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Abstract
Accurately interpreting the relationships be-
tween actions in a recipe text is essential to suc-
cessful recipe completion. We explore using
Abstract Meaning Representation (AMR) to
represent recipe instructions, abstracting away
from syntax and sentence structure that may or-
der recipe actions in arbitrary ways. We present
an algorithm to split sentence-level AMRs into
action-level AMRs for individual cooking steps.
Our approach provides an automatic way to de-
rive fine-grained AMR representations of ac-
tions in cooking recipes and can be a useful
tool for downstream, instructional tasks.

1 Introduction

Procedural texts are special kinds of text that serve
the purpose of guiding humans through the steps
required to accomplish a specific task. Recipe texts
are an idiosyncratic kind of procedural texts whose
successful execution depends on accurately inter-
preting which actions need to be carried out in
which order and which ingredients and tools are
involved in each step. For example, the instruc-
tion “Turn the dough out onto a surface dusted
with flour and knead briefly until smooth.” presents
three actions: (i) dusting a surface; (ii) placing the
dough on that surface; and (iii) kneading the dough
until smooth. In recipe texts, actions often depend
on other actions but there is often flexibility with
respect to the overall order in which actions are
instructed as some actions can take place in paral-
lel or can be carried out at different stages of the
cooking process. For example, dusting the surface
could be instructed before preparing the dough.

Recipe texts frequently combine several actions
in one sentence and often there are no uniform
methods for putting specific actions into the same
instruction; different versions of the same recipe
may even differ in how equivalent or parallel ac-
tions are distributed across sentences.

Tasks such as adapting a recipe to a specific
situation or presenting a recipe interactively to a
user require the generation of a coherent recipe text
that presents actions in a potentially different order
and combination. To flexibly generate new versions
of a recipe that present actions in an adapted order
it is necessary to correctly decompose the recipe
into the individual actions.

Previous work on recipe texts proposed identify-
ing cooking actions and objects in recipes and rep-
resenting the dependency relations between them in
domain-specific graph representations with nodes
for actions, ingredients and tools (Mori et al.,
2014a; Yamakata et al., 2020). These represen-
tations are attractive for fine-grained analysis of
recipe texts but lack the expressivity to represent
details such as adverbs or relations such as condi-
tions and alternatives. Yet, this kind of information
is important for correctly reconstructing the origi-
nal meaning when generating instructions.

We explore generating recipe instructions at the
action level from Abstract Meaning Representation
(AMR) graphs. AMR is able to represent fine-
grained and rich semantic relations, and its focus
on predicate-argument structure makes it attractive
for representing cooking instructions. Yet, AMR
is a sentence-level representation that represents
individual sentences in individual graphs.

This paper addresses the challenge of splitting
sentence-level AMR graphs into the individual
action-level AMRs. We present a splitting algo-
rithm that considers the semantic relationships be-
tween actions in recipe instructions (§3)1. We eval-
uate our approach in a direct manual evaluation
of the action-level representations as well as in an
automatic and human evaluation of recipes gener-
ated from the created representation (§4). Findings

1Code and documentation is available at
https://github.com/interactive-cookbook/
recipe-generation

https://github.com/interactive-cookbook/recipe-generation
https://github.com/interactive-cookbook/recipe-generation
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show that our algorithm accurately identifies action-
level subgraphs in AMR recipe representations,
suggesting its utility for AMR representations of
procedural texts and for generating action-level in-
structions.

2 Related Work

At first glance, recipe texts may look quite simple.
Yet recipe texts are semantically quite complex:
subjects of actions are implicit, often as a result of
being written in imperative mood; anaphoric ex-
pressions often refer to intermediate products that
are outputs of actions and only partially corefer to
input ingredients; and zero anaphora objects are
frequent. To model recipe structure, most work on
recipe text involves the identification and tagging
of cooking actions, ingredients, intermediate sub-
stances and tools which get then used to create a
structured representation (Mori et al., 2014a; Ya-
makata et al., 2020; Donatelli et al., 2021; Liu et al.,
2022, inter alia). The most common representation
approaches are graph and tree structures, which
represent the flow and dependencies of actions and
involved entities (Mori et al., 2014a; Jermsurawong
and Habash, 2015; Kiddon et al., 2015; Yamakata
et al., 2016, 2020; Donatelli et al., 2021).

The Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) framework represents the
meaning of sentences with a focus on predicate-
argument relationships, a key component of recipe
structure. Figure 1a shows the AMR for the instruc-
tion “Turn the dough out onto a surface dusted
with flour and knead briefly until smooth.” on the
left. As shown, AMRs are rooted, directed graphs
in which nodes correspond to concepts and edges
to the semantic relations between concepts. The
framework makes use of a rich set of node and edge
labels including frames from PropBank (Palmer
et al., 2005), and within-sentence coreference is
represented by re-entrancy.

Previous work on adapting AMR to the non-
sentence level proposes approaches to create a
multi-sentence AMR representation (O’Gorman
et al., 2018; Naseem et al., 2022) or dialogue AMR
graphs (Bai et al., 2021) but essentially keeps the
sentence-level AMRs as part of the extended repre-
sentations. AMR has also been used in the tasks of
summarization (Liu et al., 2015; Lee et al., 2021)
and text style transfer (Jangra et al., 2022).

3 Creating Action-Event AMRs

3.1 Actions and Action Events

Recipe texts should enable a cook to successfully
prepare a dish by guiding them through the basic
steps of the process. Yet, recipes rely on much
commonsense knowledge for accurate interpreta-
tion, often combining several actions in one sen-
tence or making only implicit reference to required
actions. For example, “Turn the dough out on a
surface dusted with flour and knead until smooth.”
conjoins the two steps of placing the dough on a
surface and kneading it, mentioning the dusting of
the surface only implicitly.

In previous work, the term action has been used
in various ways. In some work, it refers to the
action predicate together with its arguments (e.g.
Kiddon et al., 2015; Liu et al., 2022). Often, only
the action predicates themselves are referred to as
an action (e.g. Mori et al., 2014b; Chang et al.,
2018; Yamakata et al., 2020; Donatelli et al., 2021;
Sakib et al., 2021). Trained taggers then identify
corresponding spans of action predicate tokens.

To differentiate the two concepts, we use the
term action to refer to an action predicate from
here on and we introduce the concept of an action
event to refer to an action predicate and all infor-
mation belonging to it. In particular, we define an
action event of a recipe as an individual action to be
carried out by the cook together with all informa-
tion (ingredients, time, result state, etc.) relevant to
successfully complete the action. Importantly, not
all actions in a sentence belong to different action
events under this definition as we illustrate with ex-
amples from the action-tagged recipe corpus from
Donatelli et al. (2021) shown in Table 12. To dis-
tinguish actions and action events, we make use of
the predicate-argument based structure of AMR.

3.2 From Sentences to Action Events

AMR parsers typically predict one graph per sen-
tence. Figure 1a presents two successive recipe
instructions with the tagged actions shown in
color; the corresponding sentence-level AMRs (S-
AMRs) (i) and (ii); and a part of the action graph
for the recipe (iii). The action graph consists of
one node for each action and the edges represent
their dependencies (Donatelli et al., 2021). Each of
the two S-AMRs includes nodes corresponding to
different actions. For both action and AMR graphs,

2Examples presented are shortened or slightly modified.



54

(1) Place cooked chicken on paper towel to drain the oil.
(2) Stir in the chocolate chips by hand using a wooden spoon.
(3) Bake for 30 minutes, or until a toothpick comes out clean.
(4) Gradually add the water, while mixing.
(5) Let the loafs cool for 10 minutes before turning onto a wire rack.
(6) Divide the batter evenly among the mini loaf pans or pour into large loaf pan.
(7) If it is still a little bit lumpy, you can add a touch of heavy cream, and blend again.

Table 1: Examples of multi-action recipe instructions. Actions in the same color belong to the same action event.

(a) The S-AMRs for “Place the dough onto a surface dusted with flour and knead briefly until smooth.” (i), “Let the
dough rise for 1 hour.” (ii) and a part of the action graph of the recipe to which the instructions belong (iii).

(b) The A-AMR graphs for the four action events ”dust” (i), ”turn out” (ii), ”knead” (iii) and ”let rise” (iv).

Figure 1: The different of graph representations we build upon in our work (1a) and the graphs we produce (1b).

we say that a node is aligned to the action (predi-
cate) it corresponds to. Additionally, we say that
an AMR graph is aligned to an action event if at
least one node in the AMR is aligned to an action
belonging to the action event.

Our goal is to split the S-AMRs into individ-
ual AMRs for action events (A-AMRs) such that
each A-AMR includes exactly the actions from that
event and all other nodes that belong to the action
event, as shown in Figure 1b. Figure 1 illustrates
several key aspects of this process. First, action
aligned AMR nodes that belong to the same action
event, such as let-01 and rise-01, are always
kept together. Second, each A-AMR contains only
action nodes from a single action event. Different
actions may share arguments as they operate on the
same substances or tools, e.g. dough is the direct
object of both ”turn out” and ”knead” and belongs
to both action events. Our algorithm does not split
an S-AMR into A-AMRs consisting of disjoint sets

of nodes but selects the subgraph of the S-AMR
that consists of nodes and edges belonging to the
action event. Finally, the action graph allows us to
properly order action events.

3.3 Datasets

As our main dataset, we use the ARA1.1 cor-
pus3 (Donatelli et al., 2021) which provides action
graphs for 110 recipes spanning 10 dishes of the
recipe corpus from Lin et al. (2020). We exclude
three recipes and refer to the set of the remaining
recipes as ARA1. We use an additional set of 110
recipes spanning 10 dishes as a secondary dataset
(ARA2) to refine and validate our approach and use
the tagger and parser from Donatelli et al. (2021)4

to obtain the action tags and action graphs we use.

3https://github.com/
interactive-cookbook/ara

4https://github.com/
interactive-cookbook/tagger-parser

https://github.com/interactive-cookbook/ara
https://github.com/interactive-cookbook/ara
https://github.com/interactive-cookbook/tagger-parser
https://github.com/interactive-cookbook/tagger-parser
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Label node1 LPath Label node2
1) action ⟨ ARGX (opX)1 ⟩ action
2) action ⟨ direction (opX)1 ⟩ action
3) action ⟨ (edge)∗ relation (edge)∗ ⟩ action

where relation is equal to purpose, manner, instrument, time or duration
4) action ⟨ opX, opX-of ⟩ action
5) action ⟨ ARGX, ARGX-of ⟩ action

Table 2: Path patterns between two action-aligned AMR nodes that should be clustered together. action and
edge can be any node or edge label, round brackets are used for optional labels on the LPath, ()1 meaning zero
or exactly one occurrence and ()∗ allowing any number of occurrences.

The full list of dishes and exclusion criteria can be
found in Appendix A.

For our approach we rely on the availability of
node-to-token alignments to determine to which
action events each AMR is aligned. We obtain the
S-AMRs for the recipes by parsing each sentence
using the transition-based AMR parser of Drozdov
et al. (2022)5 (henceforth StructBART). The parser
includes a neural aligner to predict node-to-token
alignments needed for training and produces the
alignments as a by-product during parsing.

3.4 Splitting Algorithm

Obtaining A-AMRs from S-AMRs consists of two
main steps: (i) deciding which action-aligned AMR
nodes correspond to the same action event and (ii)
creating one A-AMR per action event from the S-
AMR, i.e. extracting the appropriate subgraph. We
focus on the overall process and the main decision
rules in this section. The full set of clustering and
splitting rules can be found in Appendix C.

Both steps of the process are based on the con-
cepts of labelled paths (LPath) and meeting
nodes. We define a path between two nodes u and
v as a sequence of edges between two nodes where
edges can be traversed in either direction and each
node is visited only once. A labelled path is the se-
quence of the labels of edges of a path where edges
that are traversed in reverse direction receive their
reverse role label. For example, the LPath between
dust-01 and turn-out-11 in the left AMR
(i) in Figure 1a is ⟨ARG2, location-of⟩. We
then define a meeting node as a node on a path
at which two successive edges change their direc-
tion, i.e. where one edge is traversed in its orig-
inal direction and the next edge in reverse direc-
tion or the other way round. On the path between
dust-01 and and turn-out-11, there is one

5amr3.0-structured-bart-large-neur-al-sampling5-
seed42 from https://github.com/IBM/
transition-amr-parser

meeting node: surface.
The label of an edge between two action nodes

represents the relation between them. LPaths allow
us to capture relations between two action nodes
that are further away, which we use to decide if two
actions belong to the same action event. Meeting
nodes are shared predecessor or successor nodes
of two action nodes and intuitively correspond to
nodes that belong to both action events such as
shared arguments or conjunctions.

3.4.1 Clustering

Let Mi be the S-AMR for the i-th instruction in
a recipe and let A be the set of all nodes of Mi

aligned to different actions6. The clustering step
groups all nodes a ∈ A into disjoint action clusters
⟨C1, ...⟩ such that actions from the same action
event are in the same cluster. It starts by creating all
possible pairings of nodes from A. Then for each
pair (ai, aj) all possible paths and LPaths between
the nodes get computed and checked against a set
of rules. Table 2 lists the main patterns used for the
clustering rules: if the two action nodes ai, aj and
one of their LPaths match any of the patterns 1) - 3),
ai and aj are clustered together. The patterns match
the ways in which AMR represents the relations
between actions of the same event. For example,
1) covers cases with discontinuous action spans
and 3) can capture complex relations such as time
specifications, even in nested structures.

If pattern 4) or 5) matches, we check whether
the meeting node is labelled or, slash or
contrast-01 to make sure conjoined actions
are not clustered together. Larger action clusters
are built such that for each clustered pair (ai, aj)
ai and aj end up in the same final cluster Cn. If
an S-AMR has or, slash, possible-01 or
have-condition-91 as the root node, A is
treated as a single action cluster.

6If more than one AMR node is aligned to the same action
we ignore the ones not labelled with a predicate frame.

https://github.com/IBM/transition-amr-parser
https://github.com/IBM/transition-amr-parser
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(a) Creating A-AMR for turn-out
Step 1

(b) Creating A-AMR for turn-out
Step 2

(c) Creating A-AMR for turn-out
Step 3

(d) Creating A-AMR for turn-out
Step 4

(e) Creating A-AMR for knead Step
1

(f) Creating A-AMR for knead Step
2

Figure 2: Step-by-step example of obtaining the A-AMRs from the S-AMR in Figure 1. Nodes from the current
target cluster are shown as rectangles and edges that get removed as dotted edges. Creating the A-AMR for dust
and the final postprocessing step are not shown. Edge labels are left out.

3.4.2 Splitting

If an S-AMR graph is aligned to more than one
action cluster, the splitting algorithm is applied
with the goal to obtain one A-AMR per cluster.
Similar to the clustering approach, the splitting
algorithm is based on the paths between action-
aligned AMR nodes and meeting nodes.

The splitting algorithm always operates on one
S-AMR and one target action cluster. The A-AMR
gets created by iteratively removing nodes or edges
until deriving one connected subgraph that con-
tains all action nodes from the target cluster and
no action nodes from any other clusters. Figure
3 presents the main structure of the algorithm: it
starts by pairing each node from the target action
cluster with all other action nodes, i.e. the pairs of
all nodes that should not be connected anymore in
the end. All paths from nodes of the target cluster
to another cluster are considered for removing an
edge or a node in order to separate the actions from
each other. The shortest paths are considered first
as they are usually the more meaningful paths that
are captured by the removal conditions of the algo-
rithm. The main rule checks for paths that consist
of exactly one direction change, i.e. include one
meeting node. If a path fulfills this condition then
the edge “behind” the meeting node gets removed.

Figure 2 illustrates the removal steps applied
to derive the three A-AMRs (i-iii) from Figure
1b from the left S-AMR (i) in Figure 1a. The S-
AMR includes three nodes aligned to an action

1. create a set Q of node pairs by pairing each
action node from Cj with each node from the
other clusters

repeat
2. create a sequence P of all paths for all pairs

in Q, ordered by length in ascending order
3. if P = ∅ then break
4. for p in P do

(a) if CONDITION do REMOVAL and
continue from 2.

5. if the graph does not change anymore then
return original graph

end repeat
6. select the connected subgraph that includes

the nodes from the current cluster Cj as the
A-AMR for that action event

Figure 3: The main structure of the splitting algorithm
given an S-AMR and a target action cluster Cj

node and the clustering results in three action clus-
ters. Starting with the A-AMR for turn-out,
one of the shortest paths connects turn-out and
dust and consists of exactly one direction change
at the shared child node surface. Therefore, the
edge between (surface,dust) gets removed
from the graph, as illustrated in Figure 2a. Af-
ter removing an edge, the algorithm recomputes
the set of all paths for the modified AMR.

There are still paths left inP , so the splitting con-
tinues. Figure 2b and 2c summarize the next four
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iterations, in which the connecting paths between
turn-out and knead get broken up. When no
path between turn-out and any other action
node is left then the connected component of the
graph including that action gets selected as the A-
AMR (see 2d).

The algorithm continues with the action cluster
for knead. Removing the edges from the three
shortest paths between knead and turn-out
gets rid of all connecting paths resulting in the
subgraph for knead (see 2f). Lastly, the A-AMR
for dust gets created in the same way. A postpro-
cessing step transforms the subgraphs into the final
A-AMRs as shown in Figure 1b by removing redun-
dant nodes and representing actions that originally
were participles such as dust as imperatives.

An important characteristic of the algorithm is
that it ensures that no nodes from the original S-
AMR get lost except if removed by the rules them-
selves. If the splitting results in A-AMRs that do
not cover all nodes from the original S-AMR, the
S-AMR gets treated as non-separable. The same
holds if any of the action clusters cannot be sepa-
rated from all other clusters.

4 Evaluation

4.1 Manual Evaluation

We apply the splitting approach to the S-AMR
graphs of the ARA1 and the ARA2 recipes. Table
3 provides an overview over the original datasets
as well as the output of the splitting algorithm.
The dataset of A-AMRs created by the splitting ap-
proach consists of 1396 AMR graphs for the ARA1
recipes out of which 584 A-AMRs are equivalent
to the original S-AMR. For the ARA2 dataset the
splitting results in a total of 1471 A-AMRs out of
which 648 get not modified. Few S-AMRs can-
not be separated into individual A-AMRs by our
algorithm, proving its effectiveness.

To evaluate the splitting algorithm, we manually
compare all original S-AMRs to the generated A-
AMRs. In the ARA1 dataset we identified 64 A-
AMRs that were incorrect relative to the source
S-AMRs: either they were split incorrectly or not
split although they should have been.7 For 46 out
of the 64 incorrect A-AMRs, the initial mistake
already happens before the splitting process, i.e. in
the action tagging step or during AMR parsing. In
the ARA2 dataset, there are 68 incorrect A-AMRs

7We evaluate the “correctness” of the A-AMR given the
S-AMR predicted by the StructBART parser.

ARA1 ARA2
Recipes / action graphs 107 110
Action nodes 1583 1771
Sentences / S-AMRs 941 1001
Action clusters 1391 1473
A-AMRs 1396 1471
Non-separable S-AMRs 14 13
Incorrect A-AMRs 64 68

Table 3: Overview of the ARA1 and ARA2 datasets
(upper part) and the results from applying the splitting
algorithm (lower part).

and for 58 of them the source mistake happens
before the splitting step. We also identified cases
for which the decision how to split the S-AMR is
not straightforward. These cases will be discussed
together with the limitations of the algorithm in
Section 5.

4.2 NLG-based Evaluation
In addition to evaluating the splitting approach
based on the output graphs themselves, we conduct
a task-related evaluation. A potential use case for
the fine-grained A-AMR graphs is the generation of
recipe instructions at the action-event level in order
to recombine them flexibly or present them incre-
mentally to a user, e.g. to guide a user through the
cooking process step by step in real-time. There-
fore, we generate recipe instructions from the A-
AMRs and evaluate them both automatically and
manually with crowdsourced human evaluation.

To obtain gold instructions for the individual A-
AMRs we use a rule-based heuristic. Another ap-
proach to obtain instructions corresponding to the
A-AMRs would be to use an AMR-to-text model.
However, as AMR parsers, AMR-to-text models
are usually trained on the AMR3.0 corpus8. There-
fore, the sentences generated by them for the A-
AMRs might not resemble the style of recipe in-
structions (see §5). Splitting the instructions heuris-
tically gives us a dataset on which we can fine-tune
an AMR-to-text model for the recipe domain. Ad-
ditionally, we can use the data to automatically
evaluate and compare different models.

Our extraction heuristic is based on the node-
to-token alignments produced by the parser and
creates the gold instructions by selecting all tokens
from the original instruction to which nodes in the
specific A-AMR are aligned. Additionally, we use
a set of rules based on POS tags to decide about
the selection of unaligned tokens and to reorder

8https://catalog.ldc.upenn.edu/
LDC2020T02

https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2020T02
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Model BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR BLEURT
amrlib 44.00 74.9 45.96 68.88 72.38 38.28
GART5-0 56.15 ±1.2 84.63 ±0.5 62.88 ±1.3 80.28 ±0.7 82.09 ±0.7 59.42 ±1.8
GART5-1 57.84 ±1.3 85.75 ±0.4 65.98 ±0.9 81.91 ±0.7 83.47 ±0.6 62.64 ±1.5

Table 4: Results on the ARA1 test split averaged over 6 different seeds (± standard deviation).

Grammar Fluency Verbosity Structure Success Overall
Dependency 2.88 2.58 3.26 3.33 3.40 2.76
GART5-0 3.80 3.27 3.45 3.47 3.31 3.022
GART5-1 3.62 3.02 3.15 3.20 3.01 2.74
Original 5.25 5.13 5.30 5.28 5.14 5.06

Table 5: Mean evaluation scores from the human evaluation per rating criterion for the recipes generated with
context (GART5-1), without context (GART5-0) and by the dependency baseline and for the original recipe.

the selected tokens to improve the grammar (see
Appendix A.1 for an example). Participle actions
get stemmed to their imperative form. Overall, 812
and 823 of the A-AMRs of the ARA1 and ARA2
recipes get a new instruction out of which around
85% (ARA1) and 80% (ARA2) are grammatical.

4.2.1 Generation Set-up
For the generation, we use the AMR-to-text model
from the amrlib library9 (amrlib model from here
on), a pre-trained T5 model fine-tuned on the
AMR3.0 corpus for AMR-to-text generation. We
further fine-tune the amrlib model on the A-AMR
dataset for the ARA1 recipes which we split into
training (86), validation (11) and test (10) recipes.

Instead of passing a single linearized AMR
graph we prepend the previous sentence as con-
text information to the linearized AMR. For each
recipe, we order the AMR-instruction pairs simi-
larly to the instructions in the original recipe. A-
AMRs obtained from the same S-AMR get ordered
relative to each other based on the action graph
such that e.g. “Dust a surface with flour.” comes
before “Turn dough out onto the surface.”.

The amrlib model then gets fine-tuned to pre-
dict the sentence for the AMR-graph based on
the AMR-graph and the context. Details about
fine-tuning can be found in Appendix A. We call
our generation model GART5 (Generating Action-
level Recipes based on T5)10.

4.2.2 Automatic Evaluation
For the automatic evaluation, each A-AMR gets
paired with the previous sentence from the original

9https://github.com/bjascob/
amrlib-models/releases/model_generate_
t5wtense-v0_1_0

10Code for the training is available at https:
//github.com/interactive-cookbook/
recipe-generation-model

recipe as context. We then fine-tune our model
on the graph-context pairs from the train recipes
(GART5-1) and compare the results on the test
recipes to two baselines: the texts generated by
the original amrlib model11 and instructions gen-
erated by a model fine-tuned on the recipe dataset
without context (GART5-0). Additional ablation
experiments can be found in Appendix A.2.

Table 4 presents the results of the automatic eval-
uation. Our GART5-0 model without context per-
forms considerably better than the amrlib model
on the A-AMR ARA1 test split across all metrics,
achieving an improvement of 12 points in BLEU
score and even 21 BLEURT points. Adding context
in the fine-tuning step results in an additional - but
smaller - improvement across all metrics.

4.2.3 Crowd-sourcing Evaluation

In addition to the automatic evaluation, we conduct
a human evaluation to get a more thorough and
reliable assessment of the quality of the generated
texts. 88 participants recruited via Prolific12 judged
various measures of coherence and acceptability for
the generated instructions. Participants were paid
£2.25 for their on average 15-minute participation.

We included each recipe from the test split in
four versions. One version was generated with the
GART5-0 and and one with the GART5-1 model,
where the sentence generated at the previous time
step was passed as context. As baseline recipes, we
create action-level instructions from the original
instructions by splitting them based on syntactic
dependencies. Additionally, we include the original
recipes as an upper bound. In the original condition,
the instructions of each recipe were presented in

11We remove the node-to-token alignments from the input
to reproduce the format the amrlib model was trained on.

12https://www.prolific.co/

https://github.com/bjascob/amrlib-models/releases/model_generate_t5wtense-v0_1_0
https://github.com/bjascob/amrlib-models/releases/model_generate_t5wtense-v0_1_0
https://github.com/bjascob/amrlib-models/releases/model_generate_t5wtense-v0_1_0
https://github.com/interactive-cookbook/recipe-generation-model
https://github.com/interactive-cookbook/recipe-generation-model
https://github.com/interactive-cookbook/recipe-generation-model
https://www.prolific.co/
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Dependency GART5-0 GART5-1
Pour over the flour mixture. Pour in flour mixture. Pour in flour mixture.
And very gently stir. Stir very gently until about combined. Stir very gently until about combined.
Until about combin.
Melt butter. Melt butter. Melt butter.
Stir in the butter. Stir in butter. Stir butter.
And continue mixing very gently until
combined.

Continue mixing very gently until
combined.

Continue to mix very gently until com-
bined.

Beat egg whites until stiff. Beat egg whites until stiff. Beat in egg whites until stiff.
Preheat iron. Preheat waffle iron. Preheat waffle iron.
And slowly fold into batter. Slowly fold in egg whites into batter. Slowly fold in egg whites into the batter.
Spoon the batter into waffle iron in
batches.

Save batter in batches on waffle iron. Scoop the batter in batches onto waffle
irons.

And cook according to its directions. Cook batter according to directions. Cook the batter according to its direc-
tions.

Original
Pour over the flour mixture and very gently stir until about combined.
Stir in the melted butter and continue mixing very gently until combined.
Beat egg whites until stiff and slowly fold into batter.
Spoon the batter into preheated waffle iron in batches and cook according to its directions.

Table 6: An excerpt from a recipe for waffles in the four versions that were included in the crowd-sourcing
evaluation.

their original order. In the other conditions, the
order of the generated instructions was determined
by traversing the corresponding action graph using
a heuristic (see Appendix B).

Participants were presented two recipes per con-
dition and they rated the textual quality of each
recipe along six criteria on a six-point Likert Scale.
Table 5 presents the results of the evaluation13. The
original human written recipes were rated signifi-
cantly better than the recipes from all other condi-
tions for each rating criterion. Against our expecta-
tions and in contrast to the results of the automatic
evaluation, we find that recipes generated with or
without context were not rated significantly dif-
ferent with respect to their grammar, fluency and
structure, but the recipes without context were rated
significantly better with respect to their verbosity,
success and overall quality. The grammar and flu-
ency was rated worst in the dependency baseline.

5 Discussion

In this section we discuss the performance of our
splitting algorithm and the results of the generation
experiments in more detail.

Splitting algorithm. As described in §4.1, the
splitting approach can successfully separate the
S-AMRs of almost all instructions in the ARA1
and ARA2 recipes into A-AMRs. The iterative

13Statistical significance testing was performed using the
software R (R Core Team, 2021) and the lme4 package (Bates
et al., 2015). We used linear mixed effect models with condi-
tion as fixed effect, and by-subject and by-item intercepts and
slopes as random effects, p < 0.05.

approach of removing edges at meeting nodes al-
lows to split even deep and nested S-AMRs for
long instructions successfully. For example, one of
the instructions with the highest number of action
events, “Remove from oven and let cool on wire
rack for about 10 minutes before turning bread out
onto wire rack and letting cool completely before
slicing, toasting, and devouring.” gets correctly
separated into seven A-AMRs.

Many of the A-AMRs that are incorrectly split
are based on a wrong S-AMR. We found that
often the same tokens or specific types of to-
kens lead to parsing mistakes and that these to-
kens are mostly specific to the recipe domain
(e.g. “grease”, “Parmesan”, “knead”). These ob-
servations are in line with the findings from Bai
et al. (2021) that the main challenge for out-of-
domain AMR parsing is the correct prediction
of concepts. Additionally, when ignoring split-
ting mistakes resulting from parsing mistakes, al-
most all incorrect A-AMRs contain one of the fol-
lowing concepts: mean-01, have-degree-91
and have-quant-91. These concepts are used
to represent complex relations and they introduce
path patterns into the AMR that are quite different
and not covered by our algorithm.

Finally, during the manual evaluation of the A-
AMRs we encountered a number graphs for which
it is not straightforward to decide whether the spe-
cific splitting is adequate because of the specific
semantic characteristics and especially temporal
interactions of the actions. For example, “Bring a
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pot of salted water to a boil.” gets split into “Salt
water.” and “Bring a pot of water to a boil.”. How-
ever, none of the two potential orderings of the
instructions is entirely adequate. On the one hand,
the salt should be added before boiling the water.
On the other hand, the water cannot be salted be-
fore it is filled into a pot but the “filling” action is
only implicitly included in the original instruction.

Generated texts. In the automatic evaluation,
fine-tuning on our recipe AMR dataset resulted in
a considerable improvement compared to gener-
ating the instructions with the pretrained amrlib
model. We found that the amrlib model struggles
to produce the recipe specific writing style. For
example, the amrlib model generates “Stir for a
commingling” where the GART5 models generate

“Stir to combine”.
In contrast to the automatic evaluation, we found

that in the human evaluation the recipes generated
with context were not judged significantly better.
Table 6 shows an excerpt of a recipe for waffles in
the four versions rated in human evaluation. Over-
all, the instructions generated by the two GART5
models are very similar. In our opinion, the most
likely explanation for the different results is that
the higher automatic evaluation scores are artifacts
of the reference-based score computation and do
not reflect real differences in quality.

The performance of the AMR parser also af-
fected the quality of the generated texts as wrong
concepts in the AMR lead to inadequate or non-
sensical instructions. For example, representing
“spoon” in the last instruction of the original ver-
sion with save-01 resulted in a wrong instruction
generated by GART5-0.

General discussion. Our findings suggest that
AMR representations are promising for represent-
ing and generating recipe instructions at the action
level. The focus on predicate-argument structure
makes them attractive for the representations of in-
structions as they center around actions and objects
required to carry them out. Additionally, AMR
graphs provide rich and fine-grained information
about the semantic relations, the dependencies and
also within-sentence coreference which makes it
possible to identify the individual action events and
to split even S-AMRs for long and nested instruc-
tions into their A-AMR components.

Furthermore, our approach produces again rich
representations of the action events from which
instructions for the individual action events can

be generated. Heuristically splitting the textual
instructions instead of the AMR representations
would require a combination of different tools to
predict all the relevant information such as depen-
dencies and semantic roles. Additionally, splitting
the instructions at the text level using our depen-
dency baseline more often resulted in ungrammati-
cal sentences as reflected by the significantly higher
grammar and fluency ratings for the texts generated
from the A-AMRs compared to the baseline.

6 Conclusion & Future Work

We have presented an approach to split sentence-
level AMR representations for cooking recipe in-
structions into more fine-grained AMR represen-
tations of the individual action events. Our rule-
based algorithm provides an automatic way to
identify which cooking actions in a recipe instruc-
tion constitute separate action events to be car-
ried out and to systematically breaking up the
sentence-level AMRs into representations of the
action events that provide more concise instruc-
tions. The predicate-argument oriented structure
of AMR facilitates this process, and our approach
achieves high performance on accurately breaking
up the S-AMRs to more concise representations
that can be used to generate instructions.

One bottleneck of our approach is the perfor-
mance of the AMR parser in the domain of cook-
ing recipes. Future work might investigate adapting
AMR parsers to out-of-domain recipe vocabulary
and processes. Regardless, representations of ac-
tion events can support analysis and comparisons
of actions in different cooking recipes as well as
instruction generation in tasks that require more
flexibility with respect to the exact order in which
actions are instructed. As the presented approach
makes use of the domain-independent structure of
AMRs, we expect that it can generalize to other
procedural texts, as well.
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Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:

Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
982–992, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Fei-Tzin Lee, Chris Kedzie, Nakul Verma, and Kathleen
McKeown. 2021. An analysis of document graph
construction methods for amr summarization. arXiv
preprint arXiv:2111.13993.

Angela Lin, Sudha Rao, Asli Celikyilmaz, Elnaz Nouri,
Chris Brockett, Debadeepta Dey, and Bill Dolan.
2020. A recipe for creating multimodal aligned
datasets for sequential tasks. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4871–4884, Online. Asso-
ciation for Computational Linguistics.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1077–1086, Denver, Colorado. Association for
Computational Linguistics.

Xiao Liu, Yansong Feng, Jizhi Tang, Chengang Hu, and
Dongyan Zhao. 2022. Counterfactual recipe gener-
ation: Exploring compositional generalization in a
realistic scenario. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7354–7370, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Manuel Mager, Ramón Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. GPT-too: A
language-model-first approach for AMR-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1846–1852, Online. Association for Computa-
tional Linguistics.

Shinsuke Mori, Hirokuni Maeta, Tetsuro Sasada,
Koichiro Yoshino, Atsushi Hashimoto, Takuya
Funatomi, and Yoko Yamakata. 2014a. Flow-
Graph2Text: Automatic sentence skeleton compila-
tion for procedural text generation. In Proceedings of
the 8th International Natural Language Generation
Conference (INLG), pages 118–122, Philadelphia,
Pennsylvania, U.S.A. Association for Computational
Linguistics.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014b. Flow graph corpus from
recipe texts. In Proceedings of the Ninth Inter-
national Conference on Language Resources and
Evaluation (LREC’14), pages 2370–2377, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Tahira Naseem, Austin Blodgett, Sadhana Kumaravel,
Tim O’Gorman, Young-Suk Lee, Jeffrey Flanigan,

https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1145/3173574.3174025
https://doi.org/10.1145/3173574.3174025
https://doi.org/10.18653/v1/2022.naacl-main.80
https://doi.org/10.18653/v1/2022.naacl-main.80
https://aclanthology.org/2022.emnlp-main.602
https://aclanthology.org/2022.emnlp-main.602
https://doi.org/10.18653/v1/D15-1090
https://doi.org/10.18653/v1/D15-1090
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/2020.acl-main.440
https://doi.org/10.18653/v1/2020.acl-main.440
https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.3115/v1/N15-1114
https://aclanthology.org/2022.emnlp-main.497
https://aclanthology.org/2022.emnlp-main.497
https://aclanthology.org/2022.emnlp-main.497
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.3115/v1/W14-4418
https://doi.org/10.3115/v1/W14-4418
https://doi.org/10.3115/v1/W14-4418
http://www.lrec-conf.org/proceedings/lrec2014/pdf/763_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/763_Paper.pdf


62

Ramón Astudillo, Radu Florian, Salim Roukos, and
Nathan Schneider. 2022. DocAMR: Multi-sentence
AMR representation and evaluation. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3496–3505,
Seattle, United States. Association for Computational
Linguistics.

Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf Her-
mjakob, Kevin Knight, and Martha Palmer. 2018.
AMR beyond the sentence: the multi-sentence AMR
corpus. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 3693–
3702, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

R Core Team. 2021. R: A Language and Environment
for Statistical Computing. R Foundation for Statisti-
cal Computing, Vienna, Austria.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Md Sadman Sakib, Hailey Baez, David Paulius,
and Yu Sun. 2021. Evaluating recipes generated
from functional object-oriented network. CoRR,
abs/2106.00728.

Yoko Yamakata, Shinji Imahori, Hirokuni Maeta, and
Shinsuke Mori. 2016. A method for extracting major
workflow composed of ingredients, tools, and actions
from cooking procedural text. In 2016 IEEE Interna-
tional Conference on Multimedia & Expo Workshops
(ICMEW), pages 1–6.

Yoko Yamakata, Shinsuke Mori, and John Carroll. 2020.
English recipe flow graph corpus. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 5187–5194, Marseille, France. European
Language Resources Association.

A Experiments

A.1 Model Training and Evaluation

Dataset. We restrict the recipes for our work to
those recipes of the ARA1 corpus that describe the
preparation of only one dish in a continuous text.
Three of the 110 recipes do not meet this criterion
and get excluded. The ten recipes for the test split
were chosen manually based on the criteria that
the original recipe text should not be shorter than
6 sentences and not include a lot of additional in-
formation or noise (e.g. nutrition lists). In order
to avoid selecting recipes that are particularly easy
for our approach, the recipes were selected by a
student who was not familiar with the performance
of the different parts of the pipeline on different
kind of instructions and linguistic constructions.
The test split consists of one recipe for each of the
ten ARA1 dishes and comprises 151 A-AMR - sen-
tence pairs in total. The remaining 97 recipes were
randomly split into training and validation data.

ARA1
Baked Ziti, Blueberry Banana Bread,
Cauliflower Mash, Chewy Chocolate Chip
Cookies, Garam Masala, Homemade Pizza
Dough, Orange Chicken, Pumpkin Choco-
late Chip Bread, Slow Cooker Chicken Tor-
tilla Soup, Waffles
ARA2
Bananas Foster, Chocolate Glaze, Cobb
Salad, English Muffin Bread, Homemade
Graham Crackers, How to Roast Garlic,
Lavender Lemonade, Peanut Butter Bars,
Sausage Grave, Southern Sweet Tea

Table 7: List of the Dishes from ARA1 and ARA2.

Gold instructions. Our extraction heuristic
makes use of the node-to-token alignments pro-
duced by the AMR parser. Figure 4 shows the
A-AMRs resulting from splitting the S-AMR for

“Top with shredded mozzarella cheese” in PENMAN
notation. We obtain the two corresponding gold
instructions “Shred mozzarella cheese” and “Top
with mozzarella cheese” by selecting all tokens
from the original instruction to which nodes in the
specific A-AMR are aligned. Tokens that have
alignments to nodes in more than one A-AMR
from the same S-AMR are included in the gold
instruction for each of the A-AMRs (e.g. “moz-
zarella” and “cheese”.) We use a set of rules based
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Figure 4: The A-AMRs obtained from the S-AMR for “Top with shredded mozzarella cheese.” with the node-to-
token alignments. The IDs of tokens that only have alignments to nodes in the A-AMR for “top” or for “shred” are
marked in orange and blue respectively, and the IDs of tokens with alignments in both A-AMRs are green.

on patterns of the POS tags of successive tokens
to decide about the selection of tokens that do not
have an aligned node in any of the A-AMRs such
as prepositions and determiners. Participle actions
such as “shredded” get stemmed to ensure that the
extraction heuristic creates grammatical imperative
instructions. Additionally, the tokens selected for
a gold instruction get partially reordered such that
the action predicate is at the correct position in the
new sentence if possible.

Training details. For training we build on the
training scripts from the amrlib library14 and adapt
the required input format to our training set-up. All
models are trained using the Adam optimizer and a
linear learning rate scheduler with warm-up with
1e − 4 as the initial learning rate. The dropout
rate is set to 0.1 for all reported experiments. The
training and validation batch size is set to 24. We
train all models using early stopping based on the
train loss with a patience of 15 and a threshold of
0.00005 and select the final model based on the
best BLEU score on the validation set.

Following previous work on using transformer
LMs for AMR-to-text generation, we use a graph
linearization based on the PENMAN format of the
AMRs (Mager et al., 2020; Ribeiro et al., 2021,
inter alia). We create the input to the model by
concatenating the context sentence and the AMR
in PENMAN format including the node-to-token
alignments and introduce a special token to sepa-
rate the context and the graph (see Table 8).

Generation. We set the token limitation for
each generated sequence to 1024 and let the model
output the best sequence using a beam size of 1.

Automatic evaluation. We compute BLEU,
Rouge-1 (R-1), Rouge-2 (R-2), Rouge-L, Meteor
(M) and Bleurt (BLRT) scores. For the computa-
tion of all automatic metrics we use the Hugging-

14https://github.com/bjascob/amrlib

face Evaluate Metric package15 which provides
wrappers around the original metric implementa-
tions or the implementations from the SacreBLEU
tool for comparable evaluation scores. We leave
all parameters at their default values. For BLEU,
we compute case-insensitive BLEU-4 at the cor-
pus level. For BLEURT, we use the pre-trained
bleurt-large-512 checkpoint and average over all
predicted sentence-level scores to obtain a final
BLEURT score.

A.2 Ablation Experiments

Unseen dishes. The test recipes are highly related
to the training recipes as they are for the same
dishes. In order to assess the performance of our
models on new, unseen dishes, we evaluate the
same GART5-0 and GART5-1 models also on the
complete ARA2 recipes. The amrlib model per-
forms worse than the GART5-0 model on all met-
rics on the ARA2 recipes, showing the general
benefit of fine-tuning the generation model on a
similar dataset from the same domain. However,
the improvement is around 50% smaller than on
the ARA1 recipes (see Table 9).

Effect of AMR type and alignments. We con-
ducted some additional experiments to assess if and
how the differences between the original S-AMRs
and the split A-AMRs affect the performances of
the models and to what extent the inclusion of the
node-to-token alignments has an effect. Table 10
presents the results of training the GART5-0 and
GART5-1 models on the A-AMR and the S-AMR
datasets and testing on the same or the other dataset
(approximately 40% of the amr-sentence pairs from
the A-AMR dataset are also included in the S-AMR
dataset). Overall, the results indicate that training
and testing on the same kind of dataset yields the
best results.

15https://huggingface.co/
evaluate-metric

https://github.com/bjascob/amrlib
https://huggingface.co/evaluate-metric
https://huggingface.co/evaluate-metric
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GART5-0: <GRAPH> (t / top∼e.135 :ARG2 (c / cheese∼e.139 :mod (m / mozzarella∼e.138)))
GART5-1: Shred mozzarella cheese <GRAPH> (t / top∼e.135 :ARG2 (c / cheese∼e.139
:mod (m / mozzarella∼e.138 )))
Output: Top with the mozzarella cheese.

Table 8: Example of the input to the GART5 generation model without context and with context and of a generated
output sentence.

Model BLEU R-1 R-2 R-L M BLRT
amrlib 41.69 75.56 45.12 69.75 73.26 48.06
GART5-0 47.78 ±0.4 80.71 ±0.2 53.39 ±0.5 76.30 ±0.3 77.86 ±0.3 58.33 ±0.7
GART5-1 51.08 ±0.5 82.23 ±0.3 57.57 ±0.6 77.95 ±0.3 79.63 ±0.4 59.2 ±0.6

Table 9: Results on the full ARA2 dataset averaged over 6 different seeds (± standard deviation).

Regarding the effect of keeping the node-to-
token alignments in the linearization we did not
have any specific hypothesis. On the one hand,
the amrlib model did not include alignments which
could lead to a lower performance. On the other
hand, the alignments indicate the original relative
order of the words corresponding to the nodes
and they might help the model to generate a well-
ordered sentence. Table 11 presents the results
from training and testing with and without the
alignments in the graph linearization. The models
trained and tested on the PENMAN linearization
including the alignments perform best or second
best across all metrics.

B Human Evaluation Set-up

Ordering heuristic. A correctly ordered sequence
of the nodes a ∈ NA of an action graph needs
to be a topological ordering of the action graph.
However, not all potential orderings are good for
structuring the steps in a recipe. For the generated
recipes used in the human evaluation we defined
a heuristic for ordering the actions that is based
on the intuition that it is more convenient to keep
working one subprocess for several steps instead
of switching back and forth between different sub-
processes. The traversal produces the ordered se-
quences T of action nodes in the following way:

1. Consider the set B of all nodes a without a
parent node

2. Start the traversal with that node ai ∈ B for
which Path(ai, end) is longest

3. Traverse the graph and add each visited node
to T until reaching a node aj that has parent
nodes that are not yet in T

4. Consider all nodes ak ∈ B and ak /∈ T for
which there is a Path(ak, aj) and select the
node for which the path is longest to con-
tinue the traversal. If there are two candidate

nodes chose the one which occurs earlier in
the recipe text

Dependency baseline. The instructions for the
baseline recipes are obtained based on the syntactic
dependency tree of each instruction. The depen-
dency splitting approach creates one instruction for
each individual action predicate because the clus-
tering approach to identify action events is based
on semantic relations that are not available from
the plain text. For each action, the baseline instruc-
tion is generated by selecting all tokens that can be
reached by traversing the dependency tree starting
from the action predicate without passing another
action. We then use the same approach as for gen-
erating the gold instructions for re-ordering tokens
and stemming participle actions.

Evaluation. For the generation of the recipe
instructions presented in the human evaluation we
used the specific checkpoints for which the auto-
matic evaluation results are shown in Table 12. Ta-
ble 13 presents the statements that were presented
to the participants in the human evaluation study.
Each participant saw one recipe at a time followed
by the six statements. They were asked to rate for
each of them to what extent they agree with the
statement on a scale from 1 (disagree completely)
to 6 (agree completely). In order to ensure that
participants did pay attention to the recipe texts we
included two filler recipes: one including multi-
ple grammatical mistakes and one with randomly
ordered instructions. The data from participants
who rated the first one with a six or the latter one
with 5 or higher was not included in the evaluation
resulting in data from 88 participants.

C Clustering and Splitting

Table 5 lists rules that are used during the pair-
wise action clustering to decide whether two action
nodes belong to the same event as well as the rules
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Model Train Test BLEU R-1 R-2 R-L M BLRT
GART5-0 A-AMR A-AMR 54.10 84.32 61.85 79.98 81.17 58.23
GART5-0 S-AMR S-AMR 54.86 84.64 64.58 79.09 82.58 59.81
GART5-0 A-AMR S-AMR 52.08 83.19 61.09 78.76 79.92 53.39
GART5-0 S-AMR A-AMR 53.99 83.8 59.92 78.79 81.34 56.57
GART5-1 A-AMR A-AMR 59.26 86.34 67.78 83.19 84.25 65.14
GART5-1 S-AMR S-AMR 58.15 85.34 67.52 80.03 82.95 59.86
GART5-1 A-AMR S-AMR 57.01 85.19 66.87 81.62 82.85 62.40
GART5-1 S-AMR A-AMR 55.82 84.46 63.33 79.40 81.53 57.51

Table 10: Comparisons of the performance of the models when trained and tested on the A-AMR or S-AMR
datasets.

Model Train Test BLEU R-1 R-2 R-L M BLRT
GART5-0 wA wA 54.10 84.32 61.85 79.98 81.17 58.23
GART5-0 nA nA 54.66 83.57 61.87 79.52 80.73 56.16
GART5-0 wA nA 52.08 83.19 61.09 78.76 79.92 53.39
GART5-0 nA wA 53.59 82.73 60.67 78.29 81.23 56.88
GART5-1 wA wA 59.26 86.34 67.78 83.19 84.25 65.14
GART5-1 nA nA 58.29 85.57 65.92 82.26 83.17 61.04
GART5-1 wA nA 58.17 85.12 65.32 81.84 82.82 61.92
GART5-1 nA wA 57.57 85.08 65.54 81.91 83.97 63.61

Table 11: Comparison of performances for different graph linearizations: with node-to-token alignments (wA) and
without (nA).

for deciding already based on the root node that an
S-AMR will not get separated. The full set of path
patterns used by the rules are presented in Table
14.

In §3 we presented the main parts of the split-
ting algorithm. Table 6 presents the full algorithm
with all rules and special cases. The following no-
tation is used to describe the splitting conditions:
When describing a path of actions between two
nodes that includes and edge ek we use the no-
tation e→k and e←k to differentiate between edges
that are traversed in their original direction (e→k )
and edges that are traversed in the reverse direction
(e←k ). Therefore, if a path includes ⟨..., e→k , e→l , ...⟩
with ek = (u, v)andel = (v, w) (i.e. the original
edge in the graph is (w, v)) then v is a meeting
node.
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Model Test context BLEU R-1 R-2 R-L M BLRT
GART5-0 0 54.10 84.32 61.85 79.98 81.17 58.23
GART5-1 1 59.26 86.34 67.78 83.19 84.25 65.14

Table 12: Results of the specific checkpoints used to generate the texts for the human evaluation on the ARA1 test
split.

Criterion Statement
Grammar The recipe text is grammatically correct.
Fluency The recipe text reads smoothly.
Verbosity The recipe explains the steps concisely and does not repeat information unnecessarily.
Structure The recipe explains the steps in a helpful order.
Success In combination with a list of the required ingredients, the recipe would enable me to

successfully prepare the dish.
Overall Overall, the recipe is well written.

Table 13: The statements used in the human evaluation to assess the quality of the recipes along different criteria.

Root-based rules:
Let Mi be an S-AMR with root node rMi

. Do not split Mi if one of the following holds:
• the label of the root is or, slash, possible-01 or have-condition-91
• the root node has an outgoing edge (rMi, u) to any node u with the label condition

Action-pair based rules:
Let Mi be a S-AMR and a1, a2 two action nodes of Mi aligned to different actions:
1. Pair a1 and a2 into one action cluster if there exists a path Path(a1, a2) which does not include any
direction changes and if for the corresponding labelled path LPath one of the following conditions
holds:

• The LPath corresponds to one of the path patterns from Pattern Set1 in Table 14, with a1 and
a2 corresponding to Node1 and Node2

• The LPath corresponds to one of the path patterns from Pattern Set2 in Table 14, with a1 and
a2 corresponding to Node1 and Node2 and one of the following conditions holds

– the path Path(a1, a2) between the two action nodes does not contain a node v that is
labelled before or after

– the path Path(a1, a2) between the two action nodes contains a node v that is labelled
before or after and v has more than one child node.

2. Pair a1 and a2 into one action cluster if there exists a path Path(a1, a2) with
exactly one direction change, i.e. with one meeting node v, and if one of the following condi-
tions holds for the corresponding labelled path LPath and the meeting node:

• The LPath corresponds to the first pattern of Pattern Set3 in Table 14 and v is labelled or or
slash

• The LPath corresponds to the second pattern of Pattern Set3 in Table 14 and v is labelled
contrast-01

Figure 5: Rules for the pairwise clustering of action nodes of an S-AMR into action-event clusters.
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Label node1 LPath Label node2
Pattern action ⟨ ARGX (opX)1 ⟩ action

Set1 action ⟨ direction (opX)1 ⟩ action
action ⟨edge⟩ off|up|down|out|in
stir-01 ⟨edge⟩ fry-01

Pattern action ⟨ (edge)∗ relation (edge)∗ ⟩ action
Set2 where relation is equal to purpose, manner, instrument, time or duration

Pattern action ⟨ opX, opX-of ⟩ action
Set3 action ⟨ ARGX, ARGX-of ⟩ action

Table 14: Path patterns between two action-aligned AMR nodes that should be clustered together. action and
edge can be any node or edge label, round brackets are used for optional labels on the LPath, ()1 meaning zero
or exactly one occurrence and ()∗ allowing any number of occurrences.

Input: a copy Ni of an S-AMR graph Mi, the target action cluster Cj , and the set of all other action
clusters Ck, k ̸= j
Output: an A-AMR graph for Cj if successful, else the original S-AMR
1. create the set Q of all pairs {(a1, a2)|a1 ∈ Cj and a2 ∈

⋃
k ̸=j Ck}, i.e. all pairs of action AMR

nodes that need to get separated from each other
repeat

2. compute all paths p = Path(a1, a2) for all pairs (a1, a2) ∈ Q in the graph Ni and create a
sequence P of all paths ordered by length in ascending order

3. if P = ∅ then break because then all nodes from Cj are successfully separated from all other
action clusters

4. for p in P do
4.1 if p does not include any node u labelled before or after

4.1.1 if p has exactly one direction change (→ to← or← to→), and (p = ⟨..., e←k , e→l , ...⟩
or p = ⟨..., e→k , e←l , ...⟩) with ek = (v, w) and el = (w, x), i.e. w is the meeting node,
then remove el from Ni and continue from step 2.

4.2 else p includes a node u labelled before or after
4.2.1 if p has no direction changes then remove u from Ni and continue from step 2.
4.2.2 else if p has exactly one direction change (← to→), and p = ⟨..., e←k , e→l , ...⟩ with

ek = (v, w) and el = (w, x), i.e. w is the meeting node, and LMi(w) = and then
remove u from Ni and continue from step 2.

4.2.3 else if p has exactly one direction change (→ to ← or ← to →), and (p =
⟨..., e←k , e→l , ...⟩ or p = ⟨..., e→k , e←l , ...⟩) with ek = (v, w) and el = (w, x), i.e.
w is the meeting node, then remove el from Ni and continue from step 2.

5. for p in P do (fallback case if Ni did not change during step 4.)
5.1 if p has more than one direction change, and (p = ⟨..., e←k , e→l , ..., e→o , e←p , ...⟩ or p =
⟨..., e←k , e→l , ..., e←o , e→p , ...⟩) with ek = (v, w), el = (w, x) and w being the first meeting
node and LNi(w) = and and with eo = (y, z), ep = (z, z2) and z being the last meeting
node then remove ep from Ni and continue from step 2

5.2 else if p has more than one direction change, and (p = ⟨..., e←k , e→l , ...⟩ or p =
⟨..., e→k , e←l , ...⟩) with ek = (v, w), el = (w, x) and w being the first meeting node
then remove el from Ni and continue from step 2

6. if Ni did not change during step 5. then return original graph Mi

end repeat
7. select the connected subgraph that includes all nodes from the target cluster Cj as the new

action-event-level AMR, apply the postprocessing and return the graph

Figure 6: The full splitting algorithm.


