plan
expressed in language. Our early results show that
while autonomous navigation is generally slower
than teleoperation, with anything over one second
of latency introduced, the speed of autonomous
navigation becomes comparable.

We are also carrying out an intrinsic evaluation
where we compare our architecture, with the AMR
parser, against an implementation with a CYK
parser in order to robustly evaluate our system
against the comparable system of Howard et al.
(2021). We will evaluate the performance in terms
of the ability of each system to successfully ground
a wide variety of instructions with the same train-
ing set, and we will also compare computation
time and efficiency. Once our evaluations leverag-
ing Standard-AMR are complete, we will then turn
to comparing to the use of Dialogue-AMR, where
we expect even greater computational efficiency
since Dialogue-AMR abstracts even further from
surface variation to normalize a variety of differ-
ent expressions of different behaviors into a single
AMR roleset designated for a robot behavior.

Finally, although not the focus of this paper, we
are also working to update our architecture such
that the intent classification and dialogue manage-
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ment components work more synergistically with
the grounding and planning components. There-
fore, the system can draw upon its knowledge of the
surrounding environment to support more human-
like conversational repairs in cases of ambiguities
and miscommunications. For example, if the sys-
tem encounters the well-formed instruction, Move
to the barrel on the right, but there is no barrel
grounded on the right and instead a barrel grounded
on the robot’s left, then that information from the
grounding component can support generation, via
AMR, of a targeted clarification question, such as
I don’t see a barrel on the right; do you mean the
one on the left? This requires a level of intercom-
munication of the components that we currently
have not achieved.

In this demonstration of our research, we show
that AMR-based grounding of natural language in-
structions allows our system to successfully ground
and execute instructions with a range of linguis-
tic phenomena, including light verb constructions,
coreference, and spatial relations. Although these
phenomena are arguably complex for grounding
and have proven to be challenging for the exist-
ing state-of-the-art systems, they are commonplace
in natural language; thus, we simply must have
systems that can handle such complexity reliably
in disaster relief scenarios. In the demonstration
that we offer, visitors will be able to explore this
firsthand to see how our system addresses these
challenges by grounding the meaning of the in-
structions, rather than just the words of the instruc-
tions.

References
Raymond E Arvidson, James F Bell III, P Bellutta,

Nathalie A Cabrol, JG Catalano, J Cohen, Larry S
Crumpler, DJ Des Marais, TA Estlin, WH Farrand,
et al. 2010. Spirit mars rover mission: Overview and
selected results from the northern home plate winter
haven to the side of scamander crater. Journal of
Geophysical Research: Planets, 115(E7).

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178–186.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020.
Dialogue-AMR: Abstract Meaning Representation

for dialogue. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 684–
695, Marseille, France. European Language Re-
sources Association.

Claire Bonial, Lucia Donatelli, Stephanie M. Lukin,
Stephen Tratz, Ron Artstein, David Traum, and Clare
Voss. 2019. Augmenting Abstract Meaning Repre-
sentation for human-robot dialogue. In Proceedings
of the First International Workshop on Designing
Meaning Representations, pages 199–210, Florence,
Italy. Association for Computational Linguistics.

Julia Bonn, Martha Palmer, Zheng Cai, and Kristin
Wright-Bettner. 2020. Spatial AMR: Expanded spa-
tial annotation in the context of a grounded Minecraft
corpus. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 4883–
4892, Marseille, France. European Language Re-
sources Association.

Richard Brutti, Lucia Donatelli, Kenneth Lai, and James
Pustejovsky. 2022. Abstract meaning representation
for gesture. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
1576–1583.

Richard Camilli, Christopher M Reddy, Dana R Yoerger,
Benjamin AS Van Mooy, Michael V Jakuba, James C
Kinsey, Cameron P McIntyre, Sean P Sylva, and
James V Maloney. 2010. Tracking hydrocarbon
plume transport and biodegradation at deepwater
horizon. Science, 330(6001):201–204.

Woo Suk Choi, Yu-Jung Heo, Dharani Punithan, and
Byoung-Tak Zhang. 2022a. Scene graph parsing via
abstract meaning representation in pre-trained lan-
guage models. In Proceedings of the 2nd Workshop
on Deep Learning on Graphs for Natural Language
Processing (DLG4NLP 2022), pages 30–35.

Woo Suk Choi, Yu-Jung Heo, and Byoung-Tak Zhang.
2022b. Sgram: Improving scene graph parsing
via abstract meaning representation. arXiv preprint
arXiv:2210.08675.

Clearpath Robotics. 2023. Clearpath Husky UGV.

Benjamin J Cohen, Sachin Chitta, and Maxim
Likhachev. 2010. Search-based planning for ma-
nipulation with motion primitives. In 2010 IEEE
international conference on robotics and automation,
pages 2902–2908. IEEE.

Michael Collins. 2005. Log-linear models. Self-
Published Tutorial.

Shubhashis Roy Dipta, Mehdi Rezaee, and Francis Fer-
raro. 2022. Semantically-informed hierarchical event
modeling.

Lucia Donatelli, Kenneth Lai, and James Pustejovsky.
2020. A two-level interpretation of modality in
human-robot dialogue. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 4222–4238, Barcelona, Spain (Online).

https://www.aclweb.org/anthology/2020.lrec-1.86
https://www.aclweb.org/anthology/2020.lrec-1.86
https://doi.org/10.18653/v1/W19-3322
https://doi.org/10.18653/v1/W19-3322
https://www.aclweb.org/anthology/2020.lrec-1.601
https://www.aclweb.org/anthology/2020.lrec-1.601
https://www.aclweb.org/anthology/2020.lrec-1.601
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://doi.org/10.48550/ARXIV.2212.10547
https://doi.org/10.48550/ARXIV.2212.10547
https://www.aclweb.org/anthology/2020.coling-main.373
https://www.aclweb.org/anthology/2020.coling-main.373


43

International Committee on Computational Linguis-
tics.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. Palm-e: An embodied multimodal language
model.

Arno Hartholt, David Traum, Stacy C Marsella, Ari
Shapiro, Giota Stratou, Anton Leuski, Louis-Philippe
Morency, and Jonathan Gratch. 2013. All together
now: Introducing the virtual human toolkit. In Intel-
ligent Virtual Agents: 13th International Conference,
IVA 2013, Edinburgh, UK, August 29-31, 2013. Pro-
ceedings 13, pages 368–381. Springer.
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