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Preface

While deep learning methods have led to many breakthroughs in practical natural language applications,
most notably in Machine Translation, Machine Reading, Question Answering, Recognizing Textual
Entailment, and so on, there is still a sense among many NLP researchers that we have a long way to go
before we can develop systems that can actually "understand" human language and explain the decisions
they make. Indeed, "understanding" natural language entails many different human-like capabilities,
and they include but are not limited to the ability to track entities in a text, understand the relations
between these entities, track events and their participants, understand how events unfold in time, and
distinguish events that have actually happened from events that are planned or intended, are uncertain,
or did not happen at all. "Understanding" also entails human-like ability to perform qualitative and
quantitative reasoning, possibly with knowledge acquired about the real world. We believe a critical step
in achieving natural language understanding is to design meaning representations for text that have the
necessary meaning "ingredients" that help us achieve these capabilities.

This workshop intends to bring together researchers who are producers and consumers of meaning
representations and through their interaction gain a deeper understanding of the key elements of meaning
representations that are the most valuable to the NLP community. The workshop will also provide an
opportunity for meaning representation researchers to critically examine existing frameworks with the
goal of using their findings to inform the design of next-generation meaning representations. A third
goal of the workshop is to explore opportunities and identify challenges in the design and use of meaning
representations in multilingual settings. A final goal of the workshop is to understand the relationship
between distributed meaning representations trained on large data sets using network models and the
symbolic meaning representations that are carefully designed and annotated by CL researchers and gain
a deeper understanding of areas where each type of meaning representation is the most effective, and
how they can be linked.

These proceedings include papers presented at the 4th Designing Meaning Representation workshop on
June 20, 2023, held in conjunction with the15th International Conference on Computational Semantics
(IWCS 2023) in Nancy, France. DMR4 received 20 submissions, out of which 13 papers have been
accepted to be presented at the workshop as talks. The papers address topics ranging from meaning
representation methodologies to issues in meaning representation parsing, to the adaptation of meaning
representations to specific applications and domains, to cross-linguistic issues in meaning representation.
In addition to oral paper presentations, DMR4 also featured invited talks by Alain Polguère (Université
de Lorraine) and Juri Opitz (Heidelberg University), entitled "A graph approach to representing lexical
semantics" and "Metrics of Graph-Based Meaning Representations with Applications from Parsing
Evaluation to Explainable NLG Evaluation and Semantic Search", respectively.

We thank our organizing committee for its continuing organization of the DMR workshops, and the
IWCS 2023 workshop chairs for their support. We are grateful to all of the authors for submitting their
papers to the workshop and our program committee members for their dedication and their thoughtful
reviews. Finally, we thank our invited speakers for making the workshop a uniquely valuable discussion
of linguistic annotation research.
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Abstract

The area of designing semantic/meaning rep-
resentations is a dynamic one with new for-
malisms and extensions being proposed con-
tinuously. It may be challenging for users of
semantic representations to select the relevant
formalism for their purpose or for newcomers
to the field to select the features they want to
represent in a new formalism. In this paper,
we propose a set of structural and global fea-
tures to consider when designing formalisms,
and against which formalisms can be compared.
We also propose a sample comparison of a num-
ber of existing formalisms across the selected
features, complemented by a more entailment-
oriented comparison on the semantic phenom-
ena of the FraCaS corpus.

1 Introduction

Over the past decades, various semantic representa-
tion formalisms have emerged, focusing on differ-
ent features of semantics. New formalisms and ex-
tensions are continuously developed, highlighting a
dynamic field, but few works have been carried out
on their comparison. Abend and Rappoport (2017)
provide a high-level summary of semantic features
and existing formalisms. Žabokrtský et al. (2020)
provide an overview and comparison of eleven
deep-syntactic graph-based formalisms, focusing
largely on their formal graph features. Insights
into the difference between encoding some seman-
tic phenomena in different formalisms can also be
found in empirical work based on rule-based (Her-
shcovich et al., 2020; Pavlova et al., 2022) and
machine learning (Kuznetsov and Gurevych, 2020;
Wu et al., 2021; Prange, 2022) techniques.

Our goal is to provide a theoretical overview
of various features of semantics and what choices
are available for including them in the design of
a new semantic representation formalism. The set
of features can also serve for comparing different

formalisms. In this spirit, we present some existing
formalisms1 and compare them against the outlined
features. For a more entailment-balanced view and
an empirical comparison, we also compare these
formalisms against Cooper et al. (1994)’s FraCaS
corpus. We focus on sentence-level semantics, but
provide a short discussion on multi-sentence aware-
ness for semantic representation formalisms.

The rest of the paper is organised as follows: in
§2, §3 and §4 we present some global and struc-
tural features to be taken into consideration when
comparing or designing a semantic representation
formalism. In §5, we briefly present the follow-
ing formalisms: Conceptual Graphs (CG) (Sowa,
1984), Montague Semantics (MS) (Montague,
1970; Montague et al., 1970; Montague, 1973),
Discourse Representation Theory (DRT) (Kamp
and Reyle, 1993), Minimal Recursion Seman-
tics (MRS) (Copestake et al., 2005), Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013), Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013), Uni-
versal Decompositional Semantics (UDS) (White
et al., 2016), and Uniform Meaning Representation
(UMR) (Van Gysel et al., 2021). In §6, we com-
pare the formalisms across the selected features,
and FraCaS features.

2 Pre-Semantics Issues

In this section, we outline a few aspects that we
consider to not be constituent parts of what a seman-
tic representation formalism (hereupon referred to
as “formalism”) is as such, but put it in a more
global perspective and are nonetheless important
to consider when designing one.

Scalability. Semantic representation formalisms
vary in terms of complexity and expressive power.

1The list is not exhaustive, though we have attempted to
cover a wide range of families.
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While more complex ones may be more robust and
encode a wider range of phenomena, complexity
is negatively correlated to readability and there-
fore scalability. To be able to make use of various
Machine Learning methods for parsing and gener-
ation, we need large amounts of manually (or at
least semi-manually) annotated data. However, if
the representation formalism is more complex, the
skills required for annotation are more specialised.
This makes the pool of potential annotators smaller
and requires a longer and more in-depth training.
A balance is necessary to ensure that a formalism
covers a wide range of phenomena, yet it is not
overly complex in order to keep the threshold for
annotators relatively low. Alternatively, formalisms
could propose lattices (Van Gysel et al., 2019)2 for
different phenomena, similarly to what UMR does.
This would allow for a more coarse-grained anno-
tation by less specialised annotators, and a more
in-depth one by more specialised annotators.

This balance is also beneficial for analysis and
comparison of different formalisms, as getting com-
fortable with reading and interpreting the represen-
tations is more straightforward.

Universality. The general intuition when talking
about multi-linguality, is that meaning is preserved
across languages. Thus, the semantic representa-
tion for a given text should be the same in all lan-
guages. In reality, many semantic representation
formalisms are built upon the syntactic structure
of sentences, which can differ greatly, especially
between pairs of languages from distant families3.

Furthermore, syntax-based semantic formalisms
(and syntax-agnostic ones too) have historically
been developed with well-resourced languages
(mostly Indo-European, and in particular English)
in mind. Thus, formalisms are likely skewed to-
wards better representing phenomena that occur in
those languages, and might even miss phenomena
that do not appear in them.

Finally, similarly to scalability, using lattices
could be beneficial for universality as the same
semantic phenomenon may contain a more fine-
grained set of categories in some languages than
in others. Using lattices allows smoother annota-
tion in different languages, while still keeping the

2E.g. number can be coarsely annotated as singular or
non-singular, while the latter can be further broken down into
paucal and plural where the distinction exists.

3If we assume that it is possible for two representations
to have the same meaning, then the different representations
stemming from different underlying syntactic structures in
different languages would be less of an issue.

possibility for cross-language comparison.
Unicity. Unicity addresses whether a formalism

has a unique representation for a given meaning. In
AMR inverting the direction of relations changes
the focus and thus the meaning of the representa-
tion. On the other hand, if we take the formal logic
representation of a sentence containing negation
and conjunction, and apply De Morgan’s Laws, we
end up with a different, but logically equivalent
representation. If equivalent representations are al-
lowed for a certain formalism, it may be necessary
to establish what constitutes the canonical form and
how members of an equivalence class relate to it.

Flavor. We use the term “flavor” as used by
Koller et al. (2019) in relation to the level of ab-
straction from surface form for graph-based seman-
tic representations. Koller et al. (2019) define three
levels: flavor 0 – a one to one correspondence be-
tween graph nodes and surface tokens; flavor 1 – all
tokens are present as nodes, but there are additional
nodes in the graph too; flavor 2 – not necessarily
all tokens correspond to nodes, and there may be
nodes that do not correspond to a specific token.

Use of lexical resources. Some formalisms
rely on lexical resources for predicate and concept
senses, or argument structure of predicates. This
works well for languages where these resources
already exist and are well-developed. However, for
languages where this is not the case, there may be
the need to produce them in parallel with produc-
ing annotations for the formalism, like the creators
of UMR propose (Van Gysel et al., 2021). While
viable, this makes the process longer and more
complex and should be taken into consideration
for the design. It is also tied to the Universality
aspect: in order to enable cross-language compar-
ison, for formalisms that do use lexical resources,
there needs to be a link between said resources for
multiple languages. While efforts exist in this di-
rection (Bond and Foster, 2013; Bond et al., 2020),
for most languages, this link is not there yet. Ide-
ally, when creating datasets for a new language,
the linking to other languages can be created in the
process too. This, again, entails more effort, but
we believe the cost of that is worth the benefits of
having a more complete resource.

3 Semantic Features

In this section we discuss aspects of semantics that
constitute what a semantic representation is.

Predicate-argument structure. The most

2



prominent feature of many formalisms is that they
are centered around the predicate-argument struc-
ture of the events occurring in a sentence. Events
are usually represented as predicates that take a cer-
tain number and kind of arguments. The relation
between a predicate and an argument is expressed
via a semantic role, which can be predicate specific
(in the spirit of PropBank (Palmer et al., 2005)) or
from a generic closed set (like VerbNet (Kipper
et al., 2008)), with varying granularity.

Practical issues here arise from the fact that dif-
ferent formalisms use different lexical resources,
making comparison and transformation more chal-
lenging. For English, work has been done to
align (Palmer, 2009) and continue to improve the
alignment (Stowe et al., 2021) of these resources.
However, English is one of few languages where
lexical resources are comparatively well developed.
Thus, the use of language-specific frames for pred-
icates comes with the cost of developing such re-
sources. This is an argument against their use
and for adopting methods that do not encode such
senses, making the Universality point more easily
attainable, similar to what UCCA does (Abend and
Rappoport, 2013). That may, however, make the
formalism less expressive.

Temporality. Temporal information deals with
when an event occurs. We consider two aspects of
this - when it occurrs relative to other events in the
text, and when it occurred relative to the moment of
speaking. Temporal information can be encoded in
a variety of ways – via grammatical tense, from the
lexicon with certain adverbs, or specific words or
phrases, or may even be implicit. Combined with
the fact that different languages have a stronger
preference for some approaches over others, the
task of encoding it is challenging. Formalisms
need to decide whether temporal information will
be encoded at all, and whether all kinds, that is,
whether grammatical tense will be considered or
only information present on the surface.

Aspect. Complementary to grammatical tense,
grammatical aspect expresses how an event devel-
ops over time – whether it is one-time, whether it
is continuous, whether it ended or is still ongoing.
Here, again, formalisms have a choice – whether
to encode aspect, and which features of it.

Spatial information. As Abend and Rappoport
(2017) point out, spatial information in semantics
is considered mainly for domains such as geograph-
ical information systems and robotics navigation.

From a more theoretical perspective, we consider
the resolution/interpretation of location-related de-
ictics (here/there) and demonstrative pronouns to
be an important aspect of the representation.

Encoding spatial information is especially rel-
evant for sign languages, where its semantics is
richer. For example, the handshape can express a
distinction in an object’s shape (e.g. curved or
flat object) (Supalla, 1986), and the orientation
of the handshape can express an object’s orien-
tation (Brozdowski et al., 2019).

Reification. Reification in semantics is the pro-
cess of transforming events, actions and concepts
so that they are expressed with (quantifiable) vari-
ables. This facilitates the translation of the so trans-
formed representation into first-order logic and is
therefore an important consideration if we want to
use a formalism for logical inference.

Scope. The scope of semantic operators (such as
those of quantification or negation) shows to which
entities or events that operator applies. Some for-
malisms choose to not encode scope at all, making
consistent logical inference impossible.

Scope does not directly relate to word order,
which gives rise to scope ambiguity – a single sen-
tence containing more than one scope operator can
be interpreted in more than one way depending
on how the operators combine. In case of scope
ambiguity, the question for formalisms is whether
to force a specific interpretation or to leave the
representation underspecified. The latter allows
that restrictions are added at a later stage when the
correct interpretation becomes obvious from the
context.

Negation. Negation, similarly to many of
the other phenomena, can be expressed in differ-
ent ways – overtly as a separate token, or as a
morpheme of a token, presenting a challenge of
whether to encode the two in the same way. We
believe that meaning-wise, they should be equiva-
lent and semantic representations should abstract
away from the difference between the two. This
is especially important when we consider logical
inference and scope. Indeed, this is what many of
the formalisms in section 5 do. There are some
exceptions, notably UCCA, where, for example,
the phrases “not clear” and “unclear” would be en-
coded differently despite having the same meaning.

Modality. Modality is used to express the reality
of an event: realis – whether is it actually realised,
or irrealis – whether it is a possibility or neces-
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sity. Modal expressions are often expressed on the
surface as modal auxiliaries, adverbs or adjectives.
They get special treatment for most formalisms, be
it as specially dedicated predicates (as in AMR), or
operators between boxes (as in some realisations
of DRT).

Modal expressions are also categorised in flavors
(different from the flavor we discussed in section 2),
showing how the possibility under discussion is
linked to reality. Epistemic flavor covers possibil-
ities based on some knowledge or belief, while
deontic flavor expresses that the possibility is in
accordance with what is required in reality.

Evidentiality is a phenomenon that encodes the
type of evidence the speaker has for a statement.
For example, one may differentiate between the
speaker having direct (e.g. visual) or reportative
(e.g. having heard about it and merely repeat-
ing what they have been told) evidence. In most
languages this is expressed lexically with specific
phrases (such as “reportedly” in English). However,
in about a quarter of the world’s languages, these
differences are expressed grammatically (Aikhen-
vald, 2004), which formalisms do not address.

Logical inference. If we want to be able to use
a semantic representation for reasoning, it is impor-
tant that the formalism used permits logical infer-
ence. Not all formalisms are equally well equipped
for this. For example, as Bos (2020) points out,
with AMR, we are able to draw inferences, as long
as there is no negation. That is, we can infer “it
rained” from “it rained heavily”, but we can also
infer “it rained” from “it didn’t rain”. According
to Bos (2020), this is due to negation in AMR be-
ing expressed as a predicate rather than an operator
that takes scope. This highlights the importance of
formalisms expressing scope-relevant phenomena
(such a quantification and negation) in the appro-
priate way if we want to permit logical inference.

4 Semantics Interfaces

In this section we outline structural features of for-
malisms that are linked to their applications or to
interfaces of semantics with syntax and pragmatics.

Generation and Analysis. When designing a
new formalism, it is worth considering whether
there are specific intended uses and applications
for the formalism. Some tasks may rely more on
parsing or on generation, so it is important to con-
sider whether there are aspects that can be encoded
into the design of the formalism to make parsing

and/or generation more robust.
A lot of effort has gone into the parsing of

text into various semantic representations as the
amount of works on the topic suggests (Oepen
et al., 2019, 2020). Challenges for parsing may
come from the various types of ambiguities (e.g.
lexical, scope) and, if we assume equivalent repre-
sentations, which one to produce.

Similarly to parsing, generation from mean-
ing representations has gathered much atten-
tion (Ribeiro et al., 2021; Hajdik et al., 2019).
When keeping track of word order as part of the rep-
resentation and without lemmatizing or otherwise
modifying the original tokens, “generation” from
semantic representation is straightforward for for-
malisms of flavor 14. On the other hand, generation
is a more interesting problem when working with
flavor 2 formalisms, where the question is what to
generate for a structure which may have more than
one interpretation within the formalism.

Evaluation. For parsing, for most formalisms
there are established methods for evaluating the
produced representation against a gold one (Cai
and Knight, 2013; Hershcovich et al., 2017; Oepen
et al., 2014)5. Regardless, there are difficulties
when using lexical resources and there is ongo-
ing work on how to score closely related (but not
perfectly overlapping) concepts in the representa-
tion (Opitz et al., 2020). Finally, if a formalism
allows for multiple equivalent representations, sim-
ilarity metrics will need to take this into account
when evaluating a representation that is not in the
canonical form for its equivalence class.

Evaluating generation is not straightforward
when we consider that for some flavor 2 for-
malisms, many sentences have the same represen-
tation (e.g. AMR does not encode tense, so “I went
to Paris” and “I will go to Paris” have the same
representation). In such cases, it is necessary to
consider whether it is enough to generate only one
of the correct sentences in order to consider the pro-
cess successful, or we need all the possible ones.
Paraphrases pose a further issue, as they may have
a (nearly) identical meaning to the original sen-
tence, but look very different on the surface, with
paraphrase evaluation being a subfield in its own
right (Shen et al., 2022).

Compositionality. The meaning of a sentence

4Still, if the representation was automatically produced,
the process may not be as direct.

5These metrics are also often used to compute inter-
annotator agreement for manual annotation.
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(or a phrase) is generally thought to be a function
of the meanings of its composite parts. Historically,
producing the semantic representation for a given
sentence has passed through the syntactic one first,
necessarily making compositionality a feature of
the final representation. The Machine Learning
revolution, however, has enabled the parsing of
text directly into a semantic representation, rather
than relying on the syntax-semantics interface, thus
many of the newer formalisms have a choice to
make about whether to preserve compositionality
as a feature of the design.

A broader question is whether we consider the
semantic representation to be only the final struc-
ture (e.g. graph or logical formula) that we obtain,
or also the process of building that structure (in the
spirit of derivation vs. derived trees for TAGs (Joshi
et al., 1975)). If we take the latter view, then, nec-
essarily, compositionality becomes a core aspect
of the representation. We note, however, that this
adds additional complexity to the annotation pro-
cess, especially if the syntactic structure is not used
as an underlying component.

Syntax-semantics interface. As mentioned
above, semantic representation formalisms were
built in such a way that the semantic structure of
a sentence can be constructed from its syntactic
one. Many of the newer formalisms are syntax-
independent. While the first method may work
for well-resourced languages with developed gram-
mars, the latter one might be more beneficial for
languages where these resources do not exist. This
ties to the Universality point.

Multi-sentence. Many formalisms focus on rep-
resenting sentences but do not necessarily employ
means to go beyond the sentence boundary. The
considerations we describe here can appear within
a single sentence too, but are frequently seen when
dealing with multiple sentences, namely anaphora
and co-reference resolution, and the representation
of discourse markers and relations.

When it comes to anaphora and co-reference,
formalisms may choose to annotate the referents
with the same variable, or with different ones. In
the latter case, they may choose to employ a way to
indicate that the variables refer to the same object
or not do so. We note here the interesting case of
AMR which includes a way, albeit somewhat su-
perficial, to encode multiple sentences in the same
representation. For referents occurring in the same
sentence, AMR uses the same variable, but differ-

ent ones when they occur in different sentences.
Finally, similarly to scope ambiguity, formalisms
need to take into consideration anaphoric ambiguity
(in “John told Tom his brother left.” it is ambiguous
who “his” refers to) – whether to select one of the
options, produce all different version, or leave the
representation underspecified.

When treating discourse markers, formalisms
have the choice to represent them in the same way
as other relations, or give them a special status, thus
adding a layer that sits on the boundary between
semantics and pragmatics.

Questions. A distinction is usually made be-
tween Wh-questions and yes/no questions. For Wh-
questions, a common approach is to maintain the
structure of a declarative sentence and introduce
a special concept or symbol (e.g. amr-unknown
in AMR) to put in place of the entity or predi-
cate that is being asked about. Yes/no questions
usually need an additional relation to indicate that
the whole statement is a question. It is interest-
ing to note that in the case of DRS (at least in
the version implemented in the Parallel Meaning
Bank (Abzianidze et al., 2017), yes/no questions
are ignored altogether and annotated in the same
way as their declarative counterparts. This can be
explained with the fact that DRT is designed to deal
with discourse, as opposed to dialogue, and takes
the stance that questions are only part of the latter.

5 Semantic formalisms

In this section, we describe existing formalisms
and their core features, with a more exhaustive
comparison in section 6. We strongly believe in
the benefits of data-driven analysis and comparison.
Therefore, if existent beyond a toy-corpus size, we
also point to existing datasets.

Various extensions have been proposed for many
of the formalisms. However, we do not know, for
every extension, how it combines with the other
ones and whether it does not interfere with the
properties we explore. For example, adding scope
interferes with compositionality. Thus, for this
study we work with the original formalism, unless
the extensions have been combined in a standalone
one (as is the case with UMR).

Montague Semantics (MS) (Montague et al.,
1970; Montague, 1970, 1973) introduced mathe-
matical methods, namely higher-order predicate
logic and lambda calculus, to semantics. Its core
features are the use of model theoretic semantics,
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and compositionality.
Conceptual Graphs (CG) (Sowa, 1984) are

based on semantic networks and C.S. Peirce’s ex-
istential graphs. Aside from natural language se-
mantics, CGs have also been influential in knowl-
edge representation. CGs’ most apparent difference
from modern semantic graphs is that they encode
all events, entities, and relations as nodes, whereas
edges are unmarked. Original CGs do not encode
scope, but later versions provide that, along with
ways to deal with temporal and modal logic (Sowa,
2003, 2006) and work has been done to combine
CGs with generalized quantifiers (Cao, 2001).

Discourse Representation Theory
(DRT) (Kamp and Reyle, 1993) is a “dy-
namic semantics” formalism, i.e. the meaning
of a sentence is considered with respect to its
potential to update context. It was designed
to deal with anaphora and tense, but has since
evolved to treat other semantic aspects such as
presupposition, and propositional attitudes. DRT
expressions are called Discourse Representation
Structures (DRS). They are usually presented as
nested boxes, but those can be transformed into
graphs (Abzianidze et al., 2020). The Parallel
Mearning Bank (PMB) (Abzianidze et al., 2017)
is a large DRS corpus with gold annotations in
English, German, Italian and Dutch.

Minimal Recursion Semantics (MRS) (Copes-
take et al., 2005) is a formalism from the Head-
driven Phrase Structure Grammar (HPSG) (Pollard
and Sag, 1994) family. As such, it has a strong
link to syntax, but is also meant to be universal.
MRS annotates a large range of phenomena, but is
a rather complex formalism for annotators without
linguistic knowledge. A distinguishing feature is
its underspecifiability, which allows for encoding
scope ambiguity. A medium-sized parallel dataset
has been annotated for 15 languages6

Abstract Meaning Representation
(AMR) (Banarescu et al., 2013) is meant to
be a simple formalism to increase the ease of
annotation. This is achieved by ignoring features
such as tense, plurality and definiteness. AMR’s
core is the predicate-argument structure of events,
with additional non-core roles specified for
predicate-independent relations. For English,
AMR relies on PropBank (Palmer et al., 2005) for
predicate senses and semantic roles. A multitude

6https://github.com/delph-in/docs/
wiki/MatrixMrsTestSuite

of extensions have been proposed for AMR for
various aspects such as tense (Donatelli et al.,
2018), scope (Pustejovsky et al., 2019; Bos,
2020), spatial information (Bonn et al., 2020),
multi-sentence information (O’Gorman et al.,
2018). Despite its being designed with English in
mind, AMR has also been used for Chinese, Czech,
and Korean, among others. Larger corpora are
available for English under a paid license, smaller
ones are freely available7.

Universal Conceptual Cognitive Annotation
(UCCA) (Abend and Rappoport, 2013) is likewise
designed to be simple for annotators. UCCA’s
Foundational Layer (FL) uses a set of 14 broad
semantic role categories (e.g. Participant,
Adverbial) and does not rely on lexical re-
sources. The latter point makes it easier to adopt
for multiple languages. Extension layers exist for
UCCA that deal with semantic roles (Shalev et al.,
2019; Prange et al., 2019a), co-reference (Prange
et al., 2019b) and implicit arguments (Cui and Her-
shcovich, 2020). There are datasets for the FL for
English, German, French, Hebrew and Russian.8

Universal Decompositional Semantics
(UDS) (White et al., 2016) adds a number of
semantic layers on top of the syntactic Universal
Dependencies (UD)9. UDS follows the principle
of decomposition, e.g. for semantic roles, they
take Dowty (1991)’s view on decomposing
notions such as Agent into finer properties
like volition and awareness, allowing a
single predicate to be assigned multiple of these
categories. The currently existing layers address
semantic roles; irrealis vs realis distinction on
events; predicate senses and entity types; gener-
icity; and duration and relative order of events.
Annotated datasets are available for English10.

Uniform Meaning Representation
(UMR) (Van Gysel et al., 2021) is a proposal that
extends AMR with aspect, temporal information,
scope, co-reference and modal dependencies.
UMR takes into account the morphosyntactic
differences between languages and, to the best of
our knowledge, is the first formalism to propose
concrete steps on how to proceed with annotation
for low-resource languages.

7https://amr.isi.edu/download.html
8https://github.com/

UniversalConceptualCognitiveAnnotation
9https://universaldependencies.org/

10http://decomp.io/data/
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6 Comparison and Discussion

In this section, we compare the formalisms from
section 5 across the features outlined in §2, §3
and §4, as well as the phenomena covered by the
FraCaS corpus (Cooper et al., 1994).

6.1 Feature Comparison

Table 1 provides an overview of how the frame-
works compare across the features described in §2,
§3 and §4 with the following exceptions: we add
rows for dataset size and for the number of lan-
guages in which data is available, as these can be
indicative of Scalability and Universality respec-
tively; we add a row to show whether a formalism
leaves the representation underspecified or not in
case of scope ambiguity; we consider Generation
and Analysis separately; we omit Evaluation, be-
cause while it is an important aspect to talk about,
evaluation metrics are not formalism specific (e.g.
Smatch (Cai and Knight, 2013) is typically asso-
ciated with AMR, but can be used to evaluate any
graph-based formalism).

Table 1 should be read as follows: for most fea-
tures we indicate whether a formalism encodes it
(✔) or not (✗). Dataset size is divided into three
categories: toy (< 100 sentences for any language),
medium (between 100 and 1, 000 sentences for at
least one language), large (> 1, 000 sentences for
at least one language). For predicate-argument
structure, we indicate whether semantic roles are
predicate-specific or generic. For Temporal and Ev-
identiality we distinguish three categories: (0) not
encoded with a dedicated structure / relation type;
(1) encoded with a dedicated structure, but only if
present on the surface, and not when grammatical;
(2) encoded in all cases. For Negation and Modal-
ity, we distinguish three categories: (0) not en-
coded; (1) encoded, but without scope; (2) encoded
with scope. For Questions, we distinguish between:
(0) not encoded at all, (1) only wh-questions are
encoded, or (2) all questions are encoded.

From the table, we can see that MRS is the most
expressive formalism across the chosen features.
However, this comes at the cost of it being complex
to annotate, making it scale poorly. Similarly, MS
and CG require some specialised knowledge for
annotation and do not scale well, but while MS is
close to MRS in terms of expressive power, CG
lags behind. Original DRT, likewise, requires some
specialised knowledge for annotation. However,
recent work on simplifying the representation (Bos,

2021) and the existence of a large corpus (Abzian-
idze et al., 2017) lead us to consider DRT scalable.
On the scalable side are also the newer formalisms,
which have been designed for ease of annotation.
However, for AMR, UCCA and UDS this means
that they are not well-equipped to encode many of
the semantic features we consider. For AMR and
UCCA, extensions exist to address some of these
issues. UDS, being a layered formalism, with new
layers being added continuously, also has the po-
tential to address the missing aspects. Finally, we
take a look at UMR, which incorporates many of
the proposed extensions of AMR, while preserving
the latter’s features. As we can see from the table,
UMR is almost as expressive as MRS and DRT,
while remaining syntax-independent, which its cre-
ators consider to be a strong point for scalability.

Looking across the features, we can notice
that all formalisms can be used for Generation
and Analysis. However, they all lack tools to
deal with spatial information, especially the kind
that is present in sign languages. Similarly,
grammatically-expressed evidentiality is not anno-
tated by any formalism. This opens a broader dis-
cussion regarding the encoding of features which
are expressed only grammatically. We notice that
surface information tends to be encoded, while
for certain phenomena the grammatical side is ig-
nored altogether. Thus, there is the risk of under-
representing grammatical phenomena that are more
prevalent in low-resource languages, but not in the
well-resourced languages used as the basis for the
design of formalisms.

6.2 FraCaS Comparison

FraCaS (Cooper et al., 1994) is a corpus of 346 tex-
tual inference problems, each consisting of one to
five premises and a hypothesis. For each example,
it is indicated whether it is true, false or unknown
that the hypothesis follows from the premises. The
problems are split into nine categories, relating to
semantics (leftmost column of Table 2), however
their distribution is not uniform. Some work on
evaluating formalisms against FraCaS can be found
in (Abzianidze, 2016; Haruta et al., 2019).

In Table 2, we provide a high-level comparison
across the phenomena present in the FraCaS cor-
pus. The table shows whether a formalism should
be able to encode all (✔), at least half but not all
(0.5), or less than half (✗) of the examples for a
phenomenon. We want to highlight that this is
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MS CG DRT MRS AMR UCCA UDS UMR
Scalability ✗ ✗ ✔∗ ✗ ✔ ✔ ✔ ✔†

Datasets (size) toy toy large medium large large large toy†

Universality ✔ ✔ ✔ ✔ ✗‡ ✔ ✔ ✔†

Datasets (# languages) - - 4 > 10 > 6 6 1 -†

Unicity ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✗

Flavor 2 2 2 2 2 1 1 2
Lexical Resources ✗ ✗ ✔ ✗ ✔ ✗ ✗ ✔

Pred-arg generic generic generic generic specific generic generic specific
Temporality 0 0 2 2 1 1 2¶ 2
Aspect ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✔

Spatial ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Reification ✔ ✗ ✔ ✔ ✔ ✗ ✗ ✔

Scope ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✔

Scope ambiguity ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✗

Negation 2 1 2 2 1 1 1 2
Modality 2 1 2 2 1 1 1 2
Evidentiality 1 1 1 1 1 1 1 1
Logical Inference ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✔

Generation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Analysis ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Compositionality ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✗

SSI ✔ ✗ ✔ ✔ ✗ ✗ ✔ ✗

Multi-sentence ✗ ✔ ✔ ✗ ✗ ✗ ✗ ✗

Questions 0 0 1 2 2 0 0 2

Table 1: Feature comparison. ✔ = yes, ✗ = no.
Temporal, Evidentiality: 1 = only surface, but not grammatical; 2 = yes.
Negation, Modality: 1 = encoded, but without scope; 2 = encoded with scope.
Questions: 0 = no special way to encode; 1 = only wh-questions encoded; 2 = all types of questions encoded.
∗ Original DRT requires some specialised knowledge, but given the recent proposal for simplification (Bos, 2021)
and the existence of a large annotated corpus, we consider it scalable;
† UMR is designed with scalability and universality in mind, but it is a young formalism and both aspects remain to
be verified;
‡ AMR does not claim to be universal, but corpora have been made available in a variety of languages.
¶ UDS encodes duration and relative occurrence of events, but does not specify when an event occured relative to
the moment of utterance.

MS CG DRT MRS AMR UCCA UDS UMR
Quantifiers 23% ✔ ✗ ✔ ✔ ✗ ✗ ✗ 0.5
Plurals 10% ✔ ✗ ✗ ✔ ✗ ✗ ✗ ✗

Anaphora 8% ✗ ✔ ✔ ✔ ✗ ✗ ✗ ✗

Ellipsis 16% ✗ ✔ ✔ ✔ ✗ ✗ ✗ ✗

Adjectives 7% ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Comparatives 9% 0.5 ✗ 0.5 0.5 ✗ ✗ ✗ ✗

Temporal 22% 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Verbs 2% ✗ ✗ ✗ 0.5 ✗ ✗ 0.5 0.5
Attitudes 4% ✔ ✔ ✗ ✗ ✗ ✗ ✔ ✗

Total 100% ≥ 52.5% ≥ 39% ≥ 62.5% ≥ 73.5% ≥ 11% ≥ 11% ≥ 16% ≥ 23.5%

Table 2: Coarse-grained FraCaS comparison. ✔ = the formalism should be able to cover all examples for that
feature; 0.5 = the formalism should be able to cover at least half, but not all examples for that features; ✗ = the
formalism can cover less than half of the examples for that feature.
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a very coarse-grained comparison11 meant to bal-
ance the one in subsection 6.1 in providing a more
entailment-based view and an empirical compari-
son of the formalisms. It should serve as a starting
point for a more detailed, sentence-by-sentence
comparison on this and other corpora.

We have made a few assumptions before our
decision-making process. Where multi-sentence
capabilities are relevant, namely for Anaphora and
Ellipsis, we have taken the formalisms’ ability to
encode that into account. For categories where the
focus is not on multi-sentence capabilities, we as-
sume a conjunction of the premises to give a fairer
chance to formalisms that only deal with single sen-
tences. Table 2 is split in two parts, the lower one
highlighting the sections where lexical information
is necessary to resolve some of the examples. In
such cases, we have taken the conservative view
that formalisms are unable to encode the example.
If we assume that with the help of the lexical re-
source the hypothesis can be deemed true, false
or unknown, then the estimates for the lower part
of the table would be higher. In what follows, we
highlight the challenging areas in each category.

Quantifiers. For full coverage here, a formalism
should be able to deal with scope, but also with def-
initeness, which is why while UMR covers scope,
it cannot cover all examples in this section.

Plurals. While the majority of formalisms
should be able to cover many of the Conjoined
Noun Phrases examples, most will struggle with
some of the bigger subsections, namely Bare Plu-
rals and Definite Plurals due to inability to encode
distinctions in definiteness.

Anaphora. While most formalisms can cover
intra-sentential anaphora, for full coverage, they
need to be able to also deal with inter-sentential one,
which constitutes the larger part of this section.

Ellipsis. Similarly, if the ellipsis is in the same
sentence, most formalisms perform well. However,
since most examples in this section use multiple
premises, only the formalisms that can deal with
multiple sentences can get to full coverage.

Adjectives. Examples in this category rely heav-
ily on lexical information (e.g. “former” imply-
ing that the phrase it is modifying is not necessar-
ily up-to-date) and even some world knowledge
(knowing that a “small elephant” is larger than a

11E.g. ✗ in the Anaphora row is different for UDS, which
does not encode anaphora at all, and AMR, which encodes
only intra-sentential anaphora, but still does not cover at least
50% of the Anaphora examples of FraCaS.

“large mouse”). Thus, none of the formalisms are
equipped to deal with the majority of examples.

Comparatives. Two main difficulties arise here:
similarly to Adjectives, lexical information is nec-
essary for some examples, meaning none of the
formalisms can reach full coverage. Furthermore,
a large portion of the examples use quantification,
making the formalisms that do not encode quanti-
fiers well unable to cover even half of the examples.

Temporal. While some FraCaS temporal ex-
amples rely on tense or lexical semantics, for
many there is temporal information present as sep-
arate surface tokens (“before”, “for two years”, “in
1991”). While most formalisms would be able to
deal with these, many examples also include time
spans which only UDS is explicitly equipped to en-
code. A few examples rely on lexical information
as well (“started”, “lasted”, “was over” in example
#259) which the formalisms will struggle with.

Verbs. For full coverage here, distinction be-
tween tenses, some lexical information, and capa-
bilities to work with time spans are needed. Thus,
none of the formalisms can encode all sentences.

Attitudes. To get a full coverage for this part,
a formalism needs to either rely on lexical infor-
mation (to distinguish between “managed to win”
and “tried to win”, for example) or employ specific
ways to address epistemicity within its structure.

From Table 2, our general observation is that
MRS, again, is the most expressive formalism, fol-
lowed by DRT, while AMR, UCCA, UDS and
UMR manage to fully encode only a few of the
features. We remind the reader again that this is a
very coarse-grained study. An in-depth sentence-
by-sentence study is necessary to confirm our ob-
servations and provide an exact percentage of the
FraCaS corpus by various formalisms.

7 Conclusion

In this paper we proposed a set of structural and
global features to use when comparing semantic
representation formalisms. We hope this set of fea-
tures can be helpful for the community, both in the
design of new formalisms and extensions, and in
the selection of formalisms to use for specific tasks.
The list of features is by no means complete, and
extending it as well as the number of formalism
can be the subject of future works. Similarly, we
believe a more fine-grained study on the expressiv-
ity of formalisms with respect to the FraCaS corpus
would be beneficial for the community.
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Abstract

Universal Semantic Representation (USR) is
designed as a language-independent informa-
tion packaging system that captures informa-
tion at three levels: (a) Lexico-conceptual, (b)
Syntactico-Semantic, and (c) Discourse. Un-
like other representations that mainly encode
predicates and their argument structures, our
proposed representation captures the speaker’s
vivaks.ā - how the speaker views the activity.
The idea of “speaker’s vivaks.ā” is inspired by
Indian Grammatical Tradition. There can be
some amount of idiosyncrasy of the speaker in
the annotation since it is the speaker’s view-
point that has been captured in the annotation.
Hence the evaluation metrics of such resources
need to be also thought through from scratch.
This paper presents an extensive evaluation pro-
cedure of this semantic representation from
two perspectives (a) Inter-Annotator Agree-
ment and (b) Utility for downstream task of
multilingual Natural Language Generation. We
also qualitatively evaluate the experience of
natural language generation by manual parsing
of USR, in order to understand the readability
of USR. We have achieved above 80% Inter-
Annotator Agreement for USR annotations and
above 80% semantic similarity in multi-lingual
generation tasks suggesting reliability of USR
annotations and utility for multi-lingual gener-
ations. The qualitative evaluation also suggests
high readability and hence utility of USR as a
semantic representation.

1 Introduction

Semantic Representations (SemRep henceforth)
generally encode predicate-argument structure of
a verb (Propbank (Kingsbury and Palmer, 2002)
and Palmer(OnlinePalmer et al., 2005), FrameNet
(Baker et al., 1998) along with some other grammat-
ical information ranging from lexico-syntactic level
information such as tense-number-person (AMR

(Banarescu et al., 2013), MRS (Copestake et al.,
2005) to discourse level information such as topic-
focus, co-referencing and discourse relations (PDT
(Sgall et al., 1992) (Böhmová et al., 2003), UCCA
(Abend and Rappoport, 2013). However, no seman-
tic representation, that we are aware of attempts
to capture what we term as the speaker’s vivaks.ā
- how the speaker views the activity. We design
a Universal Semantic Representation (USR) that
encodes “speaker’s vivaks.ā”. The idea is inspired
from the Indian Grammatical Tradition (IGT hence-
forth). IGT views languages as a holistic phe-
nomenon. Words are not derived as isolated units
in Pān. ini’s grammar, but as units that are semanti-
cally connected with other words in the sentence
(Raster, 2015). Sentences are connected across
the discourse. This is explicitly recognized by the
Paninian rule (A 2.1.1) : samarthah. padavidhih. 1.
Keeping in tune with IGT, USR is designed as a rep-
resentation that encodes information ranging from
lexico-conceptual to discourse level in a connected
structural format. Since this is a very new kind of
representation, the evaluation of such a resource
also requires special attention.

This paper presents the evaluation metrics of
USR from two perspectives: (a) the Reliability
of USRs (b) the utility of USR in the domain of
multi-lingual generation. Sentences are generated
in multiple languages to check the universality of
information encoded in USRs. We use simple re-
liable measures to evaluate and understand these
properties.

The quantitative evaluation metrics are pre-
sented from two perspectives: (a) the Reliability of
USRs, (b) the utility of USR. The utility is evalu-
ated for multilingual generation measured through
Semantic Textual Similarity (STS). We use simple

1An operation on words [takes effect only] when the
words are semantically connected.
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reliable measures to evaluate and understand these
properties.

The qualitative evaluation focuses on the us-
ability of USRs in terms of readability of USR to
generate natural language is examined. We also ver-
ify the adequacy of USR by manually generating
natural language sentences from USRs.

A detailed analysis validates the proposed sys-
tem as well as indicates areas of improvement. The
feedback from these analyses is important for im-
proving the information content and representation
strategy of USRs.

Section 2 presents the design of USR. Section 3
studies Evaluation metrics in the context of other
related works. Section 4 describes the quantitative
evaluation metrics with results; while the qualita-
tive measure is recorded in Section 5.

2 Design of USR

Unlike other representations that mainly encode
predicates and their argument structures, the
proposed representation captures the speaker’s
vivaks. ā2 - how the speaker views the activity. The
idea of “speaker’s vivaks. ā” is inspired from Indian
Grammatical Tradition (IGT henceforth). For ex-
ample, how does the speaker’s view differ when
(s)he says 1 vis-a-vis 2? In Hindi, two different
verb roots are used and the post-position on the
seer also indicates different roles as shown in 1
and 2. In 1, Mira is an experiencer while in 2, the
volitionality of Mira is maintained.

(1) mı̄rā ko
Mira.exprncr

kala
yesterday

cām. da
moon

dikhā
see.int.pst

’Mira happened to see the moon yesterday’

(2) mı̄rā ne
Mira.kartā

kala
yesterday

cām. da
moon

dekhā
see.tr.pst

‘Mira saw the moon yesterday’

The activity of ‘seeing’ licenses3 an animate seer
and a seen entity. That is the semantic frame for

2śabdes. varthadānābhiprāyo vivaks. ā “vivaks.ā is the in-
tention of the speaker with regard to the meaning to be con-
veyed by the words” (Bhojaraja, 2007; Abhyankar, 1977).
Abhyankar (1977) has also defined the term ”vaktur-vivaks.ā”,
in the same sense . As per “vivaks.ātah. kārakān. i” (Tripathi et
al. 1986) kāraka roles in a sentence also apply according to
the desire of the speaker.

3Selectional restriction of the verb which in IGT is known
as a verb’s yogyatā.

the verb that every human being who knows the
meaning of ‘seeing’ knows. But in communica-
tion, along with choosing the appropriate semantic
frame, there occur two other important factors: (a)
how the speaker conceptually cognizes the situa-
tion? (b) which linguistic expressions are available
to translate that cognition into languages. For exam-
ple, in the above examples, does the speaker want
to express Mira’s agency, or does (s)he want to fore-
ground the appearance of the moon over the seer’s
agency? This is termed as the speaker’s vivaks. ā.
Depending on that, the speaker would choose the
best appropriate linguistic expressions to convey
his/her thoughts. Our application task, namely Nat-
ural Language Generation (NLG) also motivates
the requirement of capturing the speaker’s vivaks. ā
in SemRep.

In order to generate a coherent and cohesive
text, we require generative cues. Speaker’s vivaks. ā
motivates those cues and we have decided to cap-
ture them in USRs through morphosemantics and
dependency relations intra-sententially and also
through discourse-level information.

USR encodes information at three basic levels:
(a) Lexico-Conceptual (b) Syntactico-Semantic and
(c) Discourse. This semantic information in USR
is organized as features (in rows) and values, where
the discourse relation and discourse co-referencing
are accomplished through inter-USR linking which
is established through Sentence_ID. Word_Index
anchoring as shown in table 1. This representation
is close to the Attribute Value matrix (AVM), but
is easier to read and write manually, as well as
process computationally.

Lexico-conceptual level: Conceptual Informa-
tion which is generally expressed in terms of
atomic words, multiword expressions or derived
words are captured at this level. Currently, this
level has information at 4 layers in USR. These
layers (or rows) are (i) Concept row; (ii) Semantic
Category; (iii) Morpho-semantic and (iv) speaker’s
view. Each entry to the concept row is an unam-
biguous representation of a concept. The ambiguity
of a word is resolved in a very unique way in USR.
Many SemReps use WordNet sense id as concepts.
We propose to represent a concept in a multilingual
set-up. For example, the lexeme in Hindi pad. ha ex-
presses two concepts: ’study’ (as in The boy studies
in 7th standard) and ‘read’ (‘the boy reads a book’).
This kind of ambiguity is handled at the conceptual
level in the Concept Dictionary. This dictionary
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Concept Sanskrit Hindi English Bangla
Row
pad. ha_1 pat.ha_1 pad. ha_1 read_1 par.a_1
pad. ha_2 adhi+ı̄_1 pad. ha_2 study_1 par.a_2

Table 1: Concept Dictionary

has concept labels and equivalent concept labels in
the languages under consideration. Currently, our
lexicon has concepts in English, Hindi, Tamil and
Bangla. The entry of a concept dictionary for the
concept pad. ha is the table 1.

USR has the Concept Label entry in the con-
cept row which during generation selects concepts
from the respective language cell depending on
which language to be generated. In the current
concept dictionary, there are 142037 labels for
which Hindi and English concept labels are speci-
fied. For, 130948 concepts, Sanskrit labels are also
attested in the dictionary. At the Lexico-conceptual
level, the Semantic category row specifies the se-
mantic category of a concept. Currently, four
generic named entity categories are being anno-
tated, namely- per(son), org(anisation), place and
other. Apart from that, we mark animacy and mass
categories.

Syntactico-Semantic level: Two types of re-
lations capture information at this level: kāraka
and kāraketara (‘other than kāraka’) (Kulkarni
2010) at the Dependency row. Pān. ini’s system
of knowledge representation is based on kāraka
theory. There are six kārakas pointing out the
relations between an event (or state) and its par-
ticipants. They are kartā, karma (object), karan. a
(instrument), sampradāna (beneficiary), apādāna
(source) and adhikaran. a (time and location of ac-
tion). kāraketara relations include relations be-
tween (a) noun and its modifiers; (b) verb and its
verbal modifiers. There are a total of 42 depen-
dency relations postulated till now in our work.
Discourse level: Language as a mode of commu-
nication always occurs as a discourse in which a
sentence generally has a connection or trace with
the previous and following sentence. Discourse re-
lations map such inter-sentential information which
forms a coherent text. Co-reference is another dis-
course strategy to indicate two entities within a
sentence or across sentences having the same refer-
ent. In USR, all intra-sentential discourse informa-
tion is encoded in the Dependency row and inter-
sentential discourse information is captured in the
Discourse row. Currently, we are representing a

few inter-sentential discourse relations as described
in Das (2016) following IGT. They are pratibandha
(If. . . then), samānkāla (when. . . then), kāran. a-
kāryabhāva (although), hetu-hetumadabhāva (be-
cause), asāphalaya (but), anantarkālinatva (then).
More relations are being identified and a con-
trastive study with RST and PDTB tagsets are also
being carried out. At present, if no explicit relation
across USRs is marked, the default relation ‘and’
is presumed.

2.1 Example of USRs

Table-2 and Table-3 present examples of USRs
that generate the discourse given in the following
discourse 3.

(3) a. śāma ko eka yā do camakate tāre najara
āte haim. .
’One or two shining stars come to our
notice in the evening’

b. lekina kucha hı̄ samaya mem. unakı̄
sam. khyā bad. ha jātı̄ hai.
’But, within a short time, their numbers
increase.’

Every sentence is given a unique sentence
id. The first and second sentences are re-
lated with asāphalaya relation which is marked
on the verb of the second sentence as Sen-
tence_ID.Word_Index:Relation_name.

USR is designed to facilitate language genera-
tion tasks. USR is a text-based data structure and
hence can be parsed both by the machine as well as
humans effectively. The Sentence type row records
the type of the sentence. Concepts specified in the
Concept Row along with information from Morpho-
semantic row, Semantic Category row determine
the correct word forms. Speaker’s View row in-
formation is used to postulate discourse particles
that convey the speaker’s view. The TAM infor-
mation on the verb determines verbal inflection.
Information specified in Dependency, Construction
and Discourse level determines syntagmatic rela-
tion among the words. Finally Agreement rules
adjust the final word forms as and when necessary.
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R(ow)2 Concept Śāma_1 / eka_1 / do_1 / camaka_1 / tārā_1 / najara+ā_1-tā_hai_1
evening_1 one_1 two_1 shine_1 star_1 / appear_1-pres

R3 index 1 2 3 4 5 6
R4 Sem Category time
R5 Morpho- [- sg a] [- pl a]
R5 semantics
R6 Dependency 6:k7t 5:card 5:card 5:rvks 6:k1 0:main
R7 Discourse
R8 Speaker’s view
R9 Sentence type affirmative
R10 Construction disjunct:[2,3]

Table 2: Sent-1: USR for Sentence: 3a. In the USR -k7t = temporal, card = cardinal, rvks = relation vartamān kāl
samānādhikarana-(present simultaneous time), k1 = kartā (close to agent but not completely equivalent)

R2 Concept kucha_1 samaya_1 tārā_1 sam. khyā_1 bad. ha_1- tā_hai_1
R3 index 1 2 3 4 5
R4 Sem Category
R5 Morpho-semantics [- sg a] [- sg a]
R6 Dependency 2:quant 5:k7t 4:r6 5:k1 0:main
R7 Discourse Sent-1.5:coref Sent-1.6:contrast
R8 Speaker’s view 1:emph [shade:completion]
R9 Sentence type affirmative

Table 3: Sent-2: USR for Sentence: 3b. In the USR - quant:quantity, r6 = genitive, emph= emphasis,Light verb jā
(go) adds a sense of completion to the main verb

3 Related Works on Evaluation

Evaluation of Semantic Representations is a multi-
dimensional task due to many qualitative parame-
ters that need to be evaluated. Usual parameters
of interest are the utility of the semRep, invari-
ance, Universality (cross-lingual potential), usabil-
ity, computational efficiency etc (Abend and Rap-
poport, 2017).

Human evaluation is one of the important meth-
ods for measuring the accuracy of generation tasks.
A human evaluator can determine the accuracy,
give a qualitative ranking based on the natural-
ness/fluency as well as completeness of informa-
tion encoded in a given semantic representation.
Several human evaluation based methods are in
practice such as the WMT tasks (Bojar et al., 2016),
Direct Assessment (Graham et al., 2017), HUME
(Birch et al., 2016) for UCCA, HTER (Snover et al.,
2006), or SMATCH (Cai and Knight, 2013) appli-
cable to AMRs.

Human evaluations, besides being more accurate
for SemRep evaluations, can also mark strengths
and weaknesses of the generation, further indicat-
ing possible improvements. However, human eval-
uation would usually require skilled annotators as
well as well-designed annotation guidelines to en-

sure objectivity. Hence, human evaluation is effec-
tive but can be resource and time-inefficient (Sai
et al., 2020). Human evaluation reliability and
consistency are measured through Inter-Annotator
Agreement (IAA). Automated evaluations are the
alternative to human evaluations, as they can be
consistent, as well as resource efficient. However,
the notion of semantic similarity is still not fully
captured by the machine. Several word based, vec-
tor based and embeddings based measures are avail-
able for the same (Sai et al., 2020).

In this paper, we attempt to strike a balance
between both human and automatic evaluation
of USR and propose two kinds of evaluation:
(a) Qualitative and (b) Quantitative. Table 4 sum-
marizes our evaluation.

4 Quantitative Evaluation

This paper presents the quantitative evaluation met-
rics of USR from two perspectives: (a) the Reliabil-
ity of USRs; (b) the utility of USR in the domain
of multi-lingual generation.

The reliability is evaluated through Inter-
Annotator Agreement. The utility of USR is eval-
uated by examining the textual similarity between
the reference sentence and the manually generated
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Type Exp Name Quality Dataset Measure
parameter

Quantitative IAA Reliability Geo_simple Human Evaluation -
Agreement %, Cohen’s kappa

Quantitative NLG utility Correctness, Geo_6 Pairwise cosine with embeddings
completeness

Qualitative Generation Usability/ Geo_6 + Human evaluation -
experience Readability verified_sentences effort, difficulty level

Table 4: USR Evaluation Framework

sentence. Essentially this becomes an evaluation of
the generation task (Abend and Rappoport, 2017).
Further, the generation task can be used to exam-
ine the utility of USR for multi-lingual generation,
This is an important quality to evaluate as USR is
designed to facilitate Natural Language Generation
in multiple languages by using the multi-lingual
concept dictionary to find equivalent concepts and
can generate the same thought in multiple target
languages.

We have extensively used the idea of semantic
textual similarity (STS) in our evaluations, mea-
sured through human evaluation as well as by stan-
dard measures like pairwise cosine similarity. Here,
we build a USR for a reference sentence R, then
use that USR to either manually or automatically
generate a sentence (G). If R and G are semanti-
cally close, we can say that the USR correctly and
adequately captures the reference sentence mean-
ing. Table 4 summarizes our evaluation framework.

4.1 Measuring Reliability of USR

This section describes the Reliability i.e. Inter an-
notator Agreement experiment.

4.1.1 Dataset
Geo_simple is a corpus of 90 simple sentences
(with a total word count 928) created from the In-
dian NCERT Geography textbook for grade 6 and
grade 7. The average length of these sentences is
11 words. These sentences are simple sentences,
with one finite verb and zero or more non-finite
verbs. Complex sentences are manually simplified
to create simple sentences with proper connectives.

4.1.2 Experiment Setup
An annotation guideline document (USR Guide-
lines) is provided to two expert annotators with
more than 6 months of experience with USR and
its annotation. Geo_simple_0 is a set of base

USRs automatically generated from sentences in
Geo_simple dataset. Annotators independently de-
velop their own versions of the USRs by editing the
USRs in Geo_simple_0. Inter-annotator agreement
(IAA) for different semantic features (the rows of
the USRs) is calculated and then aggregated for
the three levels of semantic information captured
in USR.

For certain type of sentences, the annotators can
differ in the number of concepts they identify. One
case is the annotation of complex predicates. A
complex predicate is a Noun+Verb construction.
There can be disagreement among the annotators
on when to call a Noun followed by Verb construc-
tion a complex predicate and when verb-object con-
struction. Depending on that decision, the number
of concepts identified for a given USR changes
among annotators such that the concepts and their
indices may differ partially, resulting in two very
different looking, but valid USRs. To handle these
kinds of situations, IAA is calculated for two differ-
ent cases: a) Match cases - the number of concepts
match (b) Not match - the number of cases differ.
About 25% of our Geography data exhibits a dif-
ference in the number of concepts identified for the
same reference sentence.

Inter Annotator Agreement (IAA) is measured
using Agreement Percentage as well as Cohen’s
Kappa for Match cases (Cohen, 1960), but only
Agreement Percentage (Given as Partial Agree-
ment) for Not Match cases as Cohen’s Kappa will
be appropriate for such cases. IAA is interpreted
using the agreement schema given by Landis and
Koch (Landis and Koch, 1977) for sentences. The
result is given in the next section.

4.1.3 IAA Results and Discussion

We have calculated the Inter Annotator agreement
(IAA) separately for ‘Match cases’ and ‘Not match
cases’. The ‘match’ and ‘Not match’ cases for both
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Type Match cases Non match Cases
Feature category Cohen’s Kappa Agreement % Partial Agreement %
lexico-conceptual 0.898 92.13 73.74

Syntactico-semantic 0.758 92.50 43.85
Discourse 0.869 95.52 77.78

Sentence type 0.929 95.588 76.00

Table 5: A summary of agreements for Match and Non match cases.

data are given in Table 5 .

Maximum impact of ‘Not Match’ concepts is
seen at the syntactico-semantic level mainly for
dependency attachments (Table 5) due to change in
index numbers of concepts, as number of concepts
is different. For Match cases, the Cohen’s kappa
scores for gender and number are comparatively
low (0.76, in Table 5). A detailed analysis shows
that the disagreement in the lexico-conceptual cate-
gory are mainly seen in the semantic category and
GNP information. The GNP information shows dis-
agreement mostly for pronominal concepts. It can
be attributed to the lack of context. For example,
in the following case, Annotator1 chose to consis-
tently not mark the gender for pronominal terms
while annotator2 has decided otherwise. See the
following example: 2nd person pronoun tuma (you)

original_sentence Annotator1 Annotator2
maim. bhı̄ jāūm. gā [- sg u], [m sg u],

Table 6: GNP annotation differences in USR annotation

can be both singular and plural in number. In such
cases, annotators can overlook larger discourse in-
formation and tend to mark either singular(sg) or
plural (pl) thus resulting in a disagreement in the an-
notation. Another low score in Table 5 is related to
discourse relation. For this case, the agreement %
is high while the Kappa score is comparatively low.
Kappa is reducing the scores by assuming a proba-
bility of chance agreement, which itself has a low
probability in our annotation exercise owing to the
experience and expertise of our annotators. Hence,
we feel that agreement % is a better measure of
IAA for our annotations as compared to Cohen’s
Kappa. Results from the IAA experiment establish
that the USR Guidelines is a reliable document and
following that annotators with some training can
reliably create USRs.

4.2 Measuring utility of USR for
Multi-lingual generation

The utility of USR for multi-lingual generation is
evaluated through a detailed experiment, where
human generators manually parse the USRs to gen-
erate corresponding natural language sentences in
Hindi, Bangla and Telugu by the aid of the multi-
lingual concept dictionary. The underlying idea is
as follows: If a generated sentence G (from USR
U) and reference sentence R exhibit a high seman-
tic textual similarity (STS), such that the USR U is
created from R and is used to generate G, then it
can be inferred that the semantic information cap-
tured by the USR is correct as well as adequate.
The concept dictionary provides the correspond-
ing concept in the desired output language. The
generated sentences are evaluated manually and
automatically for Semantic Textual Similarity.

4.2.1 Datasets

Geo_6 - The dataset consists of a corpus of 125
sentences from a Geography textbook of grade 6.
These are simple sentences and do not contain any
connectives. Complex sentences, if any are man-
ually simplified to create simple sentences. The
average length of these sentences is 11 words. Sen-
tences from Geo_6 are used to programmatically
generate a set of USRs (USR_0). The USRs are
verified and edited by the experts for the correct-
ness of content and structure (USR_1). USR_1
is used by a set of human generators to generate
Hindi, Telugu and Bangla sentences.

Item Score
Same meaning(Totally) 3

Minor difference in meaning 2
Not same at all 1

Table 7: Scoring Rubric for Human Evaluation of Se-
mantic Textual Similarity
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4.2.2 Multi-lingual generation Experiment
Setup and Measures

All human generators, who are native speakers of
their respective languages, are pre-trained to read
USRs and decode the semantic information. The
basic process for sentence generation in a target
language is simple. For every reference sentence
R the corresponding USR is made available to the
human generator who manually parses the USR
text structure. Human generators were asked to
pay more attention to preserving information as it
is (from USR) in the generated sentences and not
to worry too much about maintaining the natural-
ness/fluency of the target language.

Once the human generators manually generate
the sentences, a sanity checking is done in the fol-
lowing way before the automatic comparison with
the reference sentences.

1. Reference Sentences without a corresponding
generated sentence are excluded from further
analysis.

2. Spelling mistakes are ignored.

3. Generated sentences with partially matching
semantics are included in the response set, as
they may indicate a deficiency in the USR.

For each sentence pair (Ri and Gi), we compute
the Semantic textual Similarity (STS), manually
as well by using known measures such as pairwise
cosine measure after embedding sentences Ri and
Gi using the state of art LaBSE model (Feng et al.,
2020) as well as XLM-R (Conneau et al., 2020),
a popular multilingual Masked Language Model
(MLM). The embeddings are the vector representa-
tions of sentences such that the semantically similar
sentences are closer, even if they belong to different
languages, hence providing the cross-lingual mea-
surement of similarity. The embeddings done using
LaBSE provide reliable pairwise cosine measure
(Feng et al., 2020).

Human evaluation of STS is done using the fol-
lowing scoring rubric (Table 7):

4.2.3 Results and Analysis
Hindi sentences are generated by two human gen-
erators. Hence we computed the internal consis-
tency/reliability of human evaluation scores. The
generations are internally consistent, and are ac-
ceptable as indicated by for human_generator1
(Cronback’s Alpha score 0.76) and good for hu-
man_generator2 for (Cronback’s Alpha score 0.82).

Next, we compute the frequency distribution of
STS scores from human evaluation across the three
target languages Hindi, Bangla and Telugu (Table
8).

Next, we compute the pairwise cosine similar-
ity, with embedding, for the four sentence pairs
namely Ref-Hindi1, Ref-Hindi2, Ref-Telugu and
Ref-Bangla. (Table 9) records our results of both
human and automated evaluation.

As evident from the high scores given by the
human evaluators (Table 8, Table 9), and by both
the reasonable cosine similarity scores, (Table 9),
we can conclude that the semantics are preserved
in the USR by a high degree of accuracy. The
scores are also reliable as we can see a similar
pattern in the scores gained from the above three
methods. Since the Semantic Textual Similarity is
reasonably high across the three languages, we can
also confirm the universal nature of USR.

The Inter-Annotator Agreement scores make it
evident that USR is a reliable semantic represen-
tation. Similarly, utility of USR for multi-lingual
generation is high due to the ease of rules-based
parsing of USR to construct a meaningful sentence.

5 Qualitative Evaluation

It is important to understand and record the ex-
perience of people involved in creating and using
USRs. We are particularly interested in the read-
ability of USR, because the idea is to create a gold
standard USR bank which is only possible when
human annotators can effortlessly read USR and
correct it as needed. In this paper, readability is
tested in terms of correctness and ease of generat-
ing sentences from a USR. If a human generator
succeeds in generating a correct sentence with mi-
nor or no assistance, that shows that the USR is
readable as well as adequate for correct sentence
generation. We conducted a study and the follow-
ing survey to check the readability of USRs by
human beings. Human generators (14) with mixed
prior knowledge and experience with USRs are
given the manual generation task. The experience
distribution of generators is as given in Table 10

Each human generator was first trained on gen-
erating a sentence from a given USR. USR guide-
lines were explained to them and they practiced on
3 USRs. Then each generator was given a set of 10
USRs from Geo_6 and another dataset to indepen-
dently generate Hindi sentences. They could refer
to the USR guidelines as many times as required.
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STS Score Hindi Bangla Telugu Total

Score Count % within Count % within Count % within
Hindi Bangla Telugu

3 (Totally) 633 84.40 70 76.92 25 60.98 728
2 (partially) 92 12.27 20 21.98 13 31.71 125
1 (not at all) 25 3.33 1 1.10 3 7.32 29

Count Sentences 750(2 sets) 100 91 100 41 100 882

Table 8: Frequency Distribution of Semantic Similarity scores (Human Evaluation)

Ref-Hindi1 Ref-Hindi2 Ref-Telugu Ref-Bangla
sentence 91 91 41 93

Human evaluation (average) - 2.81 2.85 2.71 2.33
(0- 3 rating) 0.778/

Pairwise cosine with LaBSE 0.884 0.9041 0.746 0.604
embeddings (0-1.0)

Pairwise cosine with 0.916 0.938 0.738 0.705
XLM-R (0-1.0)

Table 9: Semantic closeness scores for Multi-lingual generation from USR

Academic Degree in Linguistics or language Any other Degree
Experience < 3 Experience > 3 Experience < 3 Experience > 3

months months months months
Count of human 2 5 5 2

generators

Table 10: Experience distribution of Human Generators

Figure 1: Generation correctness Vs. The complexity
of the USR

The generators filled out a survey immediately after
the Hindi generation task. The USRs were classi-
fied by the complexity level as low, medium and
high, based on the number of concepts, and vari-
ations in dependencies, discourse, speaker’s view
information.

STS scores, measuring accuracy, for reference

sentence and generated sentence were computed.
A cross-sectional view of the correctness vs the
complexity level is given in Figure 1. It is evident
that generators could produce a high number of
semantically correct (same meaning, and minor
variations in meaning) sentences. The errors seen
were mostly missing terms like ‘almost, ‘may-be’,
GNP and TAM (past vs present) variations. For
example: For the reference sentence (Translated):
Sun is about 15 million KM away from the Earth.
Some generators did not include the word ‘about’.

Figure 2 clearly indicates that the human gen-
erators could find the desired help in the USR
guidelines. Most human generators found the USR
Guidelines exhaustive and could use the document
to clarify their doubts. The help was mostly sought
for the dependency relations, as the list of depen-
dencies is exhaustive, and remembering all can be
an arduous task for a novice. Of the reported con-
sultation of the USR guidelines, novice generators
with < 3 months of exposure to USR required the
most help as expected. The generators were also
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Difficulty Level
Very Easy Easy Ok Difficult Very Difficult Total

My exposure <3 mth 0% 21.43& 14.29% 21.43% 0% 57.14%
to USR >3 mth 21.43% 7.14% 7.14% 7.14% 0% 42.86%

Total 21.43% 28.57% 21.43% 28.57% 0% 100%

Table 11: Difficulty Level of USR Generation Process

Figure 2: Frequency distribution of USR referrals while
generating 10 USRs

asked to rate the difficulty of the generation process
(Table 11). Majorly, the generators find the USR
generation process to be very easy, easy, or OK
(computed for both categories, <3 months expo-
sure to USR; > 3 months exposure, using a Likert
scale of 1-5, 5 being very difficult).

Based on the above experiences of the human
generators, we can say with confidence that the
readability of USRs is high as the generators could
generate the USRs with ease, find the desired help
in the guidelines, and could generate a high number
of correct USRs. It is clear that the USR generation
task is also not very difficult and gets easy with mi-
nor training. One important utility of USR readabil-
ity measures is reflected in one of the tasks that we
have taken up, namely training school children to
read and write USR as an approach towards learn-
ing Universal Semantic Grammar through USR.
The idea is that the USRs can enable children to
overcome language barriers in communication.

6 Conclusion

In this paper, we have introduced a new SemRep
called Universal Semantic Representation (USR).
This is a very new initiative that attempts to capture
the speaker’s vivaks.ā and is inspired from Indian
Grammatical Tradition. The Lexico-Conceptual,
Syntactico-Semantic and Discourse level informa-
tion is encoded in a structured format in which
USRs are interlinked to express the meaning of dis-
course as a whole. This paper presents the design

of the USR and also records its detailed, multi-
dimensional evaluation for reliability and its utility
for natural language generation. Empirical evi-
dence suggests high reliability as well as reliable
semantic similarity scores for natural language gen-
erations done in multiple Indic languages namely
Hindi, Bangla and Telugu. The qualitative evalua-
tion strongly suggests that USR is easy to read and
use with some training. Thus USRs are suitable
for Natural Language Generation tasks, and can be
used as a universal semantic representation.
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Abstract

Abstract Meaning Representation (AMR) is
a popular semantic annotation schema that
presents sentence meaning as a graph while
abstracting away from syntax. It was origi-
nally designed for English, but has since been
extended to a variety of non-English versions.
These cross-lingual adaptations, to varying de-
grees, incorporate language-specific features
necessary to effectively capture the semantics
of the language being annotated. Uniform
Meaning Representation (UMR) on the other
hand, the multilingual extension of AMR, was
designed specifically for uniform cross-lingual
application. In this work, we discuss these two
approaches to extending AMR beyond English.
We describe both approaches, compare the in-
formation they capture for a case language
(Spanish), and outline implications for future
work.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a symbolic meaning repre-
sentation which captures the meaning of a sentence
in the form of a directed, rooted graph composed of
predicate argument structures. AMR was originally
designed for English, but has since been extended
to many other languages. These cross-lingual adap-
tations of AMR vary in their approach to adapting
English-centric AMR to other languages, which
has posed a number of challenges.

In addition to language- or language family-
specific (Heinecke and Shimorina, 2022) adapta-
tions of AMR, Uniform Meaning Representation
(UMR; Van Gysel et al., 2021a) is a recent mul-
tilingual extension of AMR which attempts to be
generally cross-lingually portable.

Approach to cross-lingual adaptation has a sig-
nificant impact on the utility of the annotated data.
Formalisms which have similarly structured paral-
lel annotations are better suited for incorporation

Sentence: He denied any wrongdoing.
AMR:
. (d / deny-01
. :ARG0 (h / he)
. :ARG1 (w / wrong-02
. :mod (a / any)
. :ARG0 h))

UMR:
. (s1d / deny-01
. :ARG0 (s1p / person
. :ref-person 3rd
. :ref-number Singular)
. :ARG1 (s1t/ thing
. :ARG1-of (s1d2/ do-02
. :ARG0 s1p
. :ARG1-of (s1w/ wrong-02)
. :MODPRED s1d))
. :ASPECT Performance
. :MODSTR FullAff)

. (s1 / sentence

. :temporal ((DCT :before s1d)

. (s1d :before s1d2))

. :modal ((AUTH :FullAff s1p)

. (s1p :FullAff s1d)

. (s1d :Unsp s1d2))

. :coref (s0p :same-entity s1p))

Figure 1: AMR and UMR (from the guide-
lines, https://github.com/umr4nlp/umr-guidelines/

blob/master/guidelines.md) annotating the same sen-
tence.

into downstream applications, such as structure-
aware machine translation systems (Sulem et al.,
2015). Therefore, it is critical to understand the
differences between UMR and cross-lingual adap-
tations of AMR, with regard to what linguistic in-
formation they encode, as it will impact the func-
tionality of the annotations.
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Though strong efforts have been made to adapt
AMR to cross-lingual contexts in two directions
(individual cross-lingual AMR extensions, and the
more expansive UMR), there has not yet been any
comparison between the effectiveness and compre-
hensiveness of these two different approaches.

In this work, we examine differences between
these attempts at fashioning non-English-centric
versions of AMR. In §2, we outline cross-lingual
adaptations of AMR, including both annotation
schema and generation/parsing tools, and survey
select adaptations. Next (§3), we introduce UMR,
the multilingual extension of AMR. In §4, we take a
close look at how UMR and a cross-lingual adapta-
tion of AMR handle linguistic features and examine
cross-lingual challenges to UMR/AMR annotation.
Finally, in §5, we discuss challenges for both UMR
and cross-lingual extensions of AMR.

2 Cross-lingual Adaptations of AMR

AMR is designed to abstract away from the surface-
form and syntactic nuance of the sentence, focus-
ing only the basic meaning. In AMR annotations,
nodes reflect concepts and the edges are labeled
with relations between the concepts. Annotation
of AMR concepts relies in part on PropBank lexi-
con of frame files1 (Kingsbury and Palmer, 2002;
Palmer et al., 2005; Pradhan et al., 2022), by an-
notating the frame associated with the token as the
concept in the AMR graph.

Though AMR was designed exclusively for En-
glish and was not intended to be an interlingua
(Banarescu et al., 2013), it has now been extended
to multiple languages. Table 1 contains the cross-
lingual AMR adaptations to date, with their publi-
cations as well as the underlying resources (frame
files) they use and the corpus they annotate.

AMR has also been assessed as an interlingua
for Czech (Urešová et al., 2014), Chinese (Xue
et al., 2014; Wein et al., 2022b), and Spanish (Wein
and Schneider, 2021). Xue et al. (2014) explores
the adaptability of English AMR to Czech and Chi-
nese. The authors suggest that, although it was
not designed to be an interlingua, AMR may be
cross-linguistically adaptable because it abstracts
away from morphosyntactic differences. Cross-
linguistic comparisons between English/Czech and
English/Chinese AMR pairs indicate that most
pairs align well, though there are some instances
of divergence due to insertions, for example.

1https://github.com/propbank

Urešová et al. (2014) describes the types of dif-
ferences between AMRs for parallel English and
Czech sentences, and finds that the differences may
be either due to convention/surface-level nuances
which could be changed in the annotation guide-
lines, or may be due to inherent facets of the AMR
annotation schema. One notable area of difference
stems from the appearance of language-specific
idioms and phrases.

Recent work has defined the types and causes
of divergences between cross-lingual AMR pairs
for English-Spanish parallel sentences. The causes
of structural differences between parallel AMRs
are identified as being due to semantic divergences,
syntactic divergences, or annotation choices (Wein
and Schneider, 2021).

In the subsections that follow, we consider four
adaptations of AMR to individual languages.

2.1 Chinese AMR Adaptation
Li et al. (2016) suggested that AMR would be par-
ticularly well adapted to languages which vary mor-
phosyntactically from English, because AMR ab-
stracts away from the surface syntactic structure,
motivating adaptation to Chinese. The Chinese
AMR (CAMR) annotation schema largely matches
that of the English annotation schema, with the con-
cepts being tokens in Chinese instead of English.
Notably, Chinese has very little inflectional mor-
phology, so the AMR concepts more often directly
correspond to tokens in the sentence than in English
annotation. Extensions to the annotation guidelines
are made for Chinese-specific constructions, includ-
ing but not limited to (1) number and classifier con-
struction, (2) serial-verb construction, (3) headless
relative construction, (4) verb-complement con-
struction, (5) split verb construction, and (6) redu-
plication. In the case where reduplication signals
intensified meaning, Chinese AMR annotates this
with another abstract concept, often with the role
:UNIT. Discourse relations are also represented
with concepts from the Chinese Discourse Tree-
bank (DCTB; Zhou and Xue, 2015). These adap-
tations to the guidelines were identified during the
annotation process.

2.2 Portuguese AMR Adaptations
Two distinct Portuguese AMR annotation schemata
have been developed. Anchiêta and Pardo (2018)
annotated the Portuguese translation of The Little
Prince, and aligned the Portuguese sentences with
the English ones (though there is one more sen-
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Language Underlying Resource(s) Corpus Publication

English English PropBank The Little Prince Banarescu et al. (2013)
Chinese Chinese Discourse Treebank The Little Prince Li et al. (2016)
Spanish English PropBank The Little Prince Migueles-Abraira et al. (2018)
Spanish AnCora AMR 3.0 Data (news etc.) Wein et al. (2022a)

Portuguese FrameSet Verbo-Brasil The Little Prince Anchiêta and Pardo (2018)
Portuguese FrameSet Verbo-Brasil News, PropBank.Br Sobrevilla Cabezudo and Pardo (2019)
Vietnamese Vietnamese comp. lexicon The Little Prince Linh and Nguyen (2019)

Korean Korean PropBank ExoBrain Choe et al. (2020)
Turkish [Unspecified] The Little Prince Azin and Eryiğit (2019)
Turkish Turkish PropBank The Little Prince Oral et al. (2022)
Persian Perspred, English PropBank The Little Prince Takhshid et al. (2022)

Table 1: Comparison of characteristics of the AMR cross-lingual adaptations. “Underlying Resource(s)” for AMR
reflect the lexicon or frameset used to mark roles and senses of concepts. “Corpus” indicates the corpus selected for
annotation of the schema.

tence in the Portuguese corpus). This approach
to Portuguese AMR annotation consists of import-
ing the English AMR annotation for the aligned
sentences, and changing the PropBank concepts to
the equivalent Portuguese concepts from Frameset
Verbo-Brasil (Sanches Duran and Aluísio, 2015).
Any linguistic features that cause Portuguese AMR
annotation to differ structurally from English AMR
annotation were adjudicated upon at time of anno-
tation for a given sentence. For example, instances
of implied subjects and the particle “se”.

A second Portuguese AMR annotation schema
was developed shortly afterwards, which translates
and fully adapts the English AMR guidelines to
Portuguese. Duran and Aluísio (2011) annotated
news texts from the Folha de São Paulo Brazilian
news agency and from the PropBank.Br corpus.
The verb senses are again determined by frame-
sets from Verbo-Brasil. Modal verbs, which do
not appear in Verbo-Brasil, are replaced by their
direct Portuguese translations. Linguistic features
handled specially in these new Portuguese AMR
guidelines include use of the 3rd person singular
and indeterminate subjects. Notably, multi-word
expressions are replaced by their nearest one-word
synonym.

2.3 Vietnamese AMR Adaptation
When adapting AMR to Vietnamese (Linh and
Nguyen, 2019), the focus was on demonstrating
relationships between entities and expanding anno-
tation to include labels that mark function words,
tense, and gender. Concepts were mapped from
English to Vietnamese using the Vietnamese com-
putational lexicon (Nguyen et al., 2006), with the
addition of some new concepts. Linguistic differ-
ences between English and Vietnamese that trigger
different annotation include morphosyntactic real-

ization of manner as well as the presence of noun
classifiers in Vietnamese. In English, manner is fre-
quently expressed through -ly adverbs. In English
AMR, -ly adverbs aren’t included in graphs; rather,
they are replaced by a related roleset or a related
nominal or adjectival concept under a :MANNER

relation (e.g. quickly in the surface form becomes
:MANNER (q / quick) in the graph), Vietnamese
expresses manner adjectivally, so such adjustments
are unnecessary. In Vietnamese AMR, noun classi-
fiers are omitted from the representation, except in
cases where a noun classifier is alone (not directly
preceding a noun phrase). Here, the co-referent
needs to be included in the graph.

2.4 Korean AMR Adaptations
Choe et al. (2019) establishes a desire to make
a Korean AMR annotation as similar as possi-
ble to AMR annotation in other languages so that
cross-lingual annotations will be compatible and
comparable, while at the same time bolstering the
schema’s ability to accurately reflect Korean seman-
tics. The main areas in which special adaptations
were needed include the copula and its negation,
as well as case-stacking where multiple subjects or
objects are involved.

Choe et al. (2020) further develops the annota-
tion schema for Korean AMR and releases an an-
notated corpus for texts using Korean PropBank
frames. Annotations were piloted on the Exo-
Brain Corpus, the Korean translation of The Little
Prince, and example sentences for verbs in the Ba-
sic Korean Dictionary; the actual released corpus
consists of annotations on the ExoBrain Corpus.
The abstract rolesets used in English AMR (such
as have-org-role-91) are also used for Korean
AMR. For copular annotation, the use of :domain
and :polarity are expanded.
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3 UMR

The recent development of the Uniform Meaning
Representation (Van Gysel et al., 2021a) aims to
incorporate uniform treatments for linguistic diver-
sity into the AMR annotation process.

Uniform Meaning Representation (UMR) is de-
signed to extend AMR to a cross-linguistically
viable meaning representation. Related work on
BabelNet Meaning Representation (Navigli et al.,
2022; Martínez Lorenzo et al., 2022) also extends
AMR to a multilingual context, by moving away
from English PropBank and instead using Ver-
bAtlas (Di Fabio et al., 2019) for cross-lingual
frames and BabelNet concept inventory (Navigli
and Ponzetto, 2010).

To accommodate cross-linguistic diversity,
UMR incorporates paradigmatic lattices to orga-
nize annotation categories from coarse-grained to
more specific. Annotators are able to use the de-
gree of granularity that is most suitable for the
grammar of the language being annotated. Lattices
produced for this purpose indicate degrees of gran-
ularity for discourse relations, modality, number,
spatial relations, aspect, and temporality. The num-
ber of concepts associated with any given token
(polysynthesis and agglutination) can also vary by
language, so UMR does not require that morpho-
logically complex words be broken down into sepa-
rate morphemes when being annotated as concepts–
however, it builds in the ability to do so where
appropriate to support uniformity.

UMR extends AMR in 3 core ways: (1) it is ca-
pable of annotating low-resource languages, (2) it
more comprehensively annotates modality, aspect,
quantification, and scope for the benefit of logical
inference, and (3) it annotates temporal, modal,
and coreference relations across sentences.

At the sentence level, UMR adds aspect, modal
strength, and quantifier scope attribute roles. As-
pect is annotated for events and states at five base
level values, with finer-grained values in lattice for-
mat (e.g., :ASPECT STATE). Sentence-level modal
annotation comes in three strengths for both af-
firmative and negative (e.g., :MODSTR PRTAFF

for partial-affirmative). The optional scope node
augments predicates.

At the document level, UMR adds temporal and
modal dependencies, plus coreference. Document-
level semantic relations can be created for con-
cepts/events within a sentence or across sentence
boundaries. These document-level relations are

able to be more fine-grained and provide more de-
tailed information than their sentence-level coun-
terparts, for instance, document-level modal rela-
tions are able to mark a conceiver in addition to the
strength and polarity marked at the sentence level.

While UMR follows AMR in using existing role-
set lexicons where possible (referred to as Stage
1 annotation), languages without these resources
can also be annotated in UMR (Stage 0 annota-
tion). During Stage 0 annotation, UMR-Writer
(Zhao et al., 2021) allows annotators to select to-
kens for use as graph predicates and then add those
predicates into a lexicon. Argument structures for
these predicates are added using UMR’s inventory
of participant and non-participant roles. The predi-
cates added to the working lexicon in combination
with their participant role annotation information
can be used to generate a roleset lexicon, moving a
language from Stage 0 to Stage 1 annotation.

Recent work on UMR has produced small
sets of annotations for four indigenous lan-
guages (Kukama, Arapaho, Sanapaná, and Navajo)
(Van Gysel et al., 2021b), an online application
(UMR-Writer) for producing AMR annotations
(Zhao et al., 2021), automatically annotating tense
and aspect in UMR (Chen et al., 2021), and incor-
porating non-verbal interactions into UMR anno-
tation (Lai et al., 2021). Bonn et al. (2023) out-
lined deterministic conversion of AMRs to UMRs,
specifically the roles, rolesets, and concepts.

4 Differences Between UMR and
Cross-lingual AMR

In this section, we compare the specific linguistic
features that both schemata encode, and consider
two noteworthy obstacles/factors to successful an-
notation of UMR or AMR: idiomatic phrases and
reliance on English concepts.

4.1 Comparison with Spanish AMR

In order to perform a language-specific compar-
ison between a cross-lingual extension of AMR
and UMR, we compare what Spanish AMR and
UMR are able to capture for Spanish. We compare
UMR with the Wein et al. (2022a) extension of
AMR, which develops a corpus of approximately
500 sentences and guidelines for representing key
linguistic features of Spanish in AMR. As depicted
in Table 2, we find that most language-specific con-
siderations in Spanish AMR are also included in
UMR.
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Verb Senses. Spanish AMR uses AnCora2 verb
senses, supplemented with specific senses which
are not captured in the lexicon. Language-specific
verb senses are used for UMR. In §5, we discuss
the reliance on lexicons of both UMR and AMR.
Modality. Spanish AMR adds additional sense
for deber (should) and poder (could) to mark
modality. UMR marks modality through the
sentence-level :MODSTR role.
Number for Persons. Spanish AMR opts against
specifying number, while UMR has an addi-
tional modifying role for number of people/entities
(:ref-number).
Pronoun Drop. Spanish AMR adds additional
information for dropped pronouns by incorporat-
ing a sinnombre (“nameless”) concept into the
graph, e.g. first-person-sing-sinnombre for
implicit entities. For example, the following AMR
represents the Spanish sentence Necesito irme (“I
need to leave”), with the first-person pronoun “yo”
dropped.

(1) Necesito irme. ’I need to leave.’
AMR:
. (n / necesitar-01
. :ARG0 (f / first-person-sing-sinnombre)
. :ARG1 (i / ir-05
. :ARG1 f)))
UMR:
. (s2n / necesitar-01
. :ARG0 (s2p / person
. :ref-person 1st
. :ref-number Singular
. :ARG1 (s2i / ir-05
. :ARG1 s2p
. :ASPECT Performance
. :MODPRED s2n)
. :ASPECT State
. :MODSTR PrtAff))

UMR handles all pronouns–explicit, indexed,
dropped, or implicit– via a generic concept (e.g.,
(p / person)) modified by :ref-person and :ref-
number. There is no specific marking to indicate
which of these methods of expression were used,
however.
Politeness. Spanish AMR addresses politeness
by adding a role relation for second person ad-
dressee. UMR adds a an attribute role :polite which
follows the same pattern, as follows:

2http://clic.ub.edu/corpus/en/ancoraverb_es

(2) usted ’you.FORM’
AMR:
. (u / usted
. :mod-polite +)
UMR:
. (s3p / person
. :refer-person 2nd
. :refer-number Singular
. :mod-polite +)

Affixes. Spanish AMR represents derivational
suffixes as modifier concepts, and clitics are also
treated as separate concepts.

How UMR handles derivational affixes depends
on the type of affix and the annotation stage a lan-
guage is undergoing. Languages undergoing stage
0 annotation (where there is no existing valency
lexicon resource) may use an entire surface form
(stem + affixes) as a graph predicate, or they may
choose to systematically drop certain affixes as
part of the lexicon-building process. Because the
spirit of UMR (inherited from AMR) is to abstract
away from syntactic manner of expression, lexical
category-changing derivational affixes will likely
be dropped from graph predicates by stage 1 anno-
tation, with predicates coming from unified (part of
speech-ambivalent) rolesets that will at that point
have been created. Many other derivational affixes
can now be dealt with through UMR graph struc-
tures (e.g., resemble-91 for similative affixes). But
some will need to be resolved on a language-by-
language basis as part of roleset development, as
occurs in cross-lingual UMR.

UMR represents inflectional affixes via :ASPECT

and :MODSTR attribute roles in the sentence-level
annotation and the temporal and modal dependen-
cies at the document level (as in figure 1). The
affixes themselves may also be dropped from the
graph predicate as deemed appropriate for a given
stage of annotation for a language.

Examples of how AMR and UMR handle deriva-
tional suffixes and clitics can be seen in (3) and (4),
respectively. In (3), the diminutive suffix /-ita/ is
dropped from the head concept in the graph and
represented via a :mod role in both Spanish AMR
and UMR. Note that UMR doesn’t have an abstract
concept dedicated solely to the diminutive, and so
the contents of the :mod relation will be unique to
a given language, in whatever form the language
deems most appropriate. The key is that the overall
graph structure is the same cross-lingually.
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(3) chiquita ’little girl’
AMR/UMR:
. (c / chica
. :mod (p / pequeña))

(4) mandarlo ’send it’
AMR:
. (m / mandar
. :ARG1 (l / lo))
UMR:
. (s4m / mandar :mode imperative
. :ARG0 (s4p / person
. :refer-person 2nd
. :refer-number Singular)
. :ARG1 (s4t / thing
. :refer-person 3rd
. :refer-number Singular)
. :ASPECT Performance
. :MODSTR PrtAff)

Double Negation. Double negation in Spanish
can sometimes be used for emphasis, e.g. No le
dijo nada a nadie (“She didn’t say anything to any-
one”). Spanish AMR specifies that double negation
is treated the same as single negation (:polarity
-). UMR guidelines do not state whether double
negation receives special treatment, but one idea is
to modify the polarity with :degree INTENSIFIER.
“Se” Usage. Se takes on many uses in Spanish.
For AMR, there are three uses of note.

First, se can be used as a reflexive pronoun, an-
notated via reentrancy in English/Spanish AMR
and UMR. For example, in 5, the reflexive verb
mirarse (look at oneself) forces a reentrancy for se
in both the Spanish AMR and the UMR.

(5) él se miraba en el espejo ’he looked at
himself in the mirror’
AMR:
. (m / mirar-01
. :ARG0 (e / él)
. :ARG1 e
. :location (s / espejo))
UMR:
. (s5m / mirar-01
. :ARG0 (s5e / él)
. :ARG1 s5e
. :location (s5e2 / espejo)
. :Aspect Activity
. :MODSTR FullAff)

Second, se can reflect a passive marker / an omit-
ted concept (e.g. se vende, for sale). In this case,
Spanish AMR uses the token se as the argument
role label. UMR would annotate these passive
markers as appropriate for the language and has
guidelines specifically for passives. Third, se can
be used as an impersonal pronoun (e.g. no se debe
fumar, one should not smoke). Given that se is a
pronoun, the second and third uses of se are han-
dled in UMR using the :ref-persons concept.

Document-level representation, Scope, and As-
pect. UMR expands AMR by adding annota-
tion guidelines for document-level representation,
scope, and aspect, while Spanish AMR has none
of the three.

4.2 Encoding Specific Linguistic Features for
Other Languages

For languages which have less syntactic similar-
ity to English than Spanish does, some language-
specific features that could be accommodated by
a custom monolingual AMR-adaptation may be
more straightforward to handle in UMR than oth-
ers. For example, numeral noun classifiers in Viet-
namese are easily covered in UMR with the nu-
meral lattice. In Korean, UMR’s flexibility towards
representing affixes as concepts allows handling of
case-stacking. On the other hand, specifics such as
reduplicatives (in Mandarin Chinese) are not cur-
rently considered in UMR. Reduplication can occur
in Mandarin by repeating a lexical unit, and can be
indicative of either tentative aspects of emphasized
meaning (Chen et al., 1992).

5 Challenges for UMR & Cross-lingual
AMR

UMR & Cross-lingual AMR face a number of chal-
lenges when adapting to various languages, most
notably in the representation of idiomatic phrases.
Reliance on underlying lexicons leads to graph
structural inconsistencies for parallel sentences.

Idiomatic Phrases. Idiomatic phrases are a chal-
lenge for cross-lingual AMR/UMR because of
the relationship between a phrase’s individual to-
kens and its overall meaning (Urešová et al., 2014;
van der Plas et al., 2010; De Clercq et al., 2012;
Kara et al., 2020). Even within a single language, it
can be difficult for annotators to determine the best
way to incorporate predicate argument structures
associated with the specific combination of indi-
vidual tokens (literal expression) and the argument
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Feature Spanish AMR UMR
In-language verb senses
Modality
Grammatical Number Opted for Simplicity
Pronoun Drop Not specified
Politeness
Affixes (Third person clitic pronouns,
Suffixes)
Double Negation Same as single negation Not specified
Document-level representation
Scope
Aspect

Se Usage
Impersonal pronoun,
Reflexive pronouns,

Passive Voice

Table 2: A selection of linguistic features relevant for capturing meaning in Spanish, showing whether they are
accounted for in each of the two schemata (Spanish AMR and UMR). The specific ways in which these features are
accounted for in Spanish AMR and UMR are detailed in §4.1.

structure associated with the overall (idiomatic) se-
mantics, especially when the expression is not fully
compositional. Graph structures stemming from
the relationships between individual tokens are, to
some extent, unavoidable, and since idiomatic ex-
pressions of the same meaning can vary greatly
across languages, the graph structures associated
with a single meaning can also vary. An effectively
cross-lingual meaning representation needs built-in
considerations for addressing this challenge as uni-
formly as possible during annotation and parsing.

UMR has not yet established final guidelines for
uniform treatment of all idiomatic phrases (but see
Bonn et al. in press for further discussion), par-
ticularly during stage 0 annotation when there are
no existing lexical resources to rely on that might
provide a single predicate argument structure for an
expression. In addition to the difficulties posed for
parallel semantic representations across languages,
this can also lead to inconsistencies across anno-
tators. Still, inter-annotator agreement for small
UMR annotation studies on Kukama and Arapaho,
as measured by Smatch, ranges from 0.76 to 0.92,
which is similar to typical AMR inter-annotator
agreement scores (Van Gysel et al., 2021b).

Given that Stage 0 UMR permits annotation
of tokens into multiple concepts (e.g. compound
words) or of multiple tokens into a single concepts
(e.g. multi-word concepts), we expect that an al-
tered version of Smatch (Cai and Knight, 2013)
will need to be adapted in order to successfully
identify parallelism in meaning when quantitatively

comparing UMRs in different languages.

Reliance on English Concepts. Prior work
has explored cross-lingual differences in parallel
AMRs and to what extent AMR is an interlingua
(Xue et al., 2014; Wein and Schneider, 2021), and
suggests that the AMR annotation schema may be
more compatible with certain languages than others
(i.e. more compatible with Chinese than Czech).

Current cross-lingual adaptations of AMR high-
light this, because some cross-lingual guidelines
require more changes to handle linguistic varia-
tion than others, though the structure of arguments
and concepts remain largely unchanged. The ap-
proaches which use English abstract rolesets for the
cross-lingual annotation (for example, accompany-
01 as the reification for the :accompanier role) ex-
hibit significant English bias because the arguments
for concepts are determined by their English usage.

AMR adaptations vary in degree of reliance on
English annotations and resources, ranging from
simply working with the English AMR guidelines
as a baseline and extending them, to using English
PropBank for sense annotation (Migueles-Abraira
et al., 2018) or aligning English and Portuguese sen-
tences and translating English annotations to their
cross-lingual framesets (Sanches Duran and Aluí-
sio, 2015). A factor that has enabled cross-lingual
AMR extensions for individual languages is the
existence of lexicons in those languages, such as
PropBanks. This is an obstacle to AMR annotation
for low-resource languages. Because many mean-
ing representations require additional resources to
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produce annotations, the lack of prior non-English
resource work poses an issue for future non-English
resource work (Hovy and Prabhumoye, 2021). This
issue has been handled by UMR by developing
a “road map” for annotation of low-resource lan-
guages (Van Gysel et al., 2021a).

Reliance on Frame Files. The quality/extent of
the lexicon of rolesets available for a given lan-
guage impacts AMR/UMR annotation. For exam-
ple, Spanish AMR (Wein et al., 2022a) makes use
of AnCora (Taulé et al., 2008), but despite being
the most comprehensive publicly available lexical
resource for Spanish, it is limited in the senses it
contains, so other adaptations of AMR for Spanish
have opted against its use (Migueles-Abraira et al.,
2018). Thus, even with the “road map” for anno-
tation of low-resource languages in UMR, there
are complexities caused by reliance on external
resources that affect UMR/AMR annotation.

Spanish AMR was forced to add a supplemen-
tary database of frame files / senses when using
AnCora, and Stage 1 UMR annotation will likely
also need to provide additional resources when re-
lying on external lexicons. The UMR Writer (Zhao
et al., 2021) is designed to allow annotators to add
lexical entries to the roleset lexicon file used for
annotation as need arises during annotation, pair-
ing the lexicon-development process with UMR
annotation. Roleset development can be incredi-
bly complicated, however–particularly for polysyn-
thetic and agglutinating languages like Arapaho–so
this feature of the UMR-writer is a vital first step
out of many when it comes to establishing a robust
lexical resource.

6 Conclusion

Cross-lingual adaptations of AMR use the English
annotation guidelines as a baseline, and then make
a set of adaptations for linguistic features specific
to the other language. The linguistic phenomena
incorporated into each cross-linguistic adaptation
also varies by language (as described in §2), be-
cause these phenomena are language-specific.

We conclude that UMR successfully handles the
vast majority of even the more language-specific
features of cross-lingual adaptations of AMR. The
challenges for UMR annotation in need of further
investigation and consideration include the devel-
opment of quantitative metrics, which will need to
account for UMR’s flexibility in multiword/affix
annotation, and the complexities associated with

the generation of roleset lexicons for low-resource
languages. Future work providing general insight
into the morphosyntactic strategies of AMR and
UMR might provide additional insight into their
cross-lingual applicability.
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Zahra Azin and Gülşen Eryiğit. 2019. Towards Turkish
Abstract Meaning Representation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 43–47, Florence, Italy. Association for
Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Julia Bonn, Andrew Cowell, Jan Hajič, Alexis Palmer,
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Abstract

To collaborate effectively in physically situated
tasks, robots must be able to ground concepts
in natural language to the physical objects in
the environment as well as their own capabili-
ties. We describe the implementation and the
demonstration of a system architecture that sup-
ports tasking robots using natural language. In
this architecture, natural language instructions
are first handled by a dialogue management
component, which provides feedback to the
user and passes executable instructions along
to an Abstract Meaning Representation (AMR)
parser. The parse distills the action primitives
and parameters of the instructed behavior in
the form of a directed a-cyclic graph, passed
on to the grounding component. We find AMR
to be an efficient formalism for grounding the
nodes of the graph using a Distributed Corre-
spondence Graph. Thus, in our approach, the
concepts of language are grounded to entities in
the robot’s world model, which is populated by
its sensors, thereby enabling grounded natural
language communication. The demonstration
of this system will allow users to issue naviga-
tion commands in natural language to direct a
simulated ground robot (running the Robot Op-
erating System) to various landmarks observed
by the user within a simulated environment.

1 Introduction

Robots are increasingly used for their potential in
disaster relief and search and rescue tasks (Mur-
phy, 2014). There is a clear benefit to this, as
robots can be used to provide aid and give situa-
tional awareness of the environment to people, who
can remain at a safe distance and use information
gathered by the robot to knowledgeably address
the situation. Using robots in this way has required
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advances in robotics; however, robots in the cur-
rent paradigm are still treated more as tools—often
requiring human teleoperation, which inhibits the
operator’s awareness of their own immediate sur-
roundings in potentially dangerous situations. The
ability to speak to a robot as one would another
human teammate would reduce the training time
and cognitive burden on the operator, making the
collaborative response more efficient. While there
have also been relevant advances in task-oriented
dialogue systems, such as Siri and Alexa, as well
as widespread interest in systems leveraging large
language models such as ChatGPT, these systems
are limited in their applicability to physically situ-
ated tasks because they do not address grounding
natural language to the physical environment of an
embodied platform. In this paper, we describe a
novel system architecture that supports grounded,
bi-directional human-robot dialogue. This architec-
ture is depicted in Figure 1.

In the sections to follow, we first provide a con-
ceptual overview of the system capabilities (§2),
and then detail the components of this architec-
ture (§3) while highlighting the novel and primary
contribution of the symbol grounding components:
the Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) parser (§3.4), which we show
to be uniquely suited to distill the action primitives
and their parameters in a way that can be efficiently
grounded, using our updated Distributed Corre-
spondence Graph (DCG) (Howard et al., 2014)
grounding component (§3.5). We then describe
the demo (§4) and detail how distinct demo modes
(§4.1) allow users to experience performance dif-
ferences when the grounding component receives
input from either a syntactic constituency parser
or the meaning-based, AMR parser. We provide a
brief comparison to related work (§5) and conclude
with directions for ongoing and future work (§6).
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Figure 1: System architecture, supporting bi-directional, grounded communication between an operator and a
remotely located robot.

2 System Capabilities

The implemented system in this research allows
a human operator to speak to a remotely located
robot in natural language, providing search and nav-
igation instructions for the robot to execute. The
current system has been successfully implemented
for natural language control of a Clearpath Husky
Unmanned Ground Vehicle (Clearpath Robotics,
2023) (shown in Figure 1), measuring about 39
inches in length and weighing about 110 pounds,
which autonomously executes the natural language
navigation instructions. In our implementation,
the Husky is equipped with a LORD Microstrain
3DM-GDX5-25 IMU, Ouster OS1-64 Gen 1 Light
Detection and Ranging (LIDAR) unit, and a Tele-
dyne FLIR Blackfly GigE camera with a KOWA
LMVZ41 high resolution camera lens. The robot
computers consist of two Intel i7 equipped comput-
ers with NVIDIA 1650Ti graphics cards installed.

The robot runs on the Robot Operating System
(ROS); thus, part of our research here includes
creating a ROS wrapper around the AMR parsing
component. The same ROS software stack can
be used either within real-world robots or in sim-
ulation, and we have implemented and tested our
architecture in both environments.

Because connectivity and bandwidth can be lim-
ited in disaster relief scenarios, our setup does not
require internet connectivity, but it does currently
require a stand-alone machine to run the natural
language communication interface and dialogue

management capabilities (shown in the top half
of the architecture diagram in Figure 1), whereas
the rest of the system architecture components run
fully onboard the robot (shown in the bottom half
of the architecture diagram in Figure 1).

3 System Components

In the following sections, we provide an overview
of each of the architecture’s components. We de-
vote the most description to the primary novel
contribution of this paper: the symbol grounding,
which leverages an AMR parser together with a
DCG grounding component.

3.1 Speech Recognition

The operator speaks to the robot using a micro-
phone, currently implemented as the standard mi-
crophone capability of the computer running the
user-facing dialogue interface components. The op-
erator presses on an assigned key and speaks their
instructions.

The speech recognition server listens to the
user’s speech and sends it to the speech recognizer
component; we are currently leveraging the open-
source Kaldi speech recognition toolkit (Povey
et al., 2011). Kaldi provides automatic speech
recognition (ASR), producing a text transcription
of the user’s speech. We selected Kaldi because we
find that it gives relatively high-accuracy ASR but
does not require internet connectivity.
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3.2 Intent Classification & Dialogue
Management

The text output from Kaldi is passed along to the
joint intent classification and dialogue management
component. This component has two elements:
first, a classifier interprets the language with re-
spect to the basic intent, and second, a dialogue
manager dictates what the system should do next.
For example, if the operator provides the instruc-
tion Okay, Husky, check the path in front of you,
the system retrieves the most similar example to
this seen in the training data, for example, Scout
the path in front. The system would then provide
an associated response message such as executing
to provide feedback to the user. Finally, the sys-
tem would pass the text instruction Scout the path
in front along to the parsing component operating
within the software stack for processing and even-
tual execution. This component is an adaptation
of the Virtual Human Toolkit described in Hartholt
et al. (2013), refined to support a robot platform
(Marge et al., 2016).

Intent classification is treated as a retrieval prob-
lem, such that given the transcribed speech from
the recognizer, the system can infer the intent by
retrieving the most similar example from training
data. The training data is organized into instruction-
response pairs, where instructions are previously
seen operator instructions, and responses are ei-
ther messages sent back to the operator (such
as feedback or clarification questions) or mes-
sages sent on to the robot software stack for fur-
ther processing and execution. The training data
instruction-response pairs are curated for a particu-
lar domain within a spreadsheet used to learn the
weights of association such that a ranked list of
potential matches is returned and the most similar
instruction-response pair is selected (Leuski and
Traum, 2011). In our implementation, the training
data pairs are drawn from a corpus of human-robot
collaborative dialogue for search and navigation,
collected in a wizard-of-oz experimental paradigm
(Marge et al., 2016) and subsequently annotated
for relevant features of dialogue structure (Traum
et al., 2018).

Dialogue management policies are defined based
upon the matches obtained from the intent classifier,
with two basic categories of response policies. The
first is for actionable messages, where the robot
is able to execute the instruction. For actionable
commands, the basic policy is to jointly respond to

the operator with feedback, demonstrating success-
ful receipt of the instruction, and to send a simple
text message of the instruction on to the robot soft-
ware stack. The second policy is for non-actionable
messages, which require clarification through fur-
ther dialogue. The basic policy for non-actionable
messages is to prompt the operator for clarifica-
tion, such that any inability to infer the intent of the
instruction can be overcome immediately through
dialogue.

3.3 Message Bridge
A message bridge enabled by the Virtual Human
Toolkit from Hartholt et al. (2013) connects the
operator-facing natural language interface (which
runs on a computer used by the operator) to the
robot’s software autonomy stack (which runs on
the robot’s onboard computer). The bridge enables
connectivity between the two computers—sending
synchronous messages from the operator-facing
computer to the robot’s computer and back again.
Additionally, it enables the transfer between the
two operating systems, where the output of the
operator-facing computer is simply text, and is for-
matted as Robot Operating System (ROS) mes-
sages delivered to the software autonomy stack via
a ROS topic for the robot to process.

3.4 Language Parser
We leverage the open-source AMR parser from
Lindemann et al. (2019), specifically a model that
has been retrained on a portion of the same human-
robot dialogue corpus used to derive the instruction-
response pairs described in §3.2. We selected this
parser because the retrained model outperformed
other competitive parsers retrained on the same
small set of robot-directed instructions (Bonial
et al., 2020), but we are working to make our im-
plementation agnostic to any particular parser so
that we can swap it out based on the current state
of the art.

We implement wrapper code to interface the
open-source AMR parser with ROS code that op-
erates the automated systems aboard the robot in-
cluding perception and motor control. The wrapper
code takes in commands through ROS messages.
These messages can be generated by the autonomy
stack running on the robot, piped directly to the
AMR parser as a string through ROS commands,
or generated by other software. In our case, the
dialogue manager generates these commands and
the message bridge publishes them as a string to a
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ROS topic. The command string is extracted from
the ROS message and used as input for the AMR
parser.

Thus, the parser accepts the text instructions out-
put by the dialogue manager, and parses this into
an AMR directed, a-cyclic graph (DAG). Because
AMR abstracts away from some idiosyncratic lin-
guistic variation in favor of representing core con-
cepts, the AMR parse is a very effective distilla-
tion of action primitives and the parameters of that
action. For example, regardless of whether the
operator instructs the robot to Drive to the barrel
on the left or Take a drive to the left barrel, these
instructions will be encoded with identical AMR
graphs, shown in Figure 2 in the textual, Penman
style (Penman Natural Language Group, 1989) as
opposed to a DAG.

(d / drive-01 :mode imperative
:ARG0 (y / you)
:ARG1 y
:destination (b / barrel

:ARG1-of (l / left-20)))

Figure 2: AMR graph for the input Drive to the barrel
on the left and the alternatively-worded input Take a
drive to the left barrel.

AMR therefore offers a level of abstraction that
is suitable for a robot to act upon as it glosses
over some of the linguistic complexity that does
not carry any meaningful difference for execution.
Furthermore, we find that AMR is well-suited as an
input representation to the grounding component
because the node concepts of the graph that are
grounded are restricted to the action concept and its
parameters (such as the destination of a movement
instruction). Leveraging AMR allows us to directly
associate the meaning of the instructions with the
physical world, instead of attempting to ground all
of the words of the instruction, which may include
syntactic scaffolding, such as take in take a drive,
that has no grounding in a robot’s behavior or the
objects in its environment. Benefits of leveraging
AMR are further described in §4.1.

After parsing, the wrapper code will interpret
the textual representation output from the AMR
parser and generate outgoing ROS messages to be
published on an established ROS topic. Any ROS
software can obtain these messages by subscribing
to this topic. In our case, the grounding software
component running on the robot will take in these
messages and ground the instruction into mission

Figure 3: The constituency parse-based DCG on the left
exhibits the same number of factors but lacks the infor-
mative relational structures of the AMR-based DCG on
the right.

commands for the robot.

3.5 Grounding Component
We take a graphical approach to grounding using
a model based on the Distributed Correspondence
Graph (Howard et al., 2014). A DCG consists of a
set of constituents of language Λ = {λ1, . . . , λN}
(e.g., phrases in a parse tree or nodes/edges in an
AMR graph), a world model Υ (typically a metric-
semantic object-level model), a set of grounding
symbols Γ = {γ1, . . . γM} that represent physical
concepts (e.g., objects, spatial relationships, robot
actions), and a set of binary correspondence vari-
ables Φ = {ϕ11, . . . ϕNM} representing True or
False correspondence between an individual phrase
and individual grounding symbol.

The formulation of DCGs assumes conditional
independence of both grounding symbols and lin-
guistic constituents excepting child constituents,
resulting in a factor graph hierarchically structured
according to the representation of language. Each
factor computes the probability of correspondence
(ϕ) between a given phrase (λ) and grounding sym-
bol (γ), in the context of a model of the environ-
ment. The probabilities are computed by a sin-
gle log-linear model (Collins, 2005) consisting of
expert-designed binary features with associated op-
timized weights trained from a corpus of annotated
data. The features jointly evaluate properties of
language and the world, such as a unigram feature
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for barrier and an indicator feature for an object
grounding symbol that is True if the object is a
barrier type, thereby allowing the log-linear model
to learn to ground language in physical concepts.
Inference is performed via bottom-up beam search
to find the most likely True correspondences for
each linguistic constituent; this process propagates
up the hierarchy of the graph. The grounded inter-
pretation of the instruction is represented by the
True corresponding symbols at the root.

In previous works (Paul et al., 2018; Patki
et al., 2020; Howard et al., 2021), a syntac-
tic constituency parse tree, produced by the
Cocke-Younger-Kasami (CYK) parsing algorithm
(Younger, 1967), was used to represent language
instructions; the resulting DCGs inherited the com-
positional structure of the hierarchy of phrases. A
novelty of this work is that we construct a DCG
from an AMR parse. A DCG constructed from
an AMR parse differs than one constructed from
a constituency parse tree because the edges in an
AMR parse are labeled. In this work, we assume
that there are no cycles in the AMR parse. Con-
sider the example illustrated in Figure 3. For the
same language, a parse tree is shown on the left
and an AMR parse is on the right. The correspond-
ing constituency parse-based DCG, also shown on
the left, expresses a set of symbols for the phrases
the barrier, to the barrier, and go to the barrier,
where the symbols corresponding to the last phrase
represent the grounding of the entire statement.
The structure of the AMR-based DCG, shown on
the right, differs. Here the AMR-based DCG ex-
presses a set of symbols for the node concepts y /
you, b / barrier, and g / go-02. How y
/ you and b / barrier are interpreted by g
/ go-02 is influenced by the labels of each edge,
which are :ARG0 and :ARG4, respectively. To
properly capture the structure of this AMR parse,
the associated DCG must incorporate the labels of
each edge into its own structure; this provides the
edge label context to the log-linear model features
at each factor, which is necessary to correctly inter-
pret the expressed symbols at child nodes. These
differently labeled edges, illustrated in red and blue
respectively, are now used in the construction of
DCGs so that the engineered features that compose
the log-linear model-based factors can utilize this
information when determining if a feature is active
or inactive. AMR also differs from parse trees in
that nodes are permitted to have more than one par-

ent (reentrancy). These are naturally handled by the
conditional independence of linguistic constituents
that is assumed in the DCG formulation.

In this example, although both models exhibit
the same number of factors, the structure of the
AMR-based DCG provides richer information, in-
cluding an explicit representation of who is meant
to execute the command. This information is left
out of the CYK-based DCG when the imperative
is used, as the subject is omitted in the English
imperative form.

There are other situations where an AMR-based
DCG is preferable to a constituency parse tree-
based DCG. For example, the approach leveraging
CYK parses required training instances reflecting
alternative wordings of what is semantically the
same instruction, such as for light-verb construc-
tions. In contrast, our approach enables grounding
with less training data since we are grounding the
deeper meaning instead of the surface word-forms
of the instruction. Another benefit to grounding
the meaning behind the instruction, as opposed to
the words themselves, is that our implementation
is able to more efficiently ground instructions in-
volving co-reference and complex spatial relations,
both of which are represented explicitly and con-
sistently in AMR (see §4.1 for further discussion).

3.6 Mission Planner and Executor

Once the action and the action parameters, includ-
ing any objects mentioned in the instruction, have
been grounded, the grounding component sends
the action specification to the mission planner. The
grounded action includes specifications such as
path end points as specified by the location of
grounded objects in the robot’s world model. For
this implementation, we use Cohen et al. (2010)’s
Search Based Planning Library global planner and
Howard and Kelly (2007)’s Nonlinear Optimiza-
tion (NLOPT) local planner. Once a plan has been
established, the robot mission executor generates
and performs the appropriate actions, taking into
account real-time feedback from the robot such
as the perception of moving obstacles. This com-
pletes the loop from natural language instruction
to execution within the robot’s current physical
environment.

4 Demo Description

In the demo, audience members will be invited to
interact with the system at a computer workstation

38



Figure 4: Screen capture of demo, where the left pane of the screen shows the robot’s position within the simulation
and the right pane of the screen shows the robot’s world model view, populated by a LIDAR terrain map and labeled,
recognized objects.

where the audience can see a view of the robot
in the simulated environment on one side of the
screen and what is essentially the robot’s view of
the world, or its world model, on the other side of
the screen. The world model pane shows a LIDAR-
derived map of the simulated environment where
detected objects in the environment are represented
by white boxes with pink labels.

Figure 4 is a screen capture of the demo work-
station. In the left pane, visitors can see that the
robot is approaching a set of three barrels extend-
ing out to the right, and two cones with a small
bench in between them ahead of the robot and to
its left. In the right pane, visitors can see a visual
representation of what the robot “sees” in this same
environment using its LIDAR and computer vision
sensors. There is a snapshot of exactly what the
robot sees from it’s onboard camera in the small
pane in the top left corner of the right pane. The
rest of the right pane populates with light grey in
the areas reached by the LIDAR that have been clas-
sified as open space; thus, there are some darker
grey unknown or unexplored areas beyond the grey
barrier that encloses the demo environment. The
robot recognizes the three barrels, the cones and
the bench. These objects are labeled with the basic
object type label as well as a unique identifier num-
ber that tracks these objects in the robot’s world
model. For example, the robot labels the closest
barrel as “barrel-4”. Demo audience members will

be able to direct the robot to any of the objects in
the scene that the robot has identified and success-
fully labeled thus far.

4.1 Demo Modes Comparing AMR & CYK
Parsers

In order to showcase the novel contribution of
this research, the demo host can toggle the im-
plementation back and forth between the same ar-
chitecture with either the AMR parser described
in Section 3.4, or the syntactic CYK parser
(Younger, 1967) of previous implementations, such
as Howard et al. (2021). This setup allows us to
compare our architecture to comparable systems
where the CYK parser was used. However, to make
this a fair comparison that focuses only on the
language parse and the grounding component, we
hold the rest of the architecture constant while only
swapping out and comparing the symbol grounding
components. This will allow audience members to
use different variations of navigation instructions
in order to see how a small amount of complexity
in the surface form can affect the grounding when
using meaning-based (this work) or syntax-based
(baseline) parsers.

For example, in our own preliminary compar-
isons, an experimenter issued the following set of
three instructions, given in the same simulated en-
vironment to a robot with the same sensors and
resulting world model. Only the AMR-based sys-
tem was able to ground the final two instructions,
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which involve a light verb construction (2), and
coreference as well as a complex spatial expression
(3):

1. Go to the left barrel.

2. Take a drive to the left barrel.

3. Drive to the cone and the rock closest to it.

While sufficient for the simple instruction in (1), the
syntactic CYK parser output fails to be grounded
for instruction (2) because the system cannot
ground what it presumes to be the primary take
action, which has not been seen in training data
for either the constituency parse or AMR-based
grounding. In the AMR input, take is abstracted
away and this instruction is grounded to a driving
behavior.

For instruction (3), the CYK parser output
includes the words cone and it, which are co-
referential expressions for the same object in the
environment; thus, the constituency parse tree-
based grounding component attempts to separately
ground each word. Although this may eventually
result in the correct grounding, it is much more
computationally expensive and requires a larger
space of potential groundings, including symbols
for each co-referential expression, in order to com-
positionally build the grounded meaning of each
linguistic constituent. In contrast, AMR represents
co-referential expressions as a single node, which
is then grounded to a single symbolic meaning.

Instruction (3) also includes the complex spa-
tial expression the rock closest to it, which, com-
bined with the coreference, causes the syntax-based
grounding to fail altogether. The AMR specifies
this as the close relation between the concepts of
rock and cone, abstracting away any explicit con-
stituent for the word it. Thus, the AMR enables
grounding of such spatial concepts to real-world
spatial relations between objects in the world model
observed in training data.

5 Related Work

This research is at the intersection of NLP, includ-
ing semantic parsing and dialogue systems, and
robotics. We limit our direct comparison here to
similarly interdisciplinary work; see Tellex et al.
(2020) for a full review of research in robotics and
language. Outside of the work on the DCG ground-
ing approach that we directly augment for AMR
(Howard et al., 2021), field robotics has largely

focused on robots that receive an initial, static task-
ing and then operate autonomously (e.g., Williams
et al. (2012); Arvidson et al. (2010); Camilli et al.
(2010)), or robots that are tele-operated (e.g., Kang
et al. (2003); Ryu et al. (2004); Yamauchi (2004)).
In contrast, there is relatively little work like ours,
seeking to develop robots that are able to be tasked
dynamically and interactively via natural language.

There are, however, several notable exceptions.
Walter et al. (2015) describe the development of a
voice-controlled fork lift. In contrast to our own re-
search, however, the natural language instructions
are more constrained to particular hard-coded com-
mands mentioning a more limited range of objects
that are classified in their world model. Addition-
ally, Heikkilä et al. (2012) develop a mobile manip-
ulator designed for space operations that is capable
of accepting spoken commands. Unlike both of
the previously mentioned voice-controlled robots,
it is important to note that our architecture aims
to support bi-directional communication between
the robot and the operator, such that ambiguities
that might arise in changing environments can be
resolved.

There is also relevant research leveraging large,
pretrained language models to map or translate
between unconstrained natural language and the
controlled planning languages of robots. Song
et al. (2022) utilize GPT for deciding upon the
appropriate high-level plan given natural language
instructions, and then use a more traditional low-
level planning component to execute specific motor
movements to specific grounded points in the envi-
ronment. The high-level and low-level models are
also able to communicate, such that the high-level
model can be queried for new and updated plans
if conflicts arise in the low-level planning model.
Driess et al. (2023) develop their own multi-modal
“embodied” language model, called PaLM-E, which
accepts both sensor data, such as image data, and
natural language text. The model outputs text data
that can be interpreted as robot policies. In gen-
eral, we see potential for leveraging language mod-
els in the future both for providing some apriori,
zero-shot knowledge of objects that the robot might
encounter in its environment, which can be used
to inform the interpretation of natural language
instructions, as well as for providing a likely map-
ping between unconstrained natural language and
the constrained set of robot behaviors.

However, explainability is critical for adoption
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of robotic systems in high-stakes tasks such as dis-
aster relief; thus, further research enabling trans-
parency and explainability of systems leveraging
language models is needed. Neuro-symbolic ap-
proaches (e.g., Dipta et al. (2022)) are promising
for providing greater transparency. For example,
Zhang et al. (2022) develop DANLI, which symbol-
ically represents subgoals as predicates on objects
in the robot’s world model.

There is a growing body of research leveraging
AMR for NLU in human-agent interaction. The
present research is part of a broader ongoing re-
search effort leveraging a two-step NLU pipeline
that first parses natural language into AMR, which
abstracts away from some surface variation, but
then in a second step converts the Standard-AMR
into a formalism called Dialogue-AMR (Bonial
et al., 2020). Dialogue-AMR is augmented to
capture features of language found to be criti-
cal for human-robot dialogue, but not included
in Standard-AMR (Bonial et al., 2019). Specifi-
cally, the Dialogue-AMR adds information on the
input instruction’s tense and aspect, and further nor-
malizes varying expressions for a desired behavior
(e.g., turn, rotate, pivot) to a single designated role-
set for a particular robot behavior (e.g., turn-01).
While the present research leverages Standard-
AMR as the input to the grounding component,
we will shift to using Dialogue-AMR as the input
parse, as we expect that the further normalization
will allow us to achieve comparable results with
even less training data. Furthermore, Dialogue-
AMR leverages spatial rolesets from Spatial-AMR
(Bonn et al., 2020), which provides detailed rela-
tions for spatial relations for expressions such as
in front of, which currently does not have a de-
tailed representation with a relational concept in
Standard-AMR.

Other research to augment AMR for interaction
includes work to further develop multi-modal, ges-
tural AMR (Brutti et al., 2022) as well as efforts
to further develop aspect and modality in AMR to
support NLU (Donatelli et al., 2020). Finally, there
is research in leveraging AMR parses of image cap-
tions in order to develop scene graphs, which can
help agents to summarize and process visual scenes
(Choi et al., 2022a,b). Together, all of these threads
of research demonstrate ways in which AMR can
serve as a unified representation for making sense
of multiple modalities of information.

6 Conclusions and Future Work

We are currently engaged in experimentation to
evaluate the AMR-based grounding. Our ongo-
ing extrinsic evaluation compares natural language
interaction with the current paradigm of teleoper-
ation. Specifically, we compare the time it takes
for a robot operating autonomously to complete
natural language instructions, using the architec-
ture shown in Figure 1, to the time that it takes
a relatively experienced person to teleoperate the
robot and complete the same instruction. This com-
parison is made with and without the introduction
of latency, which can occur when operators teleop-
erate a robot from distant, remote locations. The
latency, or delay, between the manual teleoperation
and the robot’s execution of the teleoperation can
be disorienting to operators (imagine, for exam-
ple, if movements of your own body were delayed
for some time after your brain sending the signal
to move). This disorientation can cause delays in
reaching the destination, an inability to reach pre-
cise locations, or even crashes. Such latency does
not have a dramatic effect on natural language in-
structions, since although these might be delayed
momentarily in getting to the robot, the robot is
then navigating autonomously based upon the plan
expressed in language. Our early results show that
while autonomous navigation is generally slower
than teleoperation, with anything over one second
of latency introduced, the speed of autonomous
navigation becomes comparable.

We are also carrying out an intrinsic evaluation
where we compare our architecture, with the AMR
parser, against an implementation with a CYK
parser in order to robustly evaluate our system
against the comparable system of Howard et al.
(2021). We will evaluate the performance in terms
of the ability of each system to successfully ground
a wide variety of instructions with the same train-
ing set, and we will also compare computation
time and efficiency. Once our evaluations leverag-
ing Standard-AMR are complete, we will then turn
to comparing to the use of Dialogue-AMR, where
we expect even greater computational efficiency
since Dialogue-AMR abstracts even further from
surface variation to normalize a variety of differ-
ent expressions of different behaviors into a single
AMR roleset designated for a robot behavior.

Finally, although not the focus of this paper, we
are also working to update our architecture such
that the intent classification and dialogue manage-
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ment components work more synergistically with
the grounding and planning components. There-
fore, the system can draw upon its knowledge of the
surrounding environment to support more human-
like conversational repairs in cases of ambiguities
and miscommunications. For example, if the sys-
tem encounters the well-formed instruction, Move
to the barrel on the right, but there is no barrel
grounded on the right and instead a barrel grounded
on the robot’s left, then that information from the
grounding component can support generation, via
AMR, of a targeted clarification question, such as
I don’t see a barrel on the right; do you mean the
one on the left? This requires a level of intercom-
munication of the components that we currently
have not achieved.

In this demonstration of our research, we show
that AMR-based grounding of natural language in-
structions allows our system to successfully ground
and execute instructions with a range of linguis-
tic phenomena, including light verb constructions,
coreference, and spatial relations. Although these
phenomena are arguably complex for grounding
and have proven to be challenging for the exist-
ing state-of-the-art systems, they are commonplace
in natural language; thus, we simply must have
systems that can handle such complexity reliably
in disaster relief scenarios. In the demonstration
that we offer, visitors will be able to explore this
firsthand to see how our system addresses these
challenges by grounding the meaning of the in-
structions, rather than just the words of the instruc-
tions.
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Abstract
Actions are critical for interpreting dialogue:
they provide context for demonstratives and
definite descriptions in discourse, and they con-
tinually update the common ground. This paper
describes how Abstract Meaning Representa-
tion (AMR) can be used to annotate actions in
multimodal human-human and human-object
interactions. We conduct initial annotations
of shared task and first-person point-of-view
videos. We show that AMRs can be interpreted
by a proxy language, such as VoxML, as exe-
cutable annotation structures in order to recre-
ate and simulate a series of annotated events.

1 Introduction

In recent years, there is an increasing interest in
dialogue systems that interact with humans in a nat-
ural and sophisticated manner. ChatGPT (OpenAI,
2022) and other large language models (LLMs)
show a remarkable ability to generate fluent re-
sponses to textual prompts. However, these sys-
tems lack two key capabilities which are necessary
for naturalistic interaction. First, they lack the abil-
ity to communicate in multiple modalities beyond
written language, including gesture, gaze, and fa-
cial expression; LLMs, even ones like GPT-4 that
accept both text and image input (OpenAI, 2023),
are limited to text output. Second, these models do
not have a notion of the “world” as such. They do
not track actions and objects in an environment, and
therefore are unable to perform situated grounding
(Pustejovsky and Krishnaswamy, 2021).

Much work has addressed the importance of non-
linguistic modalities in communication (Cassell
et al., 2000; Wahlster, 2006; Foster, 2007; Kopp
and Wachsmuth, 2010; Marshall and Hornecker,
2013; Schaffer and Reithinger, 2019). For example,
in a spoken sentence “I used this for the sketch”,
the referent of the demonstrative “this” is unspeci-
fied. In conjunction with a gesture, e.g., pointing

to a pencil, however, reference resolution and dis-
ambiguation are possible.

Less attention has been paid to the role of action
in dialogue interpretation. Actions significantly
contribute to the multimodal context within which
linguistic utterances are made, and thus play a cru-
cial role in understanding and interpreting dialogue.
In the previous example, lifting the pencil can also
direct attention to it, which is then linked to the
demonstrative. Additionally, actions can also serve
as antecedents to speech in VP ellipsis construc-
tions, (e.g., “What did you do that for?” after some-
one slams a door), and as action-based bridging
relations, where actions create links between con-
cepts in a narrative (e.g., “I went to the store to-
day”, followed by taking fruit out of a grocery bag).
Actions can even be referenced directly by partic-
ipants, such as the case of a child relaying “My
brother said ‘thumbs up’!” when given permission
to play with a favorite toy.

A major aspect of dialogue interpretation is the
common ground— shared knowledge and beliefs
that interlocutors possess about each other and the
world (Clark and Brennan, 1991; Stalnaker, 2002;
Tomasello and Carpenter, 2007). Conversations be-
tween agents introduce the problem of identifying
and modifying the common ground (Tellex et al.,
2020). Actions can update the common ground in
ways that speech and gesture cannot, by adding,
modifying, and deleting items within it.

We argue that, given the importance of actions
to multimodal NLU and their direct influence on
the common ground, it is essential to consider how
they may be integrated with language and other
communicative modalities in a shared annotation
scheme.

In this paper, we review existing action annota-
tion schemes, as well as Abstract Meaning Rep-
resentation (AMR) (Banarescu et al., 2013). We
then describe initial efforts to use AMR to anno-
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tate actions in video data. We explain how action
descriptions made with AMR can be translated to
the VoxML interpretation language (Pustejovsky
and Krishnaswamy, 2016), where they can be exe-
cuted in a simulated environment, VoxSim (Krish-
naswamy and Pustejovsky, 2016), and then close
with a discussion of annotation challenges and fu-
ture work.

2 Background

2.1 Action Annotation

Action recognition in videos is a prominent re-
search area within computer vision, and numer-
ous datasets have been developed providing lexi-
cal descriptions of video content, such as Kinetics
(Kay et al., 2017) and MSR-VTT (Xu et al., 2016).
To facilitate data-driven learning, many of these
datasets consist of trimmed clips, categorized with
a coarse-grained label describing the action being
performed, such as “making pottery” or “bowling”.

However, for the purpose of understanding the
interplay between action and other communicative
acts, we focus on videos that feature discourse be-
tween multiple people, and extend over a period of
time, thereby allowing for the annotation of fine-
grained actions. Although the Charades dataset
(Sigurdsson et al., 2016) only involves single in-
dividuals, each clip captures a variety of actions
through interval-timestamped captions, from which
semantic roles can be inferred. The AVA (Gu et al.,
2018) and AVA-Kinetics (Li et al., 2020) datasets
provide the spatial information of each action as-
sociated with multiple people, though their anno-
tations do not adequately assign semantic roles.
VidSitu (Sadhu et al., 2021) excels in capturing ac-
tions alongside discourse by using movie datasets,
introducing semantic role labeling in addition to
coreference and event links.

2.2 Abstract Meaning Representation

AMR is a graph-based representation of the mean-
ing of a sentence in terms of its predicate-argument
structure (Banarescu et al., 2013). It was designed
to be annotatable by humans, and easily parsed
by computers. Several extensions have been put
forth by the research community (described below),
pointing to AMR’s utility and expressiveness. For
example, the English language sentence “Put that
block there.”, would be represented in PENMAN
(Matthiessen and Bateman, 1991) notation as fol-
lows:

(p / put-01
:ARG0 (y / you)
:ARG1 (b / block

:mod (t / that))
:ARG2 (t2 / there)
:mode imperative)

AMR was designed to represent the proposi-
tional content of individual written sentences in
text. Various extensions to AMR have been pro-
posed which make it more suitable for representing
entire documents or dialogues, even using multi-
ple modalities. First, Multi-sentence AMR (MS-
AMR) allows AMR to represent meaning beyond
the sentence level (O’Gorman et al., 2018). It aug-
ments sentence-level AMRs with implicit roles,
and marks coreference and bridging relations be-
tween entities and events across AMRs.

AMR does not account for a spoken utterance’s
illocutionary force or effect on the broader dialogue
context. Dialogue-AMR (Bonial et al., 2020) ex-
tends AMR to include this information in the form
of speech act relations, as well as tense and aspect.

Gesture AMR is a further extension of AMR,
that goes beyond the linguistic domain, to cover the
semantics of gesture (Brutti et al., 2022). Content-
bearing gestures are classified according to a taxon-
omy of gesture acts, and their meaning is annotated
similarly to Dialogue-AMR.

Finally, Spatial AMR adds spatial information
to AMR, in the form of spatial rolesets, concepts,
and frames (Bonn et al., 2020). Of note, Bonn
et al. use Spatial AMR to annotate a corpus of
Minecraft dialogues, which include both utterances
and textual descriptions of actions, such as [Builder
puts down/picks up a red block at X:0 Y:1 Z:0].

In addition to wide community adoption, there
are several practical reasons for why we propose
the annotation of actions with AMR. Every Prop-
Bank sense is associated with a single meaning,
providing unambiguous interpretations for the la-
beled actions. PropBank also provides consistent
and interpretable argument structures for seman-
tic role labeling. For modeling multimodal dia-
logue, the efforts described above to capture natu-
ral speech and gesture with AMR extensions allow
speech and gesture to be seamlessly linked with
AMRs of actions using MS-AMR.

3 Approach

To explore the feasibility of applying AMR to ac-
tions, we examine two distinct datasets: the Fi-
bonacci Weights Task dataset (Khebour et al., in
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Figure 1: Participant putting a block on a scale.

review), as well as the egocentric Epic Kitchens
dataset (Damen et al., 2022). In the examples
below, we align observed actions with PropBank
senses (Palmer et al., 2003).

3.1 Fibonacci Weights Task

The Weights Task data was designed to elicit team-
work as described in various collaboration frame-
works (e.g., PISA (2015); Hesse et al. (2015); Sun
et al. (2020)). The task is completed by 2-3 people,
and includes blocks, a scale, a worksheet, and a
computer with a survey, as seen in Figure 1.

Participants negotiate meaning (and update com-
mon ground) via multiple simultaneous modalities.
They speak to discuss weights, they gesture to sig-
nal the blocks to weigh, and they learn by putting
groups of blocks on the scale. The action of putting
a block on a scale is annotated as:
(p / put-01

:ARG0 (p1 / participant)
:ARG1 (b / block)
:ARG2 (s / scale))

Though the actions performed in this dataset
are mostly limited to moving and grabbing blocks,
they are often prompted by spoken utterances. For
instance, an utterance of “let’s try this” followed
by the action described by the AMR above is an
example of a cataphor, where the word this refers to
the following action. This phenomenon and others
like it can be captured by linking AMR arguments
with MS-AMR.

3.2 Epic Kitchens

The Epic Kitchens dataset (Damen et al., 2022)
consists of spontaneous first-person recordings of
individual participants in kitchens, as in Figure 2.
Contrasting with the Weights Task dataset, there is
little speech in these videos, but a much wider vari-
ety of actions that constantly update the common
ground for the viewer. Similar to the description of

cooking (text) recipes in Tu et al. (2022), the states
of the ingredients and tools are updated by each
action. Applying AMR to actions in a scenario like
this allows for tracking the progress of the recipe
and its components.

An example action annotation for the image in
Figure 2 is as follows:
(t / transfer-01

:ARG0 (p / participant)
:ARG1 (v / vegetables)
:ARG2 (b / bowl)
:ARG3 (p1 / pot)
:instrument (c / chopsticks))

The AMR of the action registers the objects from
the scene as arguments to the transfer-01 PropBank
predicate. As a direct result of actions like this, the
vegetables undergo several transformations during
the clip - they are combined, boiled, and eventu-
ally eaten. Tracking each entity and the changes
they undergo is an interesting issue, motivating the
following section.

4 Interpretation

4.1 VoxML as an Interpretation Language

The representation of action with AMR as out-
lined proves useful in modeling its interactions
with speech: both the phenomena of VP ellipsis
and anaphoric relations that often occur in spoken
language can be resolved with MS-AMR cross-
modality coreference chains.

However, AMR alone does not describe how ac-
tions affect objects in the common ground, such as
their ability to update object locations and cause
physical transformations. These changes stem from
an associated subevent semantics that can be linked
with PropBank predicates. For instance, a human
executing PropBank put-01 would involve a grasp-
ing and an ungrasping of a given object, with the
end result being the object having moved to a new

Figure 2: Participant transferring vegetables from a pot
to a bowl with chopsticks.
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Figure 3: An example VoxML program corresponding
to the PropBank predicate put-01.

location. These intermediate subevents are equally
valid descriptions of a given action in video, and
they can be individually referenced by speech, just
as top-level actions can be.

We also note that AMR does not address the lexi-
cal aspect of its predicates - how they progress over
time. To annotate the temporal component of an
actions in long videos, we traditionally annotate the
timestamps or frame numbers according to when
the action begins and ends. However, while some
actions suggest a continuous process (e.g., move),
others are instantaneous results (e.g., hit), defined
only for a single point in time. We can categorize
actions by their lexical aspect in a taxonomy, as
either states, atelic (without result) processes, or
as telic (with result) achievements and accomplish-
ments (Vendler, 1957).

To encode these semantics, we propose the use
of a specification language to enrich these anno-
tations with richer lexical semantics, as provided
by Generative Lexicon (Pustejovsky, 2013) and
VerbNet (Brown et al., 2022). Such information
is encoded directly in VoxML (Pustejovsky and
Krishnaswamy, 2016), originally designed as a
markup language to describe the semantics of 3D
simulations. VoxML consists of a library of con-
cepts called the voxicon, where agents and objects
are represented in entries called voxemes, and ac-
tion predicates are represented in entries called
programs. A program outlines a verb’s lexical type
along with its argument and subevent structure, as
shown in Figure 3.

This program is classified as a transition event
(telic) as opposed to a state or a process, aligning
with the lexical aspect of put-01; it continues exe-
cuting until a specific condition has been met, the
result subevent. This characterization is reflected in
the program’s body, outlining a subevent structure
involving grasping and moving the object until the
object is finally at location z.

Voxemes, on the other hand, encode the affor-
dances of objects given the habitats they reside in

Figure 4: The VoxSim implementation of the Weights
Task. At this point in time, two blocks rest on the central
scale, one being grasped by a participant.

(e.g., a cup can only be rolled in a certain orienta-
tion), as well as geometric information for spatial
reasoning. This specification provides insurance
that programs are carried out logically, on the cor-
rect arguments in the correct situations.

4.2 AMR to Executable Annotation

The information encoded by VoxML allows it to
be modelled in a simulated environment called
VoxSim (Krishnaswamy and Pustejovsky, 2016),
allowing us to capture and track persistent changes
to the common ground. Not only can VoxSim sim-
ulate the progression of actions over time, it can
also continually track the relations of objects to
one another and maintain a history of all events. In
our simulation of the Weights Task, displayed in
Figure 4, VoxSim maintains the relative locations
of each block.

To convert AMR to a format usable by VoxSim,
we first require all arguments of AMR annotations
to be grounded with specific entities labeled in the
world. This can be done by linking every entity
node to a string representing the object it refers to
in the video. We then find the VoxML program
entry that corresponds with the AMR’s PropBank
predicate, aligning its arguments semantically with
that predicate’s arguments. A concise executable
annotation structure like the following example
can then be constructed, where GreenBlock and
Table are proper names assigned to entities in the
video:

put(GreenBlock,on(Table))

Through VoxML, this string can be interpreted
as an instruction to execute at a specific timestep
defined in the annotation.
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5 Discussion

We have described an initial exploration of action
annotation within the context of communicative
acts in dialogue. By investigating the application
of AMR and VoxML, we aim for adequate represen-
tations to model the interactions between them, as
well as define simulations that can track the evolv-
ing common ground. This analysis has highlighted
certain challenges associated with annotation and
possible directions for future work in designing
representations.

5.1 Annotation Challenges

We have discussed how high-level actions can be
further broken down into subevents, and how their
lexical aspect must be respected. This poses multi-
ple questions for annotation in practice.

The first issue is granularity. As illustrated in
Figure 3, a putting action can be further broken
down into its subevent structure, minimally involv-
ing a grabbing motion and a holding period. Other
actions, like cutting vegetables, consist of a series
of instantaneous slicing events. Other events can
be easily annotated but may not considerably affect
the state of the world, such as someone blinking.

There are multiple ways to describe a set of ac-
tions, and this introduces ambiguity to the annota-
tion problem. To ensure consistency, an annotation
environment with multiple annotators should agree
on a restricted set of atomic predicates to use, with
well-defined descriptions of what events constitute
each action instance.

The second issue is temporal. As mentioned in
our discussion of lexical aspect, different actions
require different descriptions of how they progress
through time. While processes and accomplish-
ments are defined by an interval of time, achieve-
ments are only defined by a single point. Addi-
tionally, in contrast with speech, individuals often
perform multiple actions simultaneously, such as
when they multitask with both hands. This implies
multiple overlapping intervals.

Annotation software like ELAN (Brugman and
Russel, 2004) can handle simultaneity by plac-
ing intervals on multiple tracks. However, inter-
val annotations alone cannot capture instantaneous
events, which must either be omitted, or always
placed in the context of an accomplishment event.

5.2 Automation of Action Annotation

Though action annotation is a straightforward pro-
cess given a well-defined set of predicates, manual
AMR annotation is more time-consuming. One ap-
proach to the automatic annotation of action AMRs
involves first identifying actions in videos, then
generating AMRs for those actions. Yang et al.
(2022) used the VidSitu dataset (Sadhu et al., 2021)
to train models to both identify the verbs in the
video and fill in their semantic roles. Given a
verb and its arguments, the conversion to AMR
is straightforward.

Another possible approach is to generate nat-
ural language captions for events in the videos,
then parse those captions into AMRs. For example,
Xu et al. (2023) developed a modular multimodal
model that represents the current state-of-the-art
on video captioning on the MSR-VTT dataset (Xu
et al., 2016). We can then leverage AMR parsers
such as Structured mBART with Maximum Bayes
Smatch Ensemble distillation (Lee et al., 2022) to
convert those captions to the graph-based structure.

6 Conclusion

In this paper, we argue that representing actions is
essential for the proper interpretation of situated
dialogues. We describe how AMR can be used
to annotate actions in different types of video in-
teractions, and describe the challenges associated
with this task. We also show how AMRs can be
translated to the VoxML specification language to
encode semantic information, allowing for the abil-
ity to track changes to the common ground in a
simulation environment like VoxSim. In future
work, we plan to further develop our annotation
methodology, and apply it on a larger scale.

Acknowledgments

This research was supported by the NSF National
AI Institute for Student-AI Teaming (iSAT) under
grant DRL 2019805. The opinions expressed are
those of the authors and do not represent views of
the NSF.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic

49



Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 684–
695, Marseille, France. European Language Re-
sources Association.

Julia Bonn, Martha Palmer, Zheng Cai, and Kristin
Wright-Bettner. 2020. Spatial AMR: Expanded spa-
tial annotation in the context of a grounded Minecraft
corpus. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 4883–
4892, Marseille, France. European Language Re-
sources Association.

Susan Windisch Brown, Julia Bonn, Ghazaleh Kazem-
inejad, Annie Zaenen, James Pustejovsky, and
Martha Palmer. 2022. Semantic representations for
nlp using verbnet and the generative lexicon. Fron-
tiers in artificial intelligence, 5.

Hennie Brugman and Albert Russel. 2004. Annotating
multi-media/multi-modal resources with ELAN. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Richard Brutti, Lucia Donatelli, Kenneth Lai, and James
Pustejovsky. 2022. Abstract Meaning Representation
for gesture. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
1576–1583, Marseille, France. European Language
Resources Association.

Justine Cassell, Joseph Sullivan, Elizabeth Churchill,
and Scott Prevost. 2000. Embodied conversational
agents. MIT Press.

Herbert H Clark and Susan E Brennan. 1991. Ground-
ing in communication. Perspectives on socially
shared cognition, 13(1991):127–149.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Jian Ma, Evangelos Kazakos, Da-
vide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. 2022. Rescaling egocentric
vision: Collection, pipeline and challenges for epic-
kitchens-100. International Journal of Computer
Vision (IJCV), 130:33–55.

Mary Ellen Foster. 2007. Enhancing human-computer
interaction with embodied conversational agents.
In International Conference on Universal Access
in Human-Computer Interaction, pages 828–837.
Springer.

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick,
Caroline Pantofaru, Yeqing Li, Sudheendra Vijaya-
narasimhan, George Toderici, Susanna Ricco, Rahul

Sukthankar, et al. 2018. Ava: A video dataset of
spatio-temporally localized atomic visual actions. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6047–6056.

Friedrich Hesse, Esther Care, Juergen Buder, Kai
Sassenberg, and Patrick Griffin. 2015. A framework
for teachable collaborative problem solving skills. In
Assessment and teaching of 21st century skills, pages
37–56. Springer.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al.
2017. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950.

Ibrahim Khebour, Richard Brutti, Indrani Dey, Rachel
Dickler, Kelsey Sikes, Kenneth Lai, Mariah Brad-
ford, Brittany Cates, Paige Hansen, Changsoo Jung,
Brett Wisniewski, C Terpstra, Leanne Hirshfield,
Sadhana Puntambekar, Nathaniel Blanchard, James
Pustejovsky, and Nikhil Krishnaswamy. in review.
When text and speech are not enough: Modeling
meaning in situated collaborative tasks.

Stefan Kopp and Ipke Wachsmuth. 2010. Gesture in
embodied communication and human-computer in-
teraction, volume 5934. Springer.

Nikhil Krishnaswamy and James Pustejovsky. 2016.
Voxsim: A visual platform for modeling motion lan-
guage. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: System Demonstrations, pages 54–58.

Young-Suk Lee, Ramón Astudillo, Hoang Thanh Lam,
Tahira Naseem, Radu Florian, and Salim Roukos.
2022. Maximum Bayes Smatch ensemble distilla-
tion for AMR parsing. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5379–5392, Seattle,
United States. Association for Computational Lin-
guistics.

Ang Li, Meghana Thotakuri, David A Ross, João Car-
reira, Alexander Vostrikov, and Andrew Zisserman.
2020. The ava-kinetics localized human actions
video dataset. arXiv preprint arXiv:2005.00214.

Paul Marshall and Eva Hornecker. 2013. Theories of
embodiment in HCI. The SAGE Handbook of Digital
Technology Research, 1:144–158.

Christian Matthiessen and John A. Bateman. 1991. Text
generation and systemic-functional linguistics: expe-
riences from English and Japanese. Burns & Oates.

OpenAI. 2022. Introducing ChatGPT. https://
openai.com/blog/chatgpt.

OpenAI. 2023. GPT-4 technical report. arXiv.

50



Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, and Martha Palmer. 2018. Amr
beyond the sentence: the multi-sentence amr corpus.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 3693–3702.

Martha Palmer, Dan Gildea, and Paul Kingsbury. 2003.
The proposition bank: an annotated corpus of seman-
tic roles. Computational Linguistics.

OECD PISA. 2015. Assessment and analytical frame-
work: Science. Reading, Mathematics and Financial
Literacy, PISA.

James Pustejovsky. 2013. Dynamic event structure and
habitat theory. In Proceedings of the 6th Interna-
tional Conference on Generative Approaches to the
Lexicon (GL2013), pages 1–10.

James Pustejovsky and Nikhil Krishnaswamy. 2016.
Voxml: A visualization modeling language. arXiv
preprint arXiv:1610.01508.

James Pustejovsky and Nikhil Krishnaswamy. 2021.
Embodied human computer interaction. KI-
Künstliche Intelligenz, 35(3):307–327.

Arka Sadhu, Tanmay Gupta, Mark Yatskar, Ram Neva-
tia, and Aniruddha Kembhavi. 2021. Visual semantic
role labeling for video understanding. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5589–5600.

Stefan Schaffer and Norbert Reithinger. 2019. Con-
versation is multimodal: thus conversational user
interfaces should be as well. In Proceedings of the
1st International Conference on Conversational User
Interfaces, pages 1–3.

Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. 2016.
Hollywood in homes: Crowdsourcing data collec-
tion for activity understanding. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings,
Part I 14, pages 510–526. Springer.

Robert Stalnaker. 2002. Common ground. Linguistics
and Philosophy, 25(5-6):701–721.

Chen Sun, Valerie J Shute, Angela Stewart, Jade Yone-
hiro, Nicholas Duran, and Sidney D’Mello. 2020.
Towards a generalized competency model of collab-
orative problem solving. Computers & Education,
143:103672.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and
Cynthia Matuszek. 2020. Robots that use language.
Annual Review of Control, Robotics, and Autonomous
Systems, 3:25–55.

Michael Tomasello and Malinda Carpenter. 2007.
Shared intentionality. Developmental Science,
10(1):121–125.

Jingxuan Tu, Eben Holderness, Marco Maru, Simone
Conia, Kyeongmin Rim, Kelley Lynch, Richard
Brutti, Roberto Navigli, and James Pustejovsky. 2022.
Semeval-2022 task 9: R2vq–competence-based mul-
timodal question answering. In Proceedings of the
16th International Workshop on Semantic Evaluation
(SemEval-2022), pages 1244–1255.

Zeno Vendler. 1957. Verbs and times. The Philosophi-
cal Review, pages 143–160.

Wolfgang Wahlster. 2006. Dialogue systems go mul-
timodal: The SmartKom experience. In SmartKom:
foundations of multimodal dialogue systems, pages
3–27. Springer.

Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo
Ye, Yuanhong Xu, Chenliang Li, Bin Bi, Qi Qian,
Wei Wang, Guohai Xu, Ji Zhang, Songfang Huang,
Fei Huang, and Jingren Zhou. 2023. mPLUG-2: A
modularized multi-modal foundation model across
text, image and video. arXiv.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-
vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5288–5296.

Guang Yang, Manling Li, Jiajie Zhang, Xudong Lin,
Shih-Fu Chang, and Heng Ji. 2022. Video event
extraction via tracking visual states of arguments.

51



Proceedings of the 4th International Workshop on Designing Meaning Representations, pages 52–67
June, 2023. ©2023 Association for Computational Linguistics

From Sentence to Action: Splitting AMR Graphs for Recipe Instructions

Katharina Stein1 Lucia Donatelli2 Alexander Koller1

1 Department of Language Science and Technology
Saarland Informatics Campus

Saarland University, Saarbrücken, Germany
2 Vrije Universiteit Amsterdam

De Boelelaan 1105, 1081 HV Amsterdam, Netherlands
kstein@lst.uni-saarland.de

Abstract
Accurately interpreting the relationships be-
tween actions in a recipe text is essential to suc-
cessful recipe completion. We explore using
Abstract Meaning Representation (AMR) to
represent recipe instructions, abstracting away
from syntax and sentence structure that may or-
der recipe actions in arbitrary ways. We present
an algorithm to split sentence-level AMRs into
action-level AMRs for individual cooking steps.
Our approach provides an automatic way to de-
rive fine-grained AMR representations of ac-
tions in cooking recipes and can be a useful
tool for downstream, instructional tasks.

1 Introduction

Procedural texts are special kinds of text that serve
the purpose of guiding humans through the steps
required to accomplish a specific task. Recipe texts
are an idiosyncratic kind of procedural texts whose
successful execution depends on accurately inter-
preting which actions need to be carried out in
which order and which ingredients and tools are
involved in each step. For example, the instruc-
tion “Turn the dough out onto a surface dusted
with flour and knead briefly until smooth.” presents
three actions: (i) dusting a surface; (ii) placing the
dough on that surface; and (iii) kneading the dough
until smooth. In recipe texts, actions often depend
on other actions but there is often flexibility with
respect to the overall order in which actions are
instructed as some actions can take place in paral-
lel or can be carried out at different stages of the
cooking process. For example, dusting the surface
could be instructed before preparing the dough.

Recipe texts frequently combine several actions
in one sentence and often there are no uniform
methods for putting specific actions into the same
instruction; different versions of the same recipe
may even differ in how equivalent or parallel ac-
tions are distributed across sentences.

Tasks such as adapting a recipe to a specific
situation or presenting a recipe interactively to a
user require the generation of a coherent recipe text
that presents actions in a potentially different order
and combination. To flexibly generate new versions
of a recipe that present actions in an adapted order
it is necessary to correctly decompose the recipe
into the individual actions.

Previous work on recipe texts proposed identify-
ing cooking actions and objects in recipes and rep-
resenting the dependency relations between them in
domain-specific graph representations with nodes
for actions, ingredients and tools (Mori et al.,
2014a; Yamakata et al., 2020). These represen-
tations are attractive for fine-grained analysis of
recipe texts but lack the expressivity to represent
details such as adverbs or relations such as condi-
tions and alternatives. Yet, this kind of information
is important for correctly reconstructing the origi-
nal meaning when generating instructions.

We explore generating recipe instructions at the
action level from Abstract Meaning Representation
(AMR) graphs. AMR is able to represent fine-
grained and rich semantic relations, and its focus
on predicate-argument structure makes it attractive
for representing cooking instructions. Yet, AMR
is a sentence-level representation that represents
individual sentences in individual graphs.

This paper addresses the challenge of splitting
sentence-level AMR graphs into the individual
action-level AMRs. We present a splitting algo-
rithm that considers the semantic relationships be-
tween actions in recipe instructions (§3)1. We eval-
uate our approach in a direct manual evaluation
of the action-level representations as well as in an
automatic and human evaluation of recipes gener-
ated from the created representation (§4). Findings

1Code and documentation is available at
https://github.com/interactive-cookbook/
recipe-generation
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show that our algorithm accurately identifies action-
level subgraphs in AMR recipe representations,
suggesting its utility for AMR representations of
procedural texts and for generating action-level in-
structions.

2 Related Work

At first glance, recipe texts may look quite simple.
Yet recipe texts are semantically quite complex:
subjects of actions are implicit, often as a result of
being written in imperative mood; anaphoric ex-
pressions often refer to intermediate products that
are outputs of actions and only partially corefer to
input ingredients; and zero anaphora objects are
frequent. To model recipe structure, most work on
recipe text involves the identification and tagging
of cooking actions, ingredients, intermediate sub-
stances and tools which get then used to create a
structured representation (Mori et al., 2014a; Ya-
makata et al., 2020; Donatelli et al., 2021; Liu et al.,
2022, inter alia). The most common representation
approaches are graph and tree structures, which
represent the flow and dependencies of actions and
involved entities (Mori et al., 2014a; Jermsurawong
and Habash, 2015; Kiddon et al., 2015; Yamakata
et al., 2016, 2020; Donatelli et al., 2021).

The Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) framework represents the
meaning of sentences with a focus on predicate-
argument relationships, a key component of recipe
structure. Figure 1a shows the AMR for the instruc-
tion “Turn the dough out onto a surface dusted
with flour and knead briefly until smooth.” on the
left. As shown, AMRs are rooted, directed graphs
in which nodes correspond to concepts and edges
to the semantic relations between concepts. The
framework makes use of a rich set of node and edge
labels including frames from PropBank (Palmer
et al., 2005), and within-sentence coreference is
represented by re-entrancy.

Previous work on adapting AMR to the non-
sentence level proposes approaches to create a
multi-sentence AMR representation (O’Gorman
et al., 2018; Naseem et al., 2022) or dialogue AMR
graphs (Bai et al., 2021) but essentially keeps the
sentence-level AMRs as part of the extended repre-
sentations. AMR has also been used in the tasks of
summarization (Liu et al., 2015; Lee et al., 2021)
and text style transfer (Jangra et al., 2022).

3 Creating Action-Event AMRs

3.1 Actions and Action Events

Recipe texts should enable a cook to successfully
prepare a dish by guiding them through the basic
steps of the process. Yet, recipes rely on much
commonsense knowledge for accurate interpreta-
tion, often combining several actions in one sen-
tence or making only implicit reference to required
actions. For example, “Turn the dough out on a
surface dusted with flour and knead until smooth.”
conjoins the two steps of placing the dough on a
surface and kneading it, mentioning the dusting of
the surface only implicitly.

In previous work, the term action has been used
in various ways. In some work, it refers to the
action predicate together with its arguments (e.g.
Kiddon et al., 2015; Liu et al., 2022). Often, only
the action predicates themselves are referred to as
an action (e.g. Mori et al., 2014b; Chang et al.,
2018; Yamakata et al., 2020; Donatelli et al., 2021;
Sakib et al., 2021). Trained taggers then identify
corresponding spans of action predicate tokens.

To differentiate the two concepts, we use the
term action to refer to an action predicate from
here on and we introduce the concept of an action
event to refer to an action predicate and all infor-
mation belonging to it. In particular, we define an
action event of a recipe as an individual action to be
carried out by the cook together with all informa-
tion (ingredients, time, result state, etc.) relevant to
successfully complete the action. Importantly, not
all actions in a sentence belong to different action
events under this definition as we illustrate with ex-
amples from the action-tagged recipe corpus from
Donatelli et al. (2021) shown in Table 12. To dis-
tinguish actions and action events, we make use of
the predicate-argument based structure of AMR.

3.2 From Sentences to Action Events

AMR parsers typically predict one graph per sen-
tence. Figure 1a presents two successive recipe
instructions with the tagged actions shown in
color; the corresponding sentence-level AMRs (S-
AMRs) (i) and (ii); and a part of the action graph
for the recipe (iii). The action graph consists of
one node for each action and the edges represent
their dependencies (Donatelli et al., 2021). Each of
the two S-AMRs includes nodes corresponding to
different actions. For both action and AMR graphs,

2Examples presented are shortened or slightly modified.
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(1) Place cooked chicken on paper towel to drain the oil.
(2) Stir in the chocolate chips by hand using a wooden spoon.
(3) Bake for 30 minutes, or until a toothpick comes out clean.
(4) Gradually add the water, while mixing.
(5) Let the loafs cool for 10 minutes before turning onto a wire rack.
(6) Divide the batter evenly among the mini loaf pans or pour into large loaf pan.
(7) If it is still a little bit lumpy, you can add a touch of heavy cream, and blend again.

Table 1: Examples of multi-action recipe instructions. Actions in the same color belong to the same action event.

(a) The S-AMRs for “Place the dough onto a surface dusted with flour and knead briefly until smooth.” (i), “Let the
dough rise for 1 hour.” (ii) and a part of the action graph of the recipe to which the instructions belong (iii).

(b) The A-AMR graphs for the four action events ”dust” (i), ”turn out” (ii), ”knead” (iii) and ”let rise” (iv).

Figure 1: The different of graph representations we build upon in our work (1a) and the graphs we produce (1b).

we say that a node is aligned to the action (predi-
cate) it corresponds to. Additionally, we say that
an AMR graph is aligned to an action event if at
least one node in the AMR is aligned to an action
belonging to the action event.

Our goal is to split the S-AMRs into individ-
ual AMRs for action events (A-AMRs) such that
each A-AMR includes exactly the actions from that
event and all other nodes that belong to the action
event, as shown in Figure 1b. Figure 1 illustrates
several key aspects of this process. First, action
aligned AMR nodes that belong to the same action
event, such as let-01 and rise-01, are always
kept together. Second, each A-AMR contains only
action nodes from a single action event. Different
actions may share arguments as they operate on the
same substances or tools, e.g. dough is the direct
object of both ”turn out” and ”knead” and belongs
to both action events. Our algorithm does not split
an S-AMR into A-AMRs consisting of disjoint sets

of nodes but selects the subgraph of the S-AMR
that consists of nodes and edges belonging to the
action event. Finally, the action graph allows us to
properly order action events.

3.3 Datasets

As our main dataset, we use the ARA1.1 cor-
pus3 (Donatelli et al., 2021) which provides action
graphs for 110 recipes spanning 10 dishes of the
recipe corpus from Lin et al. (2020). We exclude
three recipes and refer to the set of the remaining
recipes as ARA1. We use an additional set of 110
recipes spanning 10 dishes as a secondary dataset
(ARA2) to refine and validate our approach and use
the tagger and parser from Donatelli et al. (2021)4

to obtain the action tags and action graphs we use.

3https://github.com/
interactive-cookbook/ara

4https://github.com/
interactive-cookbook/tagger-parser
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Label node1 LPath Label node2
1) action ⟨ ARGX (opX)1 ⟩ action
2) action ⟨ direction (opX)1 ⟩ action
3) action ⟨ (edge)∗ relation (edge)∗ ⟩ action

where relation is equal to purpose, manner, instrument, time or duration
4) action ⟨ opX, opX-of ⟩ action
5) action ⟨ ARGX, ARGX-of ⟩ action

Table 2: Path patterns between two action-aligned AMR nodes that should be clustered together. action and
edge can be any node or edge label, round brackets are used for optional labels on the LPath, ()1 meaning zero
or exactly one occurrence and ()∗ allowing any number of occurrences.

The full list of dishes and exclusion criteria can be
found in Appendix A.

For our approach we rely on the availability of
node-to-token alignments to determine to which
action events each AMR is aligned. We obtain the
S-AMRs for the recipes by parsing each sentence
using the transition-based AMR parser of Drozdov
et al. (2022)5 (henceforth StructBART). The parser
includes a neural aligner to predict node-to-token
alignments needed for training and produces the
alignments as a by-product during parsing.

3.4 Splitting Algorithm

Obtaining A-AMRs from S-AMRs consists of two
main steps: (i) deciding which action-aligned AMR
nodes correspond to the same action event and (ii)
creating one A-AMR per action event from the S-
AMR, i.e. extracting the appropriate subgraph. We
focus on the overall process and the main decision
rules in this section. The full set of clustering and
splitting rules can be found in Appendix C.

Both steps of the process are based on the con-
cepts of labelled paths (LPath) and meeting
nodes. We define a path between two nodes u and
v as a sequence of edges between two nodes where
edges can be traversed in either direction and each
node is visited only once. A labelled path is the se-
quence of the labels of edges of a path where edges
that are traversed in reverse direction receive their
reverse role label. For example, the LPath between
dust-01 and turn-out-11 in the left AMR
(i) in Figure 1a is ⟨ARG2, location-of⟩. We
then define a meeting node as a node on a path
at which two successive edges change their direc-
tion, i.e. where one edge is traversed in its orig-
inal direction and the next edge in reverse direc-
tion or the other way round. On the path between
dust-01 and and turn-out-11, there is one

5amr3.0-structured-bart-large-neur-al-sampling5-
seed42 from https://github.com/IBM/
transition-amr-parser

meeting node: surface.
The label of an edge between two action nodes

represents the relation between them. LPaths allow
us to capture relations between two action nodes
that are further away, which we use to decide if two
actions belong to the same action event. Meeting
nodes are shared predecessor or successor nodes
of two action nodes and intuitively correspond to
nodes that belong to both action events such as
shared arguments or conjunctions.

3.4.1 Clustering

Let Mi be the S-AMR for the i-th instruction in
a recipe and let A be the set of all nodes of Mi

aligned to different actions6. The clustering step
groups all nodes a ∈ A into disjoint action clusters
⟨C1, ...⟩ such that actions from the same action
event are in the same cluster. It starts by creating all
possible pairings of nodes from A. Then for each
pair (ai, aj) all possible paths and LPaths between
the nodes get computed and checked against a set
of rules. Table 2 lists the main patterns used for the
clustering rules: if the two action nodes ai, aj and
one of their LPaths match any of the patterns 1) - 3),
ai and aj are clustered together. The patterns match
the ways in which AMR represents the relations
between actions of the same event. For example,
1) covers cases with discontinuous action spans
and 3) can capture complex relations such as time
specifications, even in nested structures.

If pattern 4) or 5) matches, we check whether
the meeting node is labelled or, slash or
contrast-01 to make sure conjoined actions
are not clustered together. Larger action clusters
are built such that for each clustered pair (ai, aj)
ai and aj end up in the same final cluster Cn. If
an S-AMR has or, slash, possible-01 or
have-condition-91 as the root node, A is
treated as a single action cluster.

6If more than one AMR node is aligned to the same action
we ignore the ones not labelled with a predicate frame.
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(a) Creating A-AMR for turn-out
Step 1

(b) Creating A-AMR for turn-out
Step 2

(c) Creating A-AMR for turn-out
Step 3

(d) Creating A-AMR for turn-out
Step 4

(e) Creating A-AMR for knead Step
1

(f) Creating A-AMR for knead Step
2

Figure 2: Step-by-step example of obtaining the A-AMRs from the S-AMR in Figure 1. Nodes from the current
target cluster are shown as rectangles and edges that get removed as dotted edges. Creating the A-AMR for dust
and the final postprocessing step are not shown. Edge labels are left out.

3.4.2 Splitting

If an S-AMR graph is aligned to more than one
action cluster, the splitting algorithm is applied
with the goal to obtain one A-AMR per cluster.
Similar to the clustering approach, the splitting
algorithm is based on the paths between action-
aligned AMR nodes and meeting nodes.

The splitting algorithm always operates on one
S-AMR and one target action cluster. The A-AMR
gets created by iteratively removing nodes or edges
until deriving one connected subgraph that con-
tains all action nodes from the target cluster and
no action nodes from any other clusters. Figure
3 presents the main structure of the algorithm: it
starts by pairing each node from the target action
cluster with all other action nodes, i.e. the pairs of
all nodes that should not be connected anymore in
the end. All paths from nodes of the target cluster
to another cluster are considered for removing an
edge or a node in order to separate the actions from
each other. The shortest paths are considered first
as they are usually the more meaningful paths that
are captured by the removal conditions of the algo-
rithm. The main rule checks for paths that consist
of exactly one direction change, i.e. include one
meeting node. If a path fulfills this condition then
the edge “behind” the meeting node gets removed.

Figure 2 illustrates the removal steps applied
to derive the three A-AMRs (i-iii) from Figure
1b from the left S-AMR (i) in Figure 1a. The S-
AMR includes three nodes aligned to an action

1. create a set Q of node pairs by pairing each
action node from Cj with each node from the
other clusters

repeat
2. create a sequence P of all paths for all pairs

in Q, ordered by length in ascending order
3. if P = ∅ then break
4. for p in P do

(a) if CONDITION do REMOVAL and
continue from 2.

5. if the graph does not change anymore then
return original graph

end repeat
6. select the connected subgraph that includes

the nodes from the current cluster Cj as the
A-AMR for that action event

Figure 3: The main structure of the splitting algorithm
given an S-AMR and a target action cluster Cj

node and the clustering results in three action clus-
ters. Starting with the A-AMR for turn-out,
one of the shortest paths connects turn-out and
dust and consists of exactly one direction change
at the shared child node surface. Therefore, the
edge between (surface,dust) gets removed
from the graph, as illustrated in Figure 2a. Af-
ter removing an edge, the algorithm recomputes
the set of all paths for the modified AMR.

There are still paths left inP , so the splitting con-
tinues. Figure 2b and 2c summarize the next four
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iterations, in which the connecting paths between
turn-out and knead get broken up. When no
path between turn-out and any other action
node is left then the connected component of the
graph including that action gets selected as the A-
AMR (see 2d).

The algorithm continues with the action cluster
for knead. Removing the edges from the three
shortest paths between knead and turn-out
gets rid of all connecting paths resulting in the
subgraph for knead (see 2f). Lastly, the A-AMR
for dust gets created in the same way. A postpro-
cessing step transforms the subgraphs into the final
A-AMRs as shown in Figure 1b by removing redun-
dant nodes and representing actions that originally
were participles such as dust as imperatives.

An important characteristic of the algorithm is
that it ensures that no nodes from the original S-
AMR get lost except if removed by the rules them-
selves. If the splitting results in A-AMRs that do
not cover all nodes from the original S-AMR, the
S-AMR gets treated as non-separable. The same
holds if any of the action clusters cannot be sepa-
rated from all other clusters.

4 Evaluation

4.1 Manual Evaluation

We apply the splitting approach to the S-AMR
graphs of the ARA1 and the ARA2 recipes. Table
3 provides an overview over the original datasets
as well as the output of the splitting algorithm.
The dataset of A-AMRs created by the splitting ap-
proach consists of 1396 AMR graphs for the ARA1
recipes out of which 584 A-AMRs are equivalent
to the original S-AMR. For the ARA2 dataset the
splitting results in a total of 1471 A-AMRs out of
which 648 get not modified. Few S-AMRs can-
not be separated into individual A-AMRs by our
algorithm, proving its effectiveness.

To evaluate the splitting algorithm, we manually
compare all original S-AMRs to the generated A-
AMRs. In the ARA1 dataset we identified 64 A-
AMRs that were incorrect relative to the source
S-AMRs: either they were split incorrectly or not
split although they should have been.7 For 46 out
of the 64 incorrect A-AMRs, the initial mistake
already happens before the splitting process, i.e. in
the action tagging step or during AMR parsing. In
the ARA2 dataset, there are 68 incorrect A-AMRs

7We evaluate the “correctness” of the A-AMR given the
S-AMR predicted by the StructBART parser.

ARA1 ARA2
Recipes / action graphs 107 110
Action nodes 1583 1771
Sentences / S-AMRs 941 1001
Action clusters 1391 1473
A-AMRs 1396 1471
Non-separable S-AMRs 14 13
Incorrect A-AMRs 64 68

Table 3: Overview of the ARA1 and ARA2 datasets
(upper part) and the results from applying the splitting
algorithm (lower part).

and for 58 of them the source mistake happens
before the splitting step. We also identified cases
for which the decision how to split the S-AMR is
not straightforward. These cases will be discussed
together with the limitations of the algorithm in
Section 5.

4.2 NLG-based Evaluation
In addition to evaluating the splitting approach
based on the output graphs themselves, we conduct
a task-related evaluation. A potential use case for
the fine-grained A-AMR graphs is the generation of
recipe instructions at the action-event level in order
to recombine them flexibly or present them incre-
mentally to a user, e.g. to guide a user through the
cooking process step by step in real-time. There-
fore, we generate recipe instructions from the A-
AMRs and evaluate them both automatically and
manually with crowdsourced human evaluation.

To obtain gold instructions for the individual A-
AMRs we use a rule-based heuristic. Another ap-
proach to obtain instructions corresponding to the
A-AMRs would be to use an AMR-to-text model.
However, as AMR parsers, AMR-to-text models
are usually trained on the AMR3.0 corpus8. There-
fore, the sentences generated by them for the A-
AMRs might not resemble the style of recipe in-
structions (see §5). Splitting the instructions heuris-
tically gives us a dataset on which we can fine-tune
an AMR-to-text model for the recipe domain. Ad-
ditionally, we can use the data to automatically
evaluate and compare different models.

Our extraction heuristic is based on the node-
to-token alignments produced by the parser and
creates the gold instructions by selecting all tokens
from the original instruction to which nodes in the
specific A-AMR are aligned. Additionally, we use
a set of rules based on POS tags to decide about
the selection of unaligned tokens and to reorder

8https://catalog.ldc.upenn.edu/
LDC2020T02
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Model BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR BLEURT
amrlib 44.00 74.9 45.96 68.88 72.38 38.28
GART5-0 56.15 ±1.2 84.63 ±0.5 62.88 ±1.3 80.28 ±0.7 82.09 ±0.7 59.42 ±1.8
GART5-1 57.84 ±1.3 85.75 ±0.4 65.98 ±0.9 81.91 ±0.7 83.47 ±0.6 62.64 ±1.5

Table 4: Results on the ARA1 test split averaged over 6 different seeds (± standard deviation).

Grammar Fluency Verbosity Structure Success Overall
Dependency 2.88 2.58 3.26 3.33 3.40 2.76
GART5-0 3.80 3.27 3.45 3.47 3.31 3.022
GART5-1 3.62 3.02 3.15 3.20 3.01 2.74
Original 5.25 5.13 5.30 5.28 5.14 5.06

Table 5: Mean evaluation scores from the human evaluation per rating criterion for the recipes generated with
context (GART5-1), without context (GART5-0) and by the dependency baseline and for the original recipe.

the selected tokens to improve the grammar (see
Appendix A.1 for an example). Participle actions
get stemmed to their imperative form. Overall, 812
and 823 of the A-AMRs of the ARA1 and ARA2
recipes get a new instruction out of which around
85% (ARA1) and 80% (ARA2) are grammatical.

4.2.1 Generation Set-up
For the generation, we use the AMR-to-text model
from the amrlib library9 (amrlib model from here
on), a pre-trained T5 model fine-tuned on the
AMR3.0 corpus for AMR-to-text generation. We
further fine-tune the amrlib model on the A-AMR
dataset for the ARA1 recipes which we split into
training (86), validation (11) and test (10) recipes.

Instead of passing a single linearized AMR
graph we prepend the previous sentence as con-
text information to the linearized AMR. For each
recipe, we order the AMR-instruction pairs simi-
larly to the instructions in the original recipe. A-
AMRs obtained from the same S-AMR get ordered
relative to each other based on the action graph
such that e.g. “Dust a surface with flour.” comes
before “Turn dough out onto the surface.”.

The amrlib model then gets fine-tuned to pre-
dict the sentence for the AMR-graph based on
the AMR-graph and the context. Details about
fine-tuning can be found in Appendix A. We call
our generation model GART5 (Generating Action-
level Recipes based on T5)10.

4.2.2 Automatic Evaluation
For the automatic evaluation, each A-AMR gets
paired with the previous sentence from the original

9https://github.com/bjascob/
amrlib-models/releases/model_generate_
t5wtense-v0_1_0

10Code for the training is available at https:
//github.com/interactive-cookbook/
recipe-generation-model

recipe as context. We then fine-tune our model
on the graph-context pairs from the train recipes
(GART5-1) and compare the results on the test
recipes to two baselines: the texts generated by
the original amrlib model11 and instructions gen-
erated by a model fine-tuned on the recipe dataset
without context (GART5-0). Additional ablation
experiments can be found in Appendix A.2.

Table 4 presents the results of the automatic eval-
uation. Our GART5-0 model without context per-
forms considerably better than the amrlib model
on the A-AMR ARA1 test split across all metrics,
achieving an improvement of 12 points in BLEU
score and even 21 BLEURT points. Adding context
in the fine-tuning step results in an additional - but
smaller - improvement across all metrics.

4.2.3 Crowd-sourcing Evaluation

In addition to the automatic evaluation, we conduct
a human evaluation to get a more thorough and
reliable assessment of the quality of the generated
texts. 88 participants recruited via Prolific12 judged
various measures of coherence and acceptability for
the generated instructions. Participants were paid
£2.25 for their on average 15-minute participation.

We included each recipe from the test split in
four versions. One version was generated with the
GART5-0 and and one with the GART5-1 model,
where the sentence generated at the previous time
step was passed as context. As baseline recipes, we
create action-level instructions from the original
instructions by splitting them based on syntactic
dependencies. Additionally, we include the original
recipes as an upper bound. In the original condition,
the instructions of each recipe were presented in

11We remove the node-to-token alignments from the input
to reproduce the format the amrlib model was trained on.

12https://www.prolific.co/
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Dependency GART5-0 GART5-1
Pour over the flour mixture. Pour in flour mixture. Pour in flour mixture.
And very gently stir. Stir very gently until about combined. Stir very gently until about combined.
Until about combin.
Melt butter. Melt butter. Melt butter.
Stir in the butter. Stir in butter. Stir butter.
And continue mixing very gently until
combined.

Continue mixing very gently until
combined.

Continue to mix very gently until com-
bined.

Beat egg whites until stiff. Beat egg whites until stiff. Beat in egg whites until stiff.
Preheat iron. Preheat waffle iron. Preheat waffle iron.
And slowly fold into batter. Slowly fold in egg whites into batter. Slowly fold in egg whites into the batter.
Spoon the batter into waffle iron in
batches.

Save batter in batches on waffle iron. Scoop the batter in batches onto waffle
irons.

And cook according to its directions. Cook batter according to directions. Cook the batter according to its direc-
tions.

Original
Pour over the flour mixture and very gently stir until about combined.
Stir in the melted butter and continue mixing very gently until combined.
Beat egg whites until stiff and slowly fold into batter.
Spoon the batter into preheated waffle iron in batches and cook according to its directions.

Table 6: An excerpt from a recipe for waffles in the four versions that were included in the crowd-sourcing
evaluation.

their original order. In the other conditions, the
order of the generated instructions was determined
by traversing the corresponding action graph using
a heuristic (see Appendix B).

Participants were presented two recipes per con-
dition and they rated the textual quality of each
recipe along six criteria on a six-point Likert Scale.
Table 5 presents the results of the evaluation13. The
original human written recipes were rated signifi-
cantly better than the recipes from all other condi-
tions for each rating criterion. Against our expecta-
tions and in contrast to the results of the automatic
evaluation, we find that recipes generated with or
without context were not rated significantly dif-
ferent with respect to their grammar, fluency and
structure, but the recipes without context were rated
significantly better with respect to their verbosity,
success and overall quality. The grammar and flu-
ency was rated worst in the dependency baseline.

5 Discussion

In this section we discuss the performance of our
splitting algorithm and the results of the generation
experiments in more detail.

Splitting algorithm. As described in §4.1, the
splitting approach can successfully separate the
S-AMRs of almost all instructions in the ARA1
and ARA2 recipes into A-AMRs. The iterative

13Statistical significance testing was performed using the
software R (R Core Team, 2021) and the lme4 package (Bates
et al., 2015). We used linear mixed effect models with condi-
tion as fixed effect, and by-subject and by-item intercepts and
slopes as random effects, p < 0.05.

approach of removing edges at meeting nodes al-
lows to split even deep and nested S-AMRs for
long instructions successfully. For example, one of
the instructions with the highest number of action
events, “Remove from oven and let cool on wire
rack for about 10 minutes before turning bread out
onto wire rack and letting cool completely before
slicing, toasting, and devouring.” gets correctly
separated into seven A-AMRs.

Many of the A-AMRs that are incorrectly split
are based on a wrong S-AMR. We found that
often the same tokens or specific types of to-
kens lead to parsing mistakes and that these to-
kens are mostly specific to the recipe domain
(e.g. “grease”, “Parmesan”, “knead”). These ob-
servations are in line with the findings from Bai
et al. (2021) that the main challenge for out-of-
domain AMR parsing is the correct prediction
of concepts. Additionally, when ignoring split-
ting mistakes resulting from parsing mistakes, al-
most all incorrect A-AMRs contain one of the fol-
lowing concepts: mean-01, have-degree-91
and have-quant-91. These concepts are used
to represent complex relations and they introduce
path patterns into the AMR that are quite different
and not covered by our algorithm.

Finally, during the manual evaluation of the A-
AMRs we encountered a number graphs for which
it is not straightforward to decide whether the spe-
cific splitting is adequate because of the specific
semantic characteristics and especially temporal
interactions of the actions. For example, “Bring a
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pot of salted water to a boil.” gets split into “Salt
water.” and “Bring a pot of water to a boil.”. How-
ever, none of the two potential orderings of the
instructions is entirely adequate. On the one hand,
the salt should be added before boiling the water.
On the other hand, the water cannot be salted be-
fore it is filled into a pot but the “filling” action is
only implicitly included in the original instruction.

Generated texts. In the automatic evaluation,
fine-tuning on our recipe AMR dataset resulted in
a considerable improvement compared to gener-
ating the instructions with the pretrained amrlib
model. We found that the amrlib model struggles
to produce the recipe specific writing style. For
example, the amrlib model generates “Stir for a
commingling” where the GART5 models generate

“Stir to combine”.
In contrast to the automatic evaluation, we found

that in the human evaluation the recipes generated
with context were not judged significantly better.
Table 6 shows an excerpt of a recipe for waffles in
the four versions rated in human evaluation. Over-
all, the instructions generated by the two GART5
models are very similar. In our opinion, the most
likely explanation for the different results is that
the higher automatic evaluation scores are artifacts
of the reference-based score computation and do
not reflect real differences in quality.

The performance of the AMR parser also af-
fected the quality of the generated texts as wrong
concepts in the AMR lead to inadequate or non-
sensical instructions. For example, representing
“spoon” in the last instruction of the original ver-
sion with save-01 resulted in a wrong instruction
generated by GART5-0.

General discussion. Our findings suggest that
AMR representations are promising for represent-
ing and generating recipe instructions at the action
level. The focus on predicate-argument structure
makes them attractive for the representations of in-
structions as they center around actions and objects
required to carry them out. Additionally, AMR
graphs provide rich and fine-grained information
about the semantic relations, the dependencies and
also within-sentence coreference which makes it
possible to identify the individual action events and
to split even S-AMRs for long and nested instruc-
tions into their A-AMR components.

Furthermore, our approach produces again rich
representations of the action events from which
instructions for the individual action events can

be generated. Heuristically splitting the textual
instructions instead of the AMR representations
would require a combination of different tools to
predict all the relevant information such as depen-
dencies and semantic roles. Additionally, splitting
the instructions at the text level using our depen-
dency baseline more often resulted in ungrammati-
cal sentences as reflected by the significantly higher
grammar and fluency ratings for the texts generated
from the A-AMRs compared to the baseline.

6 Conclusion & Future Work

We have presented an approach to split sentence-
level AMR representations for cooking recipe in-
structions into more fine-grained AMR represen-
tations of the individual action events. Our rule-
based algorithm provides an automatic way to
identify which cooking actions in a recipe instruc-
tion constitute separate action events to be car-
ried out and to systematically breaking up the
sentence-level AMRs into representations of the
action events that provide more concise instruc-
tions. The predicate-argument oriented structure
of AMR facilitates this process, and our approach
achieves high performance on accurately breaking
up the S-AMRs to more concise representations
that can be used to generate instructions.

One bottleneck of our approach is the perfor-
mance of the AMR parser in the domain of cook-
ing recipes. Future work might investigate adapting
AMR parsers to out-of-domain recipe vocabulary
and processes. Regardless, representations of ac-
tion events can support analysis and comparisons
of actions in different cooking recipes as well as
instruction generation in tasks that require more
flexibility with respect to the exact order in which
actions are instructed. As the presented approach
makes use of the domain-independent structure of
AMRs, we expect that it can generalize to other
procedural texts, as well.
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A Experiments

A.1 Model Training and Evaluation

Dataset. We restrict the recipes for our work to
those recipes of the ARA1 corpus that describe the
preparation of only one dish in a continuous text.
Three of the 110 recipes do not meet this criterion
and get excluded. The ten recipes for the test split
were chosen manually based on the criteria that
the original recipe text should not be shorter than
6 sentences and not include a lot of additional in-
formation or noise (e.g. nutrition lists). In order
to avoid selecting recipes that are particularly easy
for our approach, the recipes were selected by a
student who was not familiar with the performance
of the different parts of the pipeline on different
kind of instructions and linguistic constructions.
The test split consists of one recipe for each of the
ten ARA1 dishes and comprises 151 A-AMR - sen-
tence pairs in total. The remaining 97 recipes were
randomly split into training and validation data.

ARA1
Baked Ziti, Blueberry Banana Bread,
Cauliflower Mash, Chewy Chocolate Chip
Cookies, Garam Masala, Homemade Pizza
Dough, Orange Chicken, Pumpkin Choco-
late Chip Bread, Slow Cooker Chicken Tor-
tilla Soup, Waffles
ARA2
Bananas Foster, Chocolate Glaze, Cobb
Salad, English Muffin Bread, Homemade
Graham Crackers, How to Roast Garlic,
Lavender Lemonade, Peanut Butter Bars,
Sausage Grave, Southern Sweet Tea

Table 7: List of the Dishes from ARA1 and ARA2.

Gold instructions. Our extraction heuristic
makes use of the node-to-token alignments pro-
duced by the AMR parser. Figure 4 shows the
A-AMRs resulting from splitting the S-AMR for

“Top with shredded mozzarella cheese” in PENMAN
notation. We obtain the two corresponding gold
instructions “Shred mozzarella cheese” and “Top
with mozzarella cheese” by selecting all tokens
from the original instruction to which nodes in the
specific A-AMR are aligned. Tokens that have
alignments to nodes in more than one A-AMR
from the same S-AMR are included in the gold
instruction for each of the A-AMRs (e.g. “moz-
zarella” and “cheese”.) We use a set of rules based
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Figure 4: The A-AMRs obtained from the S-AMR for “Top with shredded mozzarella cheese.” with the node-to-
token alignments. The IDs of tokens that only have alignments to nodes in the A-AMR for “top” or for “shred” are
marked in orange and blue respectively, and the IDs of tokens with alignments in both A-AMRs are green.

on patterns of the POS tags of successive tokens
to decide about the selection of tokens that do not
have an aligned node in any of the A-AMRs such
as prepositions and determiners. Participle actions
such as “shredded” get stemmed to ensure that the
extraction heuristic creates grammatical imperative
instructions. Additionally, the tokens selected for
a gold instruction get partially reordered such that
the action predicate is at the correct position in the
new sentence if possible.

Training details. For training we build on the
training scripts from the amrlib library14 and adapt
the required input format to our training set-up. All
models are trained using the Adam optimizer and a
linear learning rate scheduler with warm-up with
1e − 4 as the initial learning rate. The dropout
rate is set to 0.1 for all reported experiments. The
training and validation batch size is set to 24. We
train all models using early stopping based on the
train loss with a patience of 15 and a threshold of
0.00005 and select the final model based on the
best BLEU score on the validation set.

Following previous work on using transformer
LMs for AMR-to-text generation, we use a graph
linearization based on the PENMAN format of the
AMRs (Mager et al., 2020; Ribeiro et al., 2021,
inter alia). We create the input to the model by
concatenating the context sentence and the AMR
in PENMAN format including the node-to-token
alignments and introduce a special token to sepa-
rate the context and the graph (see Table 8).

Generation. We set the token limitation for
each generated sequence to 1024 and let the model
output the best sequence using a beam size of 1.

Automatic evaluation. We compute BLEU,
Rouge-1 (R-1), Rouge-2 (R-2), Rouge-L, Meteor
(M) and Bleurt (BLRT) scores. For the computa-
tion of all automatic metrics we use the Hugging-

14https://github.com/bjascob/amrlib

face Evaluate Metric package15 which provides
wrappers around the original metric implementa-
tions or the implementations from the SacreBLEU
tool for comparable evaluation scores. We leave
all parameters at their default values. For BLEU,
we compute case-insensitive BLEU-4 at the cor-
pus level. For BLEURT, we use the pre-trained
bleurt-large-512 checkpoint and average over all
predicted sentence-level scores to obtain a final
BLEURT score.

A.2 Ablation Experiments

Unseen dishes. The test recipes are highly related
to the training recipes as they are for the same
dishes. In order to assess the performance of our
models on new, unseen dishes, we evaluate the
same GART5-0 and GART5-1 models also on the
complete ARA2 recipes. The amrlib model per-
forms worse than the GART5-0 model on all met-
rics on the ARA2 recipes, showing the general
benefit of fine-tuning the generation model on a
similar dataset from the same domain. However,
the improvement is around 50% smaller than on
the ARA1 recipes (see Table 9).

Effect of AMR type and alignments. We con-
ducted some additional experiments to assess if and
how the differences between the original S-AMRs
and the split A-AMRs affect the performances of
the models and to what extent the inclusion of the
node-to-token alignments has an effect. Table 10
presents the results of training the GART5-0 and
GART5-1 models on the A-AMR and the S-AMR
datasets and testing on the same or the other dataset
(approximately 40% of the amr-sentence pairs from
the A-AMR dataset are also included in the S-AMR
dataset). Overall, the results indicate that training
and testing on the same kind of dataset yields the
best results.

15https://huggingface.co/
evaluate-metric
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GART5-0: <GRAPH> (t / top∼e.135 :ARG2 (c / cheese∼e.139 :mod (m / mozzarella∼e.138)))
GART5-1: Shred mozzarella cheese <GRAPH> (t / top∼e.135 :ARG2 (c / cheese∼e.139
:mod (m / mozzarella∼e.138 )))
Output: Top with the mozzarella cheese.

Table 8: Example of the input to the GART5 generation model without context and with context and of a generated
output sentence.

Model BLEU R-1 R-2 R-L M BLRT
amrlib 41.69 75.56 45.12 69.75 73.26 48.06
GART5-0 47.78 ±0.4 80.71 ±0.2 53.39 ±0.5 76.30 ±0.3 77.86 ±0.3 58.33 ±0.7
GART5-1 51.08 ±0.5 82.23 ±0.3 57.57 ±0.6 77.95 ±0.3 79.63 ±0.4 59.2 ±0.6

Table 9: Results on the full ARA2 dataset averaged over 6 different seeds (± standard deviation).

Regarding the effect of keeping the node-to-
token alignments in the linearization we did not
have any specific hypothesis. On the one hand,
the amrlib model did not include alignments which
could lead to a lower performance. On the other
hand, the alignments indicate the original relative
order of the words corresponding to the nodes
and they might help the model to generate a well-
ordered sentence. Table 11 presents the results
from training and testing with and without the
alignments in the graph linearization. The models
trained and tested on the PENMAN linearization
including the alignments perform best or second
best across all metrics.

B Human Evaluation Set-up

Ordering heuristic. A correctly ordered sequence
of the nodes a ∈ NA of an action graph needs
to be a topological ordering of the action graph.
However, not all potential orderings are good for
structuring the steps in a recipe. For the generated
recipes used in the human evaluation we defined
a heuristic for ordering the actions that is based
on the intuition that it is more convenient to keep
working one subprocess for several steps instead
of switching back and forth between different sub-
processes. The traversal produces the ordered se-
quences T of action nodes in the following way:

1. Consider the set B of all nodes a without a
parent node

2. Start the traversal with that node ai ∈ B for
which Path(ai, end) is longest

3. Traverse the graph and add each visited node
to T until reaching a node aj that has parent
nodes that are not yet in T

4. Consider all nodes ak ∈ B and ak /∈ T for
which there is a Path(ak, aj) and select the
node for which the path is longest to con-
tinue the traversal. If there are two candidate

nodes chose the one which occurs earlier in
the recipe text

Dependency baseline. The instructions for the
baseline recipes are obtained based on the syntactic
dependency tree of each instruction. The depen-
dency splitting approach creates one instruction for
each individual action predicate because the clus-
tering approach to identify action events is based
on semantic relations that are not available from
the plain text. For each action, the baseline instruc-
tion is generated by selecting all tokens that can be
reached by traversing the dependency tree starting
from the action predicate without passing another
action. We then use the same approach as for gen-
erating the gold instructions for re-ordering tokens
and stemming participle actions.

Evaluation. For the generation of the recipe
instructions presented in the human evaluation we
used the specific checkpoints for which the auto-
matic evaluation results are shown in Table 12. Ta-
ble 13 presents the statements that were presented
to the participants in the human evaluation study.
Each participant saw one recipe at a time followed
by the six statements. They were asked to rate for
each of them to what extent they agree with the
statement on a scale from 1 (disagree completely)
to 6 (agree completely). In order to ensure that
participants did pay attention to the recipe texts we
included two filler recipes: one including multi-
ple grammatical mistakes and one with randomly
ordered instructions. The data from participants
who rated the first one with a six or the latter one
with 5 or higher was not included in the evaluation
resulting in data from 88 participants.

C Clustering and Splitting

Table 5 lists rules that are used during the pair-
wise action clustering to decide whether two action
nodes belong to the same event as well as the rules
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Model Train Test BLEU R-1 R-2 R-L M BLRT
GART5-0 A-AMR A-AMR 54.10 84.32 61.85 79.98 81.17 58.23
GART5-0 S-AMR S-AMR 54.86 84.64 64.58 79.09 82.58 59.81
GART5-0 A-AMR S-AMR 52.08 83.19 61.09 78.76 79.92 53.39
GART5-0 S-AMR A-AMR 53.99 83.8 59.92 78.79 81.34 56.57
GART5-1 A-AMR A-AMR 59.26 86.34 67.78 83.19 84.25 65.14
GART5-1 S-AMR S-AMR 58.15 85.34 67.52 80.03 82.95 59.86
GART5-1 A-AMR S-AMR 57.01 85.19 66.87 81.62 82.85 62.40
GART5-1 S-AMR A-AMR 55.82 84.46 63.33 79.40 81.53 57.51

Table 10: Comparisons of the performance of the models when trained and tested on the A-AMR or S-AMR
datasets.

Model Train Test BLEU R-1 R-2 R-L M BLRT
GART5-0 wA wA 54.10 84.32 61.85 79.98 81.17 58.23
GART5-0 nA nA 54.66 83.57 61.87 79.52 80.73 56.16
GART5-0 wA nA 52.08 83.19 61.09 78.76 79.92 53.39
GART5-0 nA wA 53.59 82.73 60.67 78.29 81.23 56.88
GART5-1 wA wA 59.26 86.34 67.78 83.19 84.25 65.14
GART5-1 nA nA 58.29 85.57 65.92 82.26 83.17 61.04
GART5-1 wA nA 58.17 85.12 65.32 81.84 82.82 61.92
GART5-1 nA wA 57.57 85.08 65.54 81.91 83.97 63.61

Table 11: Comparison of performances for different graph linearizations: with node-to-token alignments (wA) and
without (nA).

for deciding already based on the root node that an
S-AMR will not get separated. The full set of path
patterns used by the rules are presented in Table
14.

In §3 we presented the main parts of the split-
ting algorithm. Table 6 presents the full algorithm
with all rules and special cases. The following no-
tation is used to describe the splitting conditions:
When describing a path of actions between two
nodes that includes and edge ek we use the no-
tation e→k and e←k to differentiate between edges
that are traversed in their original direction (e→k )
and edges that are traversed in the reverse direction
(e←k ). Therefore, if a path includes ⟨..., e→k , e→l , ...⟩
with ek = (u, v)andel = (v, w) (i.e. the original
edge in the graph is (w, v)) then v is a meeting
node.
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Model Test context BLEU R-1 R-2 R-L M BLRT
GART5-0 0 54.10 84.32 61.85 79.98 81.17 58.23
GART5-1 1 59.26 86.34 67.78 83.19 84.25 65.14

Table 12: Results of the specific checkpoints used to generate the texts for the human evaluation on the ARA1 test
split.

Criterion Statement
Grammar The recipe text is grammatically correct.
Fluency The recipe text reads smoothly.
Verbosity The recipe explains the steps concisely and does not repeat information unnecessarily.
Structure The recipe explains the steps in a helpful order.
Success In combination with a list of the required ingredients, the recipe would enable me to

successfully prepare the dish.
Overall Overall, the recipe is well written.

Table 13: The statements used in the human evaluation to assess the quality of the recipes along different criteria.

Root-based rules:
Let Mi be an S-AMR with root node rMi

. Do not split Mi if one of the following holds:
• the label of the root is or, slash, possible-01 or have-condition-91
• the root node has an outgoing edge (rMi, u) to any node u with the label condition

Action-pair based rules:
Let Mi be a S-AMR and a1, a2 two action nodes of Mi aligned to different actions:
1. Pair a1 and a2 into one action cluster if there exists a path Path(a1, a2) which does not include any
direction changes and if for the corresponding labelled path LPath one of the following conditions
holds:

• The LPath corresponds to one of the path patterns from Pattern Set1 in Table 14, with a1 and
a2 corresponding to Node1 and Node2

• The LPath corresponds to one of the path patterns from Pattern Set2 in Table 14, with a1 and
a2 corresponding to Node1 and Node2 and one of the following conditions holds

– the path Path(a1, a2) between the two action nodes does not contain a node v that is
labelled before or after

– the path Path(a1, a2) between the two action nodes contains a node v that is labelled
before or after and v has more than one child node.

2. Pair a1 and a2 into one action cluster if there exists a path Path(a1, a2) with
exactly one direction change, i.e. with one meeting node v, and if one of the following condi-
tions holds for the corresponding labelled path LPath and the meeting node:

• The LPath corresponds to the first pattern of Pattern Set3 in Table 14 and v is labelled or or
slash

• The LPath corresponds to the second pattern of Pattern Set3 in Table 14 and v is labelled
contrast-01

Figure 5: Rules for the pairwise clustering of action nodes of an S-AMR into action-event clusters.
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Label node1 LPath Label node2
Pattern action ⟨ ARGX (opX)1 ⟩ action

Set1 action ⟨ direction (opX)1 ⟩ action
action ⟨edge⟩ off|up|down|out|in
stir-01 ⟨edge⟩ fry-01

Pattern action ⟨ (edge)∗ relation (edge)∗ ⟩ action
Set2 where relation is equal to purpose, manner, instrument, time or duration

Pattern action ⟨ opX, opX-of ⟩ action
Set3 action ⟨ ARGX, ARGX-of ⟩ action

Table 14: Path patterns between two action-aligned AMR nodes that should be clustered together. action and
edge can be any node or edge label, round brackets are used for optional labels on the LPath, ()1 meaning zero
or exactly one occurrence and ()∗ allowing any number of occurrences.

Input: a copy Ni of an S-AMR graph Mi, the target action cluster Cj , and the set of all other action
clusters Ck, k ̸= j
Output: an A-AMR graph for Cj if successful, else the original S-AMR
1. create the set Q of all pairs {(a1, a2)|a1 ∈ Cj and a2 ∈

⋃
k ̸=j Ck}, i.e. all pairs of action AMR

nodes that need to get separated from each other
repeat

2. compute all paths p = Path(a1, a2) for all pairs (a1, a2) ∈ Q in the graph Ni and create a
sequence P of all paths ordered by length in ascending order

3. if P = ∅ then break because then all nodes from Cj are successfully separated from all other
action clusters

4. for p in P do
4.1 if p does not include any node u labelled before or after

4.1.1 if p has exactly one direction change (→ to← or← to→), and (p = ⟨..., e←k , e→l , ...⟩
or p = ⟨..., e→k , e←l , ...⟩) with ek = (v, w) and el = (w, x), i.e. w is the meeting node,
then remove el from Ni and continue from step 2.

4.2 else p includes a node u labelled before or after
4.2.1 if p has no direction changes then remove u from Ni and continue from step 2.
4.2.2 else if p has exactly one direction change (← to→), and p = ⟨..., e←k , e→l , ...⟩ with

ek = (v, w) and el = (w, x), i.e. w is the meeting node, and LMi(w) = and then
remove u from Ni and continue from step 2.

4.2.3 else if p has exactly one direction change (→ to ← or ← to →), and (p =
⟨..., e←k , e→l , ...⟩ or p = ⟨..., e→k , e←l , ...⟩) with ek = (v, w) and el = (w, x), i.e.
w is the meeting node, then remove el from Ni and continue from step 2.

5. for p in P do (fallback case if Ni did not change during step 4.)
5.1 if p has more than one direction change, and (p = ⟨..., e←k , e→l , ..., e→o , e←p , ...⟩ or p =
⟨..., e←k , e→l , ..., e←o , e→p , ...⟩) with ek = (v, w), el = (w, x) and w being the first meeting
node and LNi(w) = and and with eo = (y, z), ep = (z, z2) and z being the last meeting
node then remove ep from Ni and continue from step 2

5.2 else if p has more than one direction change, and (p = ⟨..., e←k , e→l , ...⟩ or p =
⟨..., e→k , e←l , ...⟩) with ek = (v, w), el = (w, x) and w being the first meeting node
then remove el from Ni and continue from step 2

6. if Ni did not change during step 5. then return original graph Mi

end repeat
7. select the connected subgraph that includes all nodes from the target cluster Cj as the new

action-event-level AMR, apply the postprocessing and return the graph

Figure 6: The full splitting algorithm.
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Abstract

This work compares two ways of annotat-
ing semantic relations expressed in preposi-
tional phrases: semantic classes in the Seman-
tic Network of Adposition and Case Super-
senses (SNACS), and tectogrammatical func-
tors from the Prague English Dependency Tree-
bank (PEDT). We compare the label definitions
in the respective annotation guidelines to deter-
mine expected mappings, then check how well
these work empirically using Wall Street Jour-
nal text. In the definitions we find substantial
overlap in the distributions of the two schemata
with respect to participants and circumstantials,
but substantial divergence for configurational
relationships between nominals. This is borne
out by the empirical analysis. Examining the
data more closely for participants and circum-
stantials reveals that there are some unexpected,
yet systematic divergences between definition-
ally aligned groups.

1 Introduction

Broad coverage descriptive frameworks for anno-
tating lexical semantics have proven useful for re-
searchers in the field of computational semantics.
Most of these frameworks have a primary focus on
verbs and their participants (Baker et al., 1998; Bo-
nial et al., 2014; Kipper et al., 2008; Palmer et al.,
2017), though some frameworks extend annotation
schema to cover the arguments of nominal phrases
(Hajič et al., 2012; Meyers et al., 2004). Relatively
few frameworks have focused on comprehensive
accounts of prepositions, which can modify both
verbal and nominal heads (Schneider et al., 2018;
Litkowski and Hargraves, 2005), and can contribute
crucial semantic information to sentences despite
often being thought of as purely functional ele-
ments.

The most recent and comprehensive attempt to
cover the semantics of prepositions is the Seman-
tic Network of Adposition and Case Supersenses,
or SNACS (Schneider et al., 2015, 2016, 2018),

which is a hierarchy of semantic classifications of
prepositional modifiers. SNACS contains 52 to-
tal preposition semantic classes, or SUPERSENSES,
which are arranged into a hierarchy with different
levels of granularity at each point in the hierarchy.
In English, the SNACS framework has been ap-
plied to the reviews section of the English Web
Treebank (EWT) corpus (Bies et al., 2012), result-
ing in the STREUSLE corpus with gold SNACS
annotations (Schneider et al., 2018).

For researchers interested in the lexical seman-
tics of prepositions, the STREUSLE corpus is a
valuable resource, but is smaller in size compared
to corpora that have been annotated for other lexi-
cal semantic projects. While some of these other
resources do mark some semantic information con-
veyed by prepositional phrases, it is an open ques-
tion to what extent these more general semantic
frameworks overlap with the preposition-centric
hierarchy of SNACS. If there is significant over-
lap between corresponding classes across differ-
ent annotation schema, it may be possible to con-
vert the classifications of prepositional phrases in
these more general schemata into corresponding
SNACS supersenses. This would make it possible
to quickly augment the available data annotated
within the SNACS hierarchy, and would provide
useful comparisons between the coverage of differ-
ent annotation schemata.

In particular, this research highlights the Prague
English Dependency Treebank (PEDT, Hajič et al.
2012) as one resource with potential overlap with
SNACS.1,2 The PEDT contains multiple layers of

1PEDT is the English side of the Prague Czech-English
Dependency Treebank. One reason to examine this framework
and corpus is that if the correspondence proves reliable for
English, it might be leveraged to obtain heuristic SNACS
annotations of Czech data as well, since the tectogrammatical
annotation scheme is also applied in the Czech translation of
the Wall Street Journal corpus.

2In a comparison of an earlier version of SNACS to Prop-
Bank semantic roles, Schneider et al. (2016) found good cor-
respondences between supersenses and PropBank modifiers,
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Functor Supersense Functor Supersense Functor Supersense Functor Supersense Functor Supersense

TSIN StartTime LOC Locus MEANS Instrument,Means ACT Agent,Force EXT Cost
TTILL EndTime DIR1 Source MANN Manner PAT Theme,Topic APP Gestalt
TFHL Duration DIR2 Direction,Path CAUS Explanation ORIG Originator COMPL Identity

THL Duration DIR3 Goal AIM Purpose ADDR Recipient MAT QuantityItem
THO Frequency EXT Extent BEN Beneficiary RSTR Characteristic

TPAR Time ACMP Ancillary CPR ComparisonRef
TWHEN Time

Table 1: Heuristic mapping from PEDT functor to SNACS supersense based on the guidelines. Functors and
supersenses without a clear correspondence are omitted. EXT is listed twice because it maps to both Spatial and
Configurational supersenses.

syntactic/semantic annotation for the entire WSJ
section of the Penn Treebank (Marcus et al., 1993).
We focus on the tectogrammatical layer, or t-layer,
which describes the deep syntax/semantics of the
sentence, and labels nominals with a set of FUNC-
TORS. Many of these functors seem to show re-
markable overlap with SNACS supersenses, though
there are some significant divergences. This work
investigates the overlap between the SNACS hier-
archy and functor labels for prepositional phrases
from PEDT, by first qualitatively outlining the sim-
ilarities between the definitions of semantic classes
in the two frameworks, then offering an empirical
analysis of their overlapping distributions on a set
of WSJ sentences.

2 Definitional Comparison

The SNACS hierarchy v2.6 (Schneider et al., 2022)
contains 52 total supersenses organized into 3
main branches: the CIRCUMSTANCE branch, the
PARTICIPANT branch, and the CONFIGURATION
branch. Recent versions of the SNACS hierarchy
assign supersenses to a preposition for both its
scene role and its function role. The scene role
represents the contextual semantic role of a prepo-
sition in combination with the predicate, while
the function role is more faithful to the lexical se-
mantics of the preposition (Schneider et al., 2018;
Hwang et al., 2017). In many instances, the two
roles are the same, but in cases where the scene
and function roles differ, the two are represented
using the SCENE↝FUNCTION notation. We hy-
pothesize that the scene role SNACS supersenses
will more closely align with PEDT functors, and
thus focus on scene role supersenses unless other-
wise specified. Many SNACS supersenses corre-
spond more or less directly to PEDT functors based
upon the definitions set forth in their respective
guidelines. Table 1 lists PEDT functors with clear

but less uniform correspondences for numbered arguments.

corresponding SNACS supersenses. We exclude
supersenses without clear corresponding functors,
as well as functors which are not directly relevant
to the SNACS hierarchy.

We see in Table 1 that most CIRCUMSTANCE

supersenses, which add spatial, temporal, or other
description to events, usually have corresponding
PEDT functors. In Example (1) we see an exam-
ple of the overlap between the THL (“how long?”)
functor, and the DURATION supersense. The direc-
tional functors DIR1 and DIR3 best correspond to
SOURCE and GOAL respectively, and not (despite
the terminology) DIRECTION. This is because the
start point of movement (which answers the ques-
tion “where from?”) is labeled SOURCE, and the
end point of movement (which answers the ques-
tion “where to?”) is labeled as GOAL. Examples of
DIR1 and DIR3 are shown in Examples (2) and
(3).

(1) Big mainframe computers for business had
been around for_THL_DURATION years.

(2) All came from_DIR1_SOURCE Cray Re-
search.

(3) Despite recent declines in yields, investors
continue to pour cash into_DIR3_GOAL

money funds.

On the other hand, SNACS DIRECTION is used
to express the orientation of motion where the end
result is not specified. We can observe the distinc-
tion in Examples (4) and (5), which are taken from
the most recent version of the SNACS annotation
guidelines (Schneider et al., 2022). If DIR1 and
DIR3 do not generally correspond to DIRECTION,
then DIRECTION is exceptional in that it does not
have a directly corresponding PEDT functor. DI-
RECTION, which is a subtype of PATH, is probably
most closely related to the more general DIR2.

(4) I headed to_GOAL work.
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Figure 1: The Overlap of General Supersense Groupings with the PEDT Functors. Supersenses and Functors are
combined into groups to show broad overlaps. Here “Circumstance” covers non-spatiotemporal circumstances
(Manner, Means, Explanation, and Purpose). “Participant” covers Originator, Recipient, Beneficiary, Instrument,
and Cost (excluding the agent-like, patient-like, and experiencer/stimulus participants).

(5) I headed towards_DIRECTION work, but
never made it there.

PARTICIPANT supersenses, which introduce
more canonical participants to events, also often
correspond well to PEDT functors. The INSTRU-
MENT supersense lacks a directly corresponding
functor, but is grouped with the MEANS super-
sense under the scope of the MEANS functor. The
ACMP functor at least sometimes corresponds to
ANCILLARY, as shown in Example (6). The ACT
and PAT functors are potentially problematic, since
they mark primarily syntactic roles of arguments,
not semantic roles. This means that finer-grained
supersenses, such as EXPERIENCER and STIMU-
LUS, are not captured by PEDT functors. Further-
more, COST is perhaps the most problematic of
the PARTICIPANT supersenses, with EXT being a
marginal match at best.

(6) The U.S., with_ACMP_ANCILLARY its re-
gional friends, must play a crucial role in de-
signing its architecture.

CONFIGURATION supersenses, which describe
state or property relationships between two nomi-
nals, are the least similar to PEDT functors, though
there are some clear correspondences shown in
Table 1, including the relationship between MAT
and QUANTITYITEM as shown in Example (7).
SNACS also includes more specific GESTALT sub-
types, such as ORG and POSSESSOR, which are
finer-grained than what is captured by the APP
functor. Some more general configurations such
as SPECIES, ENSEMBLE, and SOCIALREL lack

0 100 200
Duration
EndTime

Goal
Locus

Source
StartTime

Time

OTHER
TWHEN
TTILL
THO
THL
TSIN
TPAR
TFRWH
TTOWH
TFHL
LOC
DIR1
DIR3

Figure 2: Spatiotemporal Supersense Overlap with
PEDT functors

corresponding PEDT functors.
There are also some PEDT functors which are

beyond the scope of the SNACS hierarchy: for in-
stance, functors which mark paratactic relations
(e.g. CONTRA), express primarily discourse func-
tions (e.g. ATT), or mark types of syntactic in-
formation which is not conveyed in prepositional
phrases (e.g. APPS). These functors are omitted
from further analysis.

(7) About 20,000 sets of_MAT_QUANTITYITEM

Learning Materials teachers’ binders have also
been sold in the past four years.

3 Empirical Comparison

3.1 Methodology

Now that we have outlined the overlap in descrip-
tions between the SNACS hierarchy supersenses
and various PEDT functors, we wish to quantify
how these categories overlap in practice. In or-
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Figure 3: Configuration Supersense Overlap with
PEDT functors

der to compare the distribution of SNACS super-
senses and PEDT functors, we first isolated all sen-
tences containing relevant nominals from a small
subsection of English PEDT using the tectogram-
matical layer annotations. Specifically, we tar-
get nominals introduced by prepositional phrases,
which have a formeme in the t-layer of the form
“noun+preposition+X”. Nominals with formemes
of this type are found in a PP in the surface syntax.
In total, we extract 838 sentences with 1837 total
PPs with functor labels. These sentences were fed
into a state-of-the-art SNACS supersense classifier
(Arora, 2023), and a predicted supersense label
was gathered for each of the target PPs. Since these
tags were automatically generated, there is some
expected noise in the resulting predictions, particu-
larly for uncommon supersenses. We sampled 100
preposition tokens for manual tagging: focusing
on the 71 that were not of tokens (as of is usually
configurational), we found that the predicted classi-
fier agreed with expert judgments roughly 60% of
the time. We compare the automatically generated
supersense labels with a rule-based heuristic based
on our expectations outlined in §2. Generally, our
heuristic aligns PEDT functors with the supersense
that is most similar in definition. This heuristic was
shown to be roughly 52% accurate on the manually
tagged sample. After showing the overall distribu-
tion of supersenses across different functors, we
then isolate examples of divergences between the
automatic classifier and rule-based heuristic, find-
ing that divergences come from both tagging errors
and meaningful differences in the two frameworks.

3.2 Results

We compare the distribution of SNACS super-
senses with PEDT functors in Figures 1 to 3. For
all comparisons, supersenses that were predicted
less than 5 times were excluded from analysis.
Figure 1 shows the general overlap of different
coarse groups SNACS supersenses with groupings

Class of Functors # of Tokens Percent Overlap

circumstantials 818 50.3
spatials 446 52.7
temporals 212 66.5
other 160 21.9

participants 500 47.0
ACT 113 55.8
PAT 238 58.0
other 149 22.8

configurations 386 36.0
Table 2: For groups of functors, percentage of tokens
for which tagger-predicted supersense agrees with the
heuristic mapping in Table 1. EXT is only considered
in the configurations category.

of PEDT functors. We see here that supersenses
grouped around broad semantic domains typically
correspond to groups of PEDT functors with simi-
lar domains. The most clear correspondences are
with the spatiotemporal, “Agent-like” and “Patient-
like” supersenses, indicating that despite the syntac-
tic definition of ACT and PAT in PEDT, they still
pattern similarly to the semantic based categories
in SNACS.

Figure 2 shows the overlap of spatiotemporal su-
persenses and functors with a higher degree of gran-
ularity than in Figure 1. We see that LOCUS and
TIME are two of the most frequently predicted su-
persenses, and generally line up well with the LOC
and TWHEN functors. This is in contrast with the
overlap for CONFIGURATION supersenses, which
is shown in Figure 3. We can see here that most
of the supersenses seem to be spread over several
competing PEDT functors. As expected, APP and
MAT have substantial representation in these su-
persenses, but there is also considerable overlap
with other unexpected PEDT functors.

We report the overlap of the predicted classifier
supersenses with those predicted by a rule-based
heuristic for different functor groupings in Table 2.
We see that our expectations for functors and the
predictions of the classifier diverge substantially,
especially for configurations, though there is sub-
stantial divergence even in the spatiotemporal and
participant classes.

Since the automatic SNACS classifier has sub-
stantial limitations in tagging WSJ data, it is worth
considering whether the divergence reported in Ta-
ble 2 is primarily due to tagging errors, or is due
to real differences in annotation distributions for
supersenses and functors. In Examples (8–12), we
show the classifier-predicted supersense alongside
the gold functor. For Examples (8, 9), the predicted
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supersenses do not align with our expectations due
to classification errors. We see in (8) that the clas-
sifier mistakenly predicts LOCUS instead of TIME.
In this case, the heuristic which matches TWHEN
to TIME would get this correct. In (9), the SNACS
classifier predicts COST incorrectly, probably be-
cause it introduces a monetary amount as its depen-
dent. Throughout the WSJ data, monetary values
are often incorrectly classified as COST.

(8) The strong growth followed year-to-year in-
creases of 21% in_TWHEN_LOCUS August
and 12% in September.

(9) Imports were at_PAT_COST $50.38 billion,
up 19%.

While classifier errors account for a substantial
amount of misalignment between functors and su-
persenses, there are also systematic divergences.
One reason for divergences is that some PEDT
functors align more with SNACS function roles,
rather than scene roles (as was expected). This
is shown in Examples (10, 11), where both the
predicted scene and function roles are shown. In
Example (10), we see that the scene role of LOCUS

does not align with DIR3, but the function, which
is GOAL, does align with our expectations. This
sentence is an example of fictive motion, where a
preposition typically indicating motion is used in a
static scene (Talmy, 1996; Hwang et al., 2017). In
Example (11), we see that the function role of AN-
CILLARY is what we would expect to align with the
ACMP functor, though the scene role AGENT does
not. Problematic cases involving the ANCILLARY

supersense have been a focus of prior SNACS re-
search (Hwang et al., 2020), so it is perhaps un-
surprising that some divergences arise in this case.
Despite such examples, in most cases where scene
and function differ, we observe that the scene role
is closer to the PEDT functor. More investigation
is needed to determine when PEDT functors map
to function roles instead of scene roles in SNACS.

(10) The new plant, located in Chinchon about
60 miles from_DIR1_LOCUS↝GOAL Seoul,
will help meet increasing and diversifying
demand for control products in South Korea,
the company said.

(11) Moscow has settled pre-1917 debts
with_ACMP_AGENT↝ANCILLARY other
countries in recent years at less than face
value.

Beyond the discrepancies between PEDT functors
and SNACS supersenses which arise from the scene
and function distinction in SNACS, there are other
unexpected divergences between PEDT functors
and SNACS supersenses, two of which are shown
in Examples (12, 13). In (12), the classifier’s pre-
diction of STARTTIME is obviously incorrect, but
the expectation that CPR aligns with COMPAR-
ISONREF is also incorrect here. Instead, SOURCE

is probably most appropriate, but is not predicted
by the classifier or from our heuristic. This is one
case where the usage of PEDT functors and SNACS
supersenses do not overlap. Furthermore, in (13),
the PEDT functor DIR3 would typically align with
GOAL, but in this sentence the classifier predic-
tion of PURPOSE is actually closer to the correct
supersense. In general, it seems that DIR3 is not
as clearly aligned with GOAL as anticipated, but
also has some overlap with TOPIC, THEME, and
PURPOSE. Despite the similar definitions of DIR3
and GOAL, in practice they are used in some non-
overlapping situations.

(12) A seat on the Chicago Board of Trade
was sold for $350,000, down $16,000
from_CPR_STARTTIME the previous sale
last Friday.

(13) Then, in the guests’ honor, the speed-
way hauled out four drivers, crews and
even the official Indianapolis 500 announcer
for_DIR3_PURPOSE a 10-lap exhibition
race.

4 Conclusion

In this work, we compare SNACS supersenses with
PEDT tectogrammatical functors in terms of how
they account for English prepositions. We show
that the substantial definitional overlap between
SNACS supersenses and PEDT functors is reflected
in the overlapping distributions of the various se-
mantic classes, particularly for spatial, temporal,
and participant related supersenses, with less over-
lap on the CONFIGURATION branch. However, we
also find substantial divergences between the two
schemata, due in part to limitations of the automatic
SNACS classifier we employed. We observe that a
simple heuristic mapping from PEDT functors to
SNACS supersenses aligns somewhat with classi-
fier predictions, but also has substantial limitations
due to the differences between the two frameworks.
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Abstract

Identifying all predicate-argument relations in a
sentence has been a fundamental research target
in NLP. While traditionally these relations were
modeled via formal schemata, the recent QA-
SRL paradigm (and its extensions) present ap-
pealing advantages of capturing such relations
through intuitive natural language question-
answer (QA) pairs. In this paper, we extend
the QA-based semantics framework to cover
adjectival predicates, which carry important
information in many downstream settings yet
have been scarcely addressed in NLP research.
Firstly, based on some prior literature and em-
pirical assessment, we propose capturing four
types of core adjectival arguments, through cor-
responding question types. Notably, our cover-
age goes beyond prior annotations of adjecti-
val arguments, while also explicating valuable
implicit arguments. Next, we develop an ex-
tensive data annotation methodology, involving
controlled crowdsourcing and targeted expert
review. Following, we create a high-quality
dataset, consisting of 9K adjective mentions
with 12K predicate-argument instances (QAs).
Finally, we present and analyze baseline mod-
els based on text-to-text language modeling,
indicating challenges for future research, par-
ticularly regarding the scarce argument types.
Overall, we suggest that our contributions can
provide the basis for research on contemporary
modeling of adjectival information.

1 Introduction

A main challenge addressed by Natural Language
Processing research is designing useful semantic
representations, capturing and explicating impor-
tant aspects of the meaning of a text. Numerous
recent works illustrate how even in the era of strong
end-to-end neural models, leveraging explicit se-
mantic representations facilitates downstream pro-
cessing of challenging tasks (Huang and Kurohashi,
2021; Mohamed and Oussalah, 2019; Zhu et al.,
2021; Chen and Durrett, 2021).

Numerous semantic representations have been
proposed and pursued (Abend and Rappoport,
2017). Traditionally, semantic representations rely
on pre-defined schemata of linguistic classes, e.g.
semantic roles or relations. Thus, mapping nat-
ural language onto its representations becomes a
complex annotation task that requires significant
linguistic expertise, causing challenges in data col-
lection and utility in new domains and languages.

Recently, many researchers and practitioners
seek to benefit from an explicit representation of
text meaning while alleviating the reliance on hard-
to-scale structured formalisms. For instance, Open
Information Extraction (Banko et al., 2007) has
gained popularity as a light-weight, NL-based al-
ternative to Semantic Role Labeling (SRL) for-
malisms like PropBank (Palmer et al., 2005) or
FrameNet (Baker et al., 1998). More recently, sev-
eral works proposed using question-answer pairs
(QAs) as an intermediate structure, e.g. in order
to assess information alignment between texts for
evaluating summarization quality (Eyal et al., 2019;
Gavenavicius, 2020; Deutsch et al., 2021) and
faithfulness (Honovich et al., 2021; Durmus et al.,
2020). While these latter works utilize "general-
purpose" question-answering datasets and models
for generating the QAs, Klein et al. (2022a) put for-
ward a systematically targeted QA-based semantic
framework dubbed QASem. Pioneered by address-
ing verbal predicate-argument relations in QA-SRL
(He et al., 2015), this framework integrates three
systematic QA-driven representations, jointly cov-
ering semantic role labeling for verbs (He et al.,
2015; FitzGerald et al., 2018; Roit et al., 2020),
nominalizations (Klein et al., 2020) and informa-
tional discourse relations (Pyatkin et al., 2020).

However, current QA-based approaches lack
principled coverage of adjectival information. In
natural language text, adjectives carry vital infor-
mation about the properties of entities, essential for
many downstream NLP applications. For example,
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Galbraith attacked the consensus for monetarist economics and argued that Keynesian
economics were far more relevant for tackling the emerging crises.

Question type Question Answer
Object What was more relevant for something? Keynesian economics

Comparison Compared to what was something more relevant? monetarist economics
Domain What was something more relevant for? tackling the emerging crises
Extent To what degree was something more relevant? far

Table 1: An example of QA-Adj question-answer pair.

in benchmarks of the widely-used sentiment analy-
sis task (Pontiki et al., 2014), adjectives comprise
75% of the annotated "sentiment triggers".

In this work, we extend the QASem paradigm by
capturing and explicating the fundamental aspects
of adjectival information using natural-language
question-answer pairs. Our representation, termed
QA-Adj, consists of four adjective-related roles —
object, comparison, domain, and extent. As we
will see later, these roles provide a fairly complete
representation of the core arguments of adjectives.
Roles are annotated using question templates while
arguments are captured as answers, as illustrated
in Table 1. In addition to syntactical arguments,
which are commonly available in prior semantic
or syntactic representations, QA-Adj is designed
to capture and explicate implicit arguments not
immediately discernible from syntax, for example,
stating (in Table 1) Compared to what is something
more relevant?.

The main contributions of this paper are as fol-
lows: (1) We formulate a QA-based representa-
tion for capturing adjectival arguments, grouping
them into four semantic categories; (2) we present
a method for collecting low-cost, high-quality QA-
Adj data through controlled crowdsourcing; (3) we
create a QA-Adj dataset, comprising over 5K sen-
tences and 12K QA pairs, assess its quality, and
compare it to PropBank annotations for adjectival
predicates (Bonial et al., 2014); (4) we finetune
a baseline QA-Adj parser and evaluate its perfor-
mance, providing a foundation for future model
development.

Overall, our work provides an intuitive QA-
based representation for explicitly capturing the
semantics of adjectives, as well as a dataset and a
parser for future research.

2 Background

2.1 Semantic Representations of Adjectives

Traditional logical approaches denote adjectives,
as well as verbs, as predicates over entities — e.g.,

RED(x) ∧ BALL(x) would represent a red ball,
and AFRAID(x, y) may denote that x is afraid of
y. NLP semantic formalisms, however — such as
PropBank (Palmer et al., 2005), Minimal Recursion
Semantics (Copestake et al., 2005), semantic depen-
dencies (Oepen et al., 2015) and more (Banarescu
et al., 2013; Abend and Rappoport, 2013, inter
alia) — commonly adopted the Neo-Davidsonian
approach (Parsons, 1995). This approach decom-
poses predicative meaning into a set of binary re-
lations between entities and events, labeled by
semantic roles, e.g. FEAR(e) ∧ AGENT(e, x) ∧
THEME(e, y).

While the SRL task has gained substantial at-
tention, research thereof focuses primarily on the
semantics of verbs or eventive nouns. Nevertheless,
several computational resources include adjectives
under their scope. In FrameNet (Baker et al., 1998)
— a well-known SRL formalism — adjectives are
listed in frames with their participants, or Frame
Elements, in the same way verbs and nominals
do. For example, the adjective hungry is listed
under the BIOLOGICAL-URGE frame. Similarly,
with the goal of complementing PropBank with
information about new predicate types, Bonial et al.
(2014) annotated adjectives in the PropBank cor-
pus using both pre-existing and newly introduced
framesets, along with corresponding semantic roles
(see annotation examples in Table 2). In contrast,
the formulation presented in this work targets four
broad, generic semantic dimensions pertaining to
any adjective, coupled with corresponding question
templates, and does not require mapping adjectival
predicates to a pre-defined inventory of frames. In
Section 5.5, we further compare our approach to
prior representations.

2.2 QA-Based Semantics
Semantic Role Labeling (Palmer et al., 2010) is typ-
ically perceived as answering argument role ques-
tions, such as who, what, to whom, when, or where,
regarding a target predicate. For instance, Prop-
Bank’s ARG0 for the predicate say answers the
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Sentence QA-Adj PropBank
(1) There’s so much punch packed into
this combination that it’s almost scary.

Object: What is scary? — There’s so much punch packed into
this combination + it
Extent: To what degree is something scary? — almost

ARG0: it
ARGM-EXT: almost

(2) Although these new rockets are probably
more expensive, they will be able to go at
a much greater range than it’s shuttle cousins.

Object: What is expensive? — these new rockets + they
Extent: To what degree is something expensive? — more expensive
Comparison: Compared to what is something expensive? —
it’s shuttle cousins

ARG1: these new rockets
ARGM-EXT: more

(3) The 69 year old Dr. Lopez was found guilty. Object: Who is guilty? — The 69 year old + Dr. Lopez ARG1: The 69 year old Dr. Lopez
(4) Wise decision to go through
the private sector – NASA’s budget
may be kinda tight to fund a project like this.

Object: What might be tight? — NASA’s budget
Extent: To what degree might something be tight? — kinda
Domain: What might something be tight to do? — to fund a
project like this
Comparison: Compared to what might something be tight? —
the private sector’s budget

ARG0: NASA’s budget
ARGM-EXT: kinda
ARGM-PRP: to fund a project
like this

(5) If anyone is interested in listening to this
song, and in offering their opinion whether
it be positive or negative, I’d appreciate it.

Object: What might be positive? — their opinion + it
Domain: What might something be positive about? — this song

ARG1: it

(6) If you have any questions please feel
free to call me ( after Sat. the 26th,
when I will return from a trip ).

Object: Who is free to do something? — you
Domain: What is someone free to do? — call me

ARG3: call me ( after Sat. the 26th,
when I will return from a trip ).

(7) Should the Arctic Ocean become ice free
in summer, it is likely that polar bears
would be driven toward extinction.

Object: What might be free? — the Arctic Ocean ARG1: the Arctic Ocean
ARG2: ice

(8) That is what is about to happen with Judge
Samuel Alito, in my opinion, because he has one
tragic flaw – a very serious blind spot in his
thinking – which makes him completely unacceptable
for the position of Supreme Court Justice.

Object: Who is unacceptable for something? — Judge Samuel
Alito + he
Extent: To what degree is someone unacceptable? — completely
Domain: What is someone unacceptable for? — the position of
Supreme Court Justice

ARG1: him
ARGM-EXT: completely
ARG3: for the position of
Supreme Court Justice

(9) She doesn’t have the funds to
continue without the grant, and
without these treatments, her prognosis is grim.

Object: What is grim? — her prognosis without these treatments ARG1: her prognosis
ARG-MNR: without these
treatments

Table 2: A sample of QA-Adj annotations, along with corresponding PropBank annotations for adjectives (Bonial
et al., 2014, see §5.5 for the comparison). The + sign denotes multiple answers for the same question. While
most QA-Adj QAs are similar to PropBank predicate-argument relations, many introduce additional information,
including implicit or inferred relations (Ex. 2, 4, 5) and within-sentence coreference (Ex. 1, 5, 8). Annotation
mistakes are rare, but include incorrect splitting of arguments (Ex. 3), incomplete QA-Adj answers (Ex. 6) and
recall misses (Ex. 7).

question “Who said something?”. QA-SRL (He
et al., 2015) suggests that answering role questions
is an intuitive means to solicit predicate-argument
structures from non-expert annotators. In QA-SRL,
annotators are presented with a sentence in which a
target predicate has been marked, and are asked to
generate questions and highlight the corresponding
answers from the sentence. A question captures
the semantic role, whereas answers to the question
— which are spans from the sentence — denote
the set of arguments associated with that role. The
QA-based approach allows for a transparent rep-
resentation, as the questions and answers can be
understood by non-experts while providing an ex-
plicit account of the underlying meaning of the
sentence. This laymen-intuitive definition of roles
covers traditional cases of syntactically linked ar-
guments, but also additional semantic arguments
clearly implied by the sentence meaning (Roit et al.,
2020).

QA-SRL has been demonstrated to be benefi-
cial for various downstream tasks. It was shown
to subsume open information extraction (OIE)
(Stanovsky and Dagan, 2016b), making it pos-
sible to construct large supervised OIE dataset
(Stanovsky et al., 2018) to serve as an interme-

diate structure for end applications. Additionally,
QA-SRL and related QA-based semantic annota-
tions (Michael et al., 2018) were shown to provide
beneficial semantic signal through indirect supervi-
sion, resulting in improved performance on down-
stream tasks for modern pre-trained-LM encoders
(He et al., 2020). Recently, QA-SRL was explic-
itly utilized as an intermediate representation for
aligning predicate-argument relations across texts
(Brook Weiss et al., 2021) and for detecting analo-
gies through structure mapping (Sultan and Shahaf,
2022).

To address a broader semantic scope, the QA-
SRL formalism, well suited for scalable crowd-
sourcing (FitzGerald et al., 2018), has been incre-
mentally extended to account for discourse rela-
tions using semi-templated questions and answers
(Pyatkin et al., 2020) as well as for deverbal nomi-
nalizations (Klein et al., 2020). These tasks, jointly
denoted QASem, have been recently bundled by
a unifying modeling framework and parsing tool
(Klein et al., 2022a). In the QASem framework,
each propositional predication relation — in the
spirit of the aforementioned Neo-Davidsonian ap-
proach — is captured through a corresponding
Question-Answer pair. In this work, we further
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Question Type PREFIX WH AUX SBJ DET TRG PP OBJ ?
Object Who are the most suitable for something ?

Domain What is someone active in ?
Comparison Compared to what is something prominent ?

Extent To what degree is something popular ?

Table 3: Example questions illustrating our question templates.

extend the QASem paradigm to account for adjec-
tives.

3 Task Formulation

In order to keep the task simple — both for annota-
tion and for modeling — we consider all adjectives
occurring in the sentence under the same formula-
tion. We thus refrain from distinguishing different
classes of adjectives (e.g. subsective, intersective
or privative (Partee, 2007; Pavlick and Callison-
Burch, 2016); superlative and comparative; etc.) or
different syntactic realizations of adjectives — i.e.
attributive vs. predicative (the red ball vs. the ball
is red).

While free-formed questions have been pro-
posed as a natural representation of semantic rela-
tions (Michael et al., 2018), prior works show that
they yield inferior coverage relative to annotation
schemes that systematically design restricted ques-
tion templates, such as QA-SRL and QADiscourse
(Pyatkin et al., 2020; Klein et al., 2020). Con-
sequently, we adopt the template-based approach
and design question templates corresponding to
four core argument types of adjectival semantics
that have practical value for downstream applica-
tions. The coverage of these templates was vali-
dated through the examination of prior linguistic
works on adjectives (Huddleston and Pullum, 2002;
Baker et al., 1998). See Table 3 for an illustration
of each question template.

The most basic argument role for an adjective
is the entity described by it, which corresponds to
the predicated entity variable in logical represen-
tations and is captured by all other representation
schemes as well. Our annotation scheme captures
this argument role through the first question type
(What/Who is [ADJ]), termed here Object.

In addition to Object, we adopt the three seman-
tic dimensions of adjectives as identified by Ikeya
(1995), namely — the Thematic dimension, the
Comparative dimension, and the Degree dimen-
sion.

The Thematic dimension is mapped to the Do-
main question type in our scheme. Answers to this

question type give a semantic specification to the
adjective — For example, good at dancing, lactose
intolerant and former president. To illustrate, two-
place predicates (in first-order logic) would mostly
fit their arguments into our Object and Domain
roles. While often syntactically attached to the ad-
jective, such answers can also occur as implicit
arguments (Ex. 5 in Table 2).

The Comparison question type is aimed to cap-
ture the group or entity referenced by the adjective
to which the object is being compared. These ar-
guments are frequently implicit (e.g. Ex. 2, 4 in
Table 2) and are therefore mostly neglected in prior
formalisms that rely on syntax, such as PropBank.

Lastly, the Extent question type corresponds
to the Degree dimension, that is, to what extent
does the adjectival assertion holds. Such argu-
ments can be realized by adverbs (e.g. almost com-
plete, very good) or by more complicated con-
structions (too political for my liking, competent
enough for this job, etc).

We note that our questions are designed at captur-
ing semantic complements of the adjective mean-
ing. In preliminary investigations, incorporating
adverbial modifiers into the task scope was found
to introduce annotation noise. Our role set thus
omits adverbial modifiers, such as time and loca-
tion (e.g. By June, you’ll be capable of program-
ming by yourself ), leaving their investigation for
future work.

In this paper, we focus on "core" adjectival ar-
guments as laid down by Ikeya. See Appendix A.1
for a more elaborated discussion.

QA Format In the spirit of He et al. (2015), we
define a small grammar over possible questions.
The questions are constrained by a template with
eight fields, q ∈ PREFIX × WH × AUX × SBJ ×
DET × TRG × PP × OBJ, each associated with a
set of possible options (see Table 3). Full descrip-
tions for each field are provided in Table 8 in the
Appendix.

Answers are selected from the words in the sen-
tence but can be manually modified in order to
make the answer appropriate and natural-sounding.
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Sentences Adjectives Total Roles Object Domain Comparison Extent
QAs Answers QAs Answers QAs Answers QAs Answers QAs Answers

Train 3377 7266 8198 9080 6802 7654 613 627 412 426 371 373
Dev 668 750 951 1099 733 872 90 93 80 85 48 49
Test 1281 1659 2093 2398 1622 1914 176 178 189 199 106 107
Total 5326 9695 11242 12577 9157 10440 879 898 681 710 525 479

Table 4: Annotation statistics of the QA-Adj dataset.

We instruct the annotators to rewrite answers manu-
ally only when copying words from the sentence is
insufficient for constructing a meaningful or gram-
matical answer, such as in Ex. 4 in Table 2 (the
private sector’s budget). In addition, questions may
have multiple answers, in order to better account
for coordinations or co-referring entity mentions
(Ex. 1, 5, 8 in Table 2).

We further guide our annotators to include
restrictive modifiers (Stanovsky and Dagan,
2016a) in their answers, as these are con-
sidered an integral part of the noun phrase,
e.g., the underlined modifier in "She wore
the shiny necklace that her mother gave her".
Non-restrictive modifiers, which provide paren-
thetical information about the entity — e.g.,
"The speaker thanked former president Obama,
who just walked into the room" — are not in-
cluded in the answer span.

4 Dataset Construction

Preprocessing and annotation interface In this
section, we describe the dataset creation process
and in section 5 analyze its quality. We annotated
over 5K sentences with 9K adjective mentions,
across two domains: Wikinews and Wikipedia. We
select sentences that are also covered by previous
annotated QASem datasets (Roit et al., 2020; Py-
atkin et al., 2020; Klein et al., 2020). In each
sentence, we identify the target adjectives using
SpaCy’s POS-tagger. If an adjective is preceded by
one of the words ’more’, ’less’, ’most’, or ’least’,
then it is considered part of the target adjective.
Table 4 shows the full data statistics.

We developed a Graphical User Interface (GUI)
(See Appendix, Figure 1) deployed at Amazon’s
Mechanical Turk crowdsourcing platform. The
worker, presented with a sentence with a marked ad-
jective as a target, should generate question-answer
pairs pertaining to this adjective. Questions are gen-
erated by filling templated slots using drop-down
lists, whereas answers are selected by highlighting
spans from the sentence, and manually corrected if
needs be. The GUI also includes a short overview

of the task and instructions, along with 5 annotation
examples.

Annotator selection and training We adapted
the controlled crowdsourcing process used by Roit
et al. (2020) for QA-SRL. After establishing the
task formulation and interface, the first two authors
jointly annotated 60 instances as a seed gold set, for
evaluating and guiding worker qualification. We
then release a preliminary crowd-wide annotation
round and contact workers who exhibit reasonable
performance. They are asked to review our short
guidelines, which highlight a few subtle aspects,
and then annotate four qualification rounds, of 15-
30 target adjectives each. Each round is followed
by extensive feedback via email, pointing at errors
and missed arguments, which are identified by au-
tomatic comparison to expert annotation. In total,
this worker training process lasted approximately
8 weeks, and cost 240$, and is orders of magni-
tude shorter and simpler than training annotators
for traditional semantic formalisms.

Annotation process During data collection, we
observed that outcomes of a single crowd annotator
tend to be of insufficient quality, especially with re-
spect to capturing the rather infrequent roles of Do-
main, Comparison and Extent. To enhance the cov-
erage of the evaluation set (dev & test), we aggre-
gated QAs from two independent QA-generation
workers and forwarded them to consolidation. In
the consolidation task, a third worker reviewed and
judged the aggregated generated annotations, pro-
ducing a non-redundant consolidated set.

While aggregating annotations from multiple
generators coped well with the coverage challenge,
data precision was still mediocre for the non-Object
roles, as opposed to the Object role, where pre-
cision was satisfactory (in Section 5.4 (Table 5)
we report evaluated quality for each phase of the
data collection process.). We hence employed an
additional expert verification step pertaining to in-
stances in which one of the non-Object arguments
is provided. In this step, one of the first two authors
of this paper reviewed the annotations, filtering or
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Generation Consolidation Expert Verification
(avg. of 2 workers) (avg. of 2 experts)

Precision Recall F1 Precision Recall F1 Precision Recall F1
Object 83.7 78.5 81.0 87.7 93.4 90.4 - - -

Domain 46.1 64.4 53.7 43.4 82.6 56.9 93.3 84.9 88.9
Comparison 61.4 44.7 52.6 64.1 75.4 69.2 91.7 77.1 83.7

Extent 49.5 67.7 57.1 67.5 80.6 73.4 86.6 80.6 83.4
Total 72.3 72.2 72.2 75.8 89.3 82.0 88.0 89.5 88.8

Table 5: Evaluating the different annotation stages against an expertly annotated reference set of 300 instances (See
§5.2 for evaluation metrics). Bold numbers represent the final stage in the annotation process of the dev & test sets.

fixing answers to non-Object questions as required.
Verification was applied on top of consolidated an-
notations for the dev and test sets (1010 out of 2409
adjective instances), and over single-generator an-
notations for the training set (2182 out of 7266
adjective instances).

Annotation cost Our annotators were paid 20¢
per instance in both the generation and consolida-
tion steps, and a single expert verification assign-
ment takes around 30 seconds. The resulting cost
per instance in the development and test sets is 60¢
(2 generators + consolidator), along with around
30 seconds of expert review time. In the training
set, the cost is 20¢ and 30 expert review seconds
per instance. In total, creating the development and
test sets costs 1445$ and 9 hours of expert verifi-
cation, while the training set costs 1456$ and 19
expert hours, totalling 2891$ and 28 hours of expert
review time for the entire dataset. This approach al-
lowed us to efficiently collect a high-quality dataset
for our QA-based representation of adjectival se-
mantics.

5 Dataset Analysis and Quality

In this section, we report several analyses to quan-
tify and establish the quality and coverage of the
QA-Adj dataset. Additional Information about the
joint distribution of different roles is reported in
Appendix A.4.

5.1 Implicit Arguments
A key benefit of our laymen-intuitive annotation
task is its aptitude to capture implicit arguments,
that is, arguments that are harder to automatically
read off of syntax (See Ex. 2, 4, 5 in Table 2 for
illustrations). To quantify this aspect, we utilize
a syntactic dependency parser1 for measuring the
proportion of implicit arguments on the evaluation
sets. Following similar prior analyses (Klein et al.,

1We apply the same SpaCy model used for POS-tagging
in preprocessing.

2020), an argument is considered implicit if none
of its words is connected to the predicate on an
undirected dependency tree in a path of length ≤ 2.

We find that 17%, 30%, 49%, and 13% of the ar-
guments are implicit for the Object, Domain, Com-
parison, and Extent roles, respectively. This demon-
strates that many of our semantic arguments are
hardly accessible from syntactic representations,
especially for the Comparison and Domain roles.
Focusing on the Object role, we further inspect
that 91% of the instances have at least one explicit
argument, which entails that most of the implicit
arguments provide a (commonly more informative)
coreferring mention of a syntactically-connected
argument (e.g. Ex. 8 in Table 2).2 In the remain-
ing 9%, the object entity is connected through
more complex linguistic constructions such as con-
trol or raising verbs (The audience is asked to re-
main silent), adverbial clauses (Argentina dropped
three places to be ranked sixth) and coordina-
tions (Switzerland and Italy each moved down one,
ranked eighth and ninth respectively). In sum, rely-
ing on intuitive laymen annotations naturally yields
many informative arguments that fall out of scope
of more linguistically oriented representations.

5.2 Evaluation metrics

We use the same evaluation protocol both for
dataset analysis (this section) and for model eval-
uation (Section 6). Given predicted QAs for all
adjectives, we report precision and recall against
the ground truth for each question type separately,
as well as for the total set of predicted QAs. Follow-
ing previous work on annotating semantic relations
with QA pairs (Roit et al., 2020; Pyatkin et al.,
2020; Klein et al., 2020), answers of the same ques-
tion type are considered a match if the intersection
over union (IOU) between the sets of tokens in
each answer is greater than 0.3.

2In general, while multiple answers are rare for other role
questions, 16% of the Object questions are answered by more
than one answer, most commonly due to coreferring mentions.
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5.3 Inter-Annotator Agreement
To assess the consistency of the annotated data,
we measure the inter-annotator agreement on the
dev & test sets, as well as expert-vs-expert agree-
ment on data used as part of the validation and test
sets for parser evaluation. The Object QA type
macro-averaged F1 inter-annotator agreement is
76.0, while for QA types Comparison, Domain,
Extent it is 29.8, 37.0, 41.3, respectively.

The main issue in disagreement arises from sen-
tences that do not contain apparent adjectival ar-
guments, especially in question types Comparison
and Domain, where workers are inclined to ask
questions either way, resulting in sometimes unnat-
ural or overly implicit questions. To measure the
expert-vs-expert agreement, we randomly sample
227 instances that underwent the consolidation pro-
cess and contain at least one of the Comparison,
Domain, or Extent roles. We perform the expert
review step on them by each of the first 2 authors
of this paper and compare the outputs. The expert-
vs-expert F1, excluding the Object question type
which was not reviewed in the expert-review step,
reaches a reasonable 77.9 F1. Notably, the consol-
idation and expert review steps boost consistency
significantly.

Agreement on restrictive modifiers We con-
jecture that a decent proportion of annotator dis-
agreements arise from the difficulty to designate
the proper argument span, which requires keep-
ing within the span restrictive modifiers of the ar-
gument while omitting non-restrictive modifiers
(Stanovsky and Dagan, 2016a). Therefore, we es-
timate the agreement between annotators on mod-
ifiers’ restrictiveness by sampling from the final
dataset 50 answers of the Object role that con-
tain a restrictive modifier, as judged by the first
author, and examining whether both annotators
captured it. 26 modifiers were captured by both
annotators, mostly simple prepositional phrases
(e.g. routes for complex molecules), while 16 were
captured only by one of the annotators. 8 were
missed by both, but captured by the consolidator.
Examining the missed modifiers, we find that many
involve non-continuous span selection (which is
feasible through the manual modification our in-
terface enables on top of a copied sentence span).
For example, in the sentence “The alveolar letters
had longer left stems, while retroflexes had longer
right stems”, the correct argument is right stems
of retroflexes, while the annotators only captured

right stems, omitting this implicit restrictive modi-
fier which is nonetheless essential for demarcating
the precise argument.

5.4 Dataset Assessment by Gold Reference Set

To ensure the quality of our annotation, we created
a gold reference set consisting of 300 instances
from the development set. The reference set should
represent QA-Adj annotations of optimal quality.
For this purpose, we take generated annotations
along with their consolidation decisions (as de-
scribed in §4) and manually correct them by each
of the two first authors independently. We then
reconciliate to resolve any disagreement.

We compare the annotations attained from the
initial generation step, consolidation step, and sin-
gle expert verification step against the reference
set (Table 5). Results indicate that consolidation
significantly boosts coverage, and confirm the high
quality of our full annotation protocol (in bold).

5.5 Comparison with Other Formalisms

In this section, we compare QA-Adj to two com-
mon representations covering adjectival semantics
— PropBank (Palmer et al., 2005) and Abstract
Meaning Representation (AMR; Banarescu et al.,
2013).

PropBank for adjectives One of the most widely
used resources of English predicate-argument struc-
ture is PropBank, which has also incorporated ad-
jectival predicates (Bonial et al., 2014). It is thus
illuminating to examine the overlap and discrepan-
cies between QA-Adj and PropBank. For this pur-
pose, we collect QA-Adj annotations for 150 adjec-
tive instances from PropBank using the same anno-
tation protocol as for the evaluation set (§4), yield-
ing 296 answers (260 QAs) compared against 232
PropBank arguments. We employ our evaluation
protocol (§5.2) to measure argument agreement be-
tween the two annotation schemes, and manually
examine disagreements. Examples throughout this
section are referring to Table 2.

Notably, the scope of adjectival arguments tar-
geted by the two annotation schemes is somewhat
divergent. Designed to explicate the syntactic-
semantic interface, PropBank captures some syn-
tactic markers (e.g. discourse, relative clause, nega-
tion, and modality) that cannot naturally answer
role questions. It is worth mentioning that QA-Adj
annotations incorporate information about nega-
tion and modality within the questions (see Ex. 5),
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Sentence Test set Parser output
(1) Any deviation from this
family model is considered
a "nontraditional family".

Object: What is nontraditional? —
a family + any deviation
from this family model
Comparison: Relative to what is something
nontraditional? — this family model

Object: What is nontraditional? — family

(2) Regarding the lack of women
members in the cabinet, Mr.
Abbott said he was "disappointed".

Object: Who was disappointed? —
he + Mr. Abbott
Domain: What was someone disappointed about?
— the lack of women members in the cabinet

Object: Who was disappointed? — Mr. Abbott
Domain: What was someone disappointed about?
— the lack of women members in the cabinet

Table 6: Comparison between QAs in the test set and the parser’s output. Example 1 demonstrates an implicit
argument that the parser missed, while in Example 2, the parser captured such an argument.

following the QA-SRL approach. In addition, Prop-
Bank includes many types of adverbial modifiers
that are out of QA-Adj scope (§3). We thus exclude
PropBank roles that pertain to syntactic markers or
adverbials from our henceforth quantitative anal-
ysis (details in Appendix A.5) and focus on core
argument roles.

QA-Adj covers 93.1% of PropBank arguments,
demonstrating that our task formulation and anno-
tation substantially capture traditional predicate-
argument relations. One source of disagreements
are pronouns (Ex. 8), which PropBank captures
in the form they appear in the sentence (e.g. him),
while our flexible rewriting mechanism allows to
capture them in the more natural subject form (i.e.
he). Out of 16 PropBank arguments not covered by
QA-Adj, only 6 reflect actual QA-Adj annotation
misses (Ex. 7). Another source of disagreement (4
out of 16) is QA-Adj arguments that are split into
multiple roles in PropBank’s finer-grained annota-
tion (Ex. 9).

On the other hand, PropBank arguments cover
only 72.9% of QA-Adj annotated answers. Out of
80 QA-Adj arguments that don’t match PropBank
annotations, 70 are correct but fall out of Prop-
Bank’s scope. These include co-referring mentions
(14; Ex. 1, 2, 5), implicit arguments (22; Ex. 2,
4, 5), and cases where PropBank arguments are
split by our scheme into two distinct, co-referring
answers (11; See Ex. 3).

While this analysis elucidates the relationship
between QA-Adj and a more traditional semantic
formalism, it also reaffirms the coverage of our QA-
Adj annotations, demonstrating that non-experts
can capture a major portion of the information
found in PropBank. At the same time, relying on
intuitive NL-based QAs introduces new types of im-
plicit information that seem useful downstream, in
addition to making the annotations cheaper, faster,
and easier to replicate compared to expertly anno-
tated formalisms.

Abstract Meaning Representation AMR is a
comprehensive semantic representation designed
to capture semantic aspects of complete sentences,
including adjectival semantics, in an abstract, cross-
language manner. It employs various mechanisms
to account for adjectival semantics. For instance,
the phrase "attractive spy" is represented with
the corresponding verbal roleset, SPY :ARG0-OF

ATTRACT-01, while for other adjectives, AMR de-
fines specific framesets (e.g. SAD-02). The spec-
ification for semantic roles is predicate-specific,
where, to cite AMR guidelines, “ARG0 often refers
to the thing being described by the adjective, while
ARG1 names the next most natural argument.”.3

These correspond to QA-Adj Object and Domain
roles in most cases.

A later study (Bonial et al., 2018) expands the
AMR lexicon with various constructions, includ-
ing a HAVE-DEGREE-91 roleset, which handles
degree adjectives and related constructions. Upon a
close inspection, we find that QA-Adj Comparison
and Degree roles capture most of the information
within the HAVE-DEGREE-91 roles, though in a
more coarse manner. See Appendix A.6 for an
elaboration on the comparison to AMR.

6 Baseline Models

We devise an initial QA-Adj parser to serve as a
baseline for future work on this task. We first apply
the same preprocessing steps for identifying target
adjectives as in our data collection procedure (§4).
Then, following a prior QA-driven semantic parser
(Klein et al., 2022a), we fine-tune the Text-to-Text
Transformer model (T5; Raffel et al., 2020), which
unifies multiple text modeling tasks, and achieves
state-of-the-art results in various NLP benchmarks.
We use Huggingface (Wolf et al., 2020) for fine-
tuning the T5 model. A special token is marking
the target adjective within the input sentence, while

3https://github.com/amrisi/
amr-guidelines
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Model Single Model Role-specific Models
Evaluation Automatic Automatic Manual

Precision Recall F1 Precision Recall F1 Precision Recall F1
Object 82.2 75.1 78.5 78.2 75.4 76.8 86.3 84.4 85.3

Comparison 36.8 43.7 40.0 36.2 47.7 41.2 60.0 45.2 51.5
Domain 50.5 51.1 50.8 51.8 55.0 53.4 62.5 60.9 61.6
Extent 41.7 57.0 48.2 80.0 52.6 63.2 85.0 57.5 68.5
Total 72.5 69.9 71.2 71.5 70.6 71.0 73.7 62.5 67.6

Table 7: Baseline models evaluation. Automatic evaluation results are on the full test set, while manual evaluation is
on a sample.

the output is formatted as question: <Q> answer:
<A>. In case the semantic role is empty, the parser
is to generate the special token [NO-QA].

In preliminary experiments, training a single
model to generate all four QA pairs in one go has
yielded poor results. We hypothesize this is due to
the sparsity of the Domain, Comparison and Extent
question types, which appear in 8%, 5%, and 5%
of the training examples, respectively.

Therefore, to set up baseline results, we fine-
tune an independent T5 model on each question
type separately. The train set per question type
consists of all instances which have the specific
question type answered, along with random nega-
tive samples, i.e. empty QA instances. The ratio of
negative samples is treated as a hyper-parameter of
the model and is optimized on the development set.

Since holding a separate fine-tuned T5 model
for every QA type is memory-consuming, we also
fine-tune a single T5 model using the union of the
training sets of each question type, using a different
prefix for each QA type.

6.1 Results
Previous work on QA-based semantics has demon-
strated that automatic argument-matching criteria
can be too strict (Roit et al., 2020). Hence, to better
estimate precision, we randomly select 40 gener-
ated QAs for each question type and assess their
validity manually. Similarly, to estimate recall, we
sample 40 annotated QAs of each question type
and manually compare them to the parser’s output.

Table 7 presents the automatic evaluation mea-
sures for a single parser trained on all roles, as well
as automatic and manual evaluation of the role-
specific models. Results indicate there is ample
room for improvement, particularly on the more
subtle roles of Comparison and Domain.

One factor contributing to the challenges in cap-
turing these roles is the high prevalence of im-
plicit arguments within them (Ex. 1 in Table 6),
as demonstrated in our analysis (Section 5.1). As

implicit arguments often rely on commonsense rea-
soning rather than syntactic structure, they may be
more difficult for a model to identify. In future
work, we aim to investigate methods for better cap-
turing implicit arguments and explore the use of
external knowledge sources to aid in this task.

7 Conclusion

In this work, we propose and realize a new ap-
proach to representing the semantics of adjectives
using natural language question-answer pairs, fo-
cusing on four generic, core semantic dimensions.
This intuitive representation enables high-quality
yet scalable annotation through controlled crowd-
sourcing along with minimal expert verification.
Our annotations explicate the fundamental aspects
of an adjective’s meaning in context, substantially
overlapping with an expertly annotated SRL re-
source while adding previously uncovered implicit
arguments.

We advocate utilizing QA-Adj downstream as an
alternative for syntactical or semantic representa-
tions. As an example, recent works on aspect-based
sentiment analysis use syntactic or semantic depen-
dencies as scaffolds for enhancing domain transfer
(Wang and Pan, 2019; Pereg et al., 2020; Klein
et al., 2022b). Explicating relations between adjec-
tives (sentiment/opinion terms) and their semantic
objects (aspect terms) directly, QA-Adj is a worth-
while alternative to dependency representation.

Future works should explore methods for im-
proving the baseline models presented in this work,
such as prompt tuning (Lester et al., 2021) or
multi-task learning with related QA-semantic tasks
(Klein et al., 2022a). In addition, since the anno-
tations are based on natural language and layman
workers, it is appealing to transfer the scheme into
various languages, possibly utilizing both machine
translation and/or crowd annotations.

82



8 Limitations and Ethics

Unlike prior QASem annotation tasks, we empiri-
cally find that adding an expert verification step on
a selective portion of the data — where more subtle
roles are handled — is important for maintaining
good precision. Indeed, despite putting efforts in
making the task guidelines simple and intuitive,
margins of the semantic space often introduce com-
plexity that is hard to account for in a consistent
manner without linguistic background. Although
still significantly faster than full-fledged expert an-
notation, requiring an expert in the loop may pose
a bottleneck to scaling annotations to large datasets
and new domains and languages, which is a short-
coming of the current proposal.

Annotations were conducted on Amazon Me-
chanical Turk (MTurk) with an average pay of $12
per hour for all crowdsourcing data collection tasks.
To maintain the anonymity of our workers, we do
not collect personal information and do not keep
any deanonymizing information such as MTurk
IDs.

License The data collected in this work is li-
censed under the Creative Commons license.
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A Appendices

A.1 Omitting Adverbial Modifiers
As mentioned in the paper body (§3), our role
questions are designed toward semantic aspects
that complement the meaning of the adjective.
Consequently, in the spirit of the famous lin-
guistic argument//modifier distinction (or comple-
ment//adjunct), we choose not to incorporate ques-
tions targeting generic ("adjunctive") adverbial in-
formation, such as temporal, causal, or locative
modifiers of the copular phrase.
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Field Description Values

PREFIX Specific question type prefixes Compared to, Relative to, To what degree
WH* Question words who, what
AUX* Auxiliary verbs is, was not, could be, ...
SBJ Place-holder for subject position someone, something
DET Determiner the

TRG* The target adjective tall, active, most accurate, ...
PP Frequent prepositions by, for, in, ...

OBJ Placeholder for object position someone, something

Table 8: The fields of question templates. WH, AUX and TRG are required; all other fields may be left empty.

This design choice arises from practical consid-
erations. In preliminary investigations and crowd-
sourcing experiments, we have found the distinc-
tion between modifiers and the Domain role to
be rather intricate, especially for non-linguist an-
notators. For example, locative or temporal de-
scriptions that are commonly adverbial modifiers
(He was hungry this morning) can in certain cases
be semantic complements (earlier this morning).
Further, when supporting modifier questions like
"When is something [ADJ]?" in the interface, non-
expert annotators are often inclined to embrace
loosely related and erroneous phrases as arguments.
To illustrate, the instance “If you have any ques-
tions please feel free to call me ( after Saturday the
26th )” (from Ex. 6 at Table 2) might be annotated
with the inaccurate QA “When should someone be
free? — after Saturday the 26th”.

A.2 Question Templates Description

Table 8 shows a full description of the 8 question
fields comprising the four question templates (one
per role), together with possible values that can
fill each question field. Each field’s exact set of
optional values defines the role-dependent question
template. In the table, we use three dots (...) to
denote partial lists of values (the full lists would
be released as supplementary material upon accep-
tance).

A.3 Annotation Task User Interface

Our Graphical User Interface (Figure 1) allows to
create multiple answers per QA type (+ button).
Upon answering the Object question, its answer
is embedded in the other questions, making them
more natural.

A.4 Arguments Joint Distribution

The sparsity of arguments corresponding to the
question types Domain, Comparison, and Extent is
a major challenge in our task and data (See Table
4). Indeed, as demonstrated in Section 6.1, this
sparsity makes it difficult for a parser to accurately
identify these roles. In our development set of 750
adjective instances, most (547) have only the Ob-
ject question answered. There are 157 instances
with two answered questions, 26 instances with
three, and only three instances with all four ques-
tions answered.

A small minority of instances has no argument
roles at all (17 out of 750 on dev). This is primarily
due to POS-tagger erroneous adjective identifica-
tion — for example, Khufu’s pyramid complex con-
sists.... Annotators were instructed to leave empty
such erroneous target adjectives, where our roles
questions are not sound.

A.5 PropBank Roles Excluded from
Comparison

Following our discussion in Appendix A.1, we
need to account for the scope discrepancy between
QA-Adj and PropBank prior to measuring their
argument agreement. We thus exclude PropBank
arguments capturing adverb, causation, temporal,
location and relative clause roles, as well as mark-
ers of discourse, modality, and negation. The full
list of PropBank’s excluded roles, along with ex-
amples, can be seen in Table 9.

A.6 More details about AMR Comparison

Predicative vs. Attributive Adjectives AMR
maintains a directionality distinction between pred-
icative adjectives (The marble is white) and attribu-
tive adjectives (The white marble). Predicative ad-
jectives would be the "root" of the sentence graph
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Role Name Argument Sentence
ARGM-ADV your career The one department of life that may not quite be as hopeful as

you’d like could be your career, where advancement may be slow
and satisfaction rare.

R-ARGM-ADV where
ARGM-LOC areas There have been large numbers of population extinctions in Mex-

ico and southern California in areas where the habitat is still
acceptable.

R-ARGM-LOC where
ARGM-CAU reasons Also, from their own webpage, reasons why NASA is important,

in a 5th-grade format.
R-ARGM-CAU why

R-ARG1 who 80 - Percentage of the Iraqi workforce who are unemployed a
year after the war.

ARGM-MOD may They may not be familiar, but they will be fascinating.
ARGM-NEG not
ARGM-TMP when we love another person We become most fully human when we love another person.
ARGM-DIS Please Please feel free to call me.

Table 9: Examples of PropBank roles omitted from comparison to QA-Adj.

(or clause subgraph), and the subject entity would
be their :DOMAIN argument, e.g. WHITE :DOMAIN

MARBLE. Attributive adjectives, on the other hand,
are denoted as :MOD arguments of their target en-
tity, e.g. MARBLE :MOD WHITE. This distinction
is necessary for maintaining a fine-grained account
of sentence meaning, as it captures the sentence
focus, which may have pragmatical implications.
In QA-Adj, and QASem in general, we take a more
"informational" perspective on semantics (rooted
in more traditional logical representations), thus
wishing to abstract out surface realization details
that do not modify the conveyed information.

Degree constructions Bonial et al. (2018) ex-
pands the AMR lexicon with various constructions.
These include a HAVE-DEGREE-91 roleset, which
handles constructions related to degree adjectives,
such as comparatives, superlatives, or more idiosyn-
cratic constructions, e.g. what they term ’Degree
Consequence’ (see Table for example annotations).
The HAVE-DEGREE-91 roleset comprises the fol-
lowing semantic roles:

• ARG1: domain, entity characterized by at-
tribute

• ARG2: attribute (e.g. tall)

• ARG3: degree itself (e.g. more/most,
less/least)

• ARG4: compared-to

• ARG5: superlative: reference to superset

• ARG6: consequence, result of degree.

Compared to our scheme, ARG1 directly corre-
sponds to the Object role, while ARG3 and ARG6
correspond to the Extent role. ARG4 and ARG5
align with the Comparison role. Examples illus-
trating this mapping are presented in Table 10. This
comparison illustrates that the roles defined by our
task are less fine-grained than those that can be
found, at least in some contexts, in other semantic
frameworks like AMR. Our choice of granularity
is informed by our objective, aiming to facilitate
streamlined non-expert annotation. Nevertheless,
the comparison also demonstrates that our four
roles adequately cover the most essential semantic
roles of adjectival semantics.
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Sentence AMR QA-Adj
(1) The watch is too wide for my wrist. Arg1: watch

Arg2: wide
Arg3: too
Arg6: my wrist

Object: What is wide? — The watch
Extent: To what extent is something wide? too wide for my wrist

(2) The girl is taller than the boy. Arg1: girl
Arg2: tall
Arg3: more
Arg4: boy

Object: Who is taller? — The girl
Comparison: Compared to whom is someone taller? — the boy

Table 10: Examples of AMR annotations for adjectives, using the specialized HAVE-DEGREE-91 roleset, along with
corresponding QA-Adj annotations.

Figure 1: User interface for the Question-Answer Generation task.
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Abstract
This paper presents a new dataset with Dis-
course Representation Structures (DRSs) an-
notated over naturally-occurring sentences. Im-
portantly, these sentences are more varied in
length and on average longer than those in the
existing gold-standard DRS dataset, the Paral-
lel Meaning Bank, and we show that they are
therefore much harder for parsers. We argue,
though, that this provides a more realistic as-
sessment of the difficulties of DRS parsing.

1 Motivation

Corpora with deep, logic-based semantic annota-
tions are quite rare because they are so hard to
annotate. The arrival of the Groningen Meaning
Bank (Bos et al., 2017) and the Parallel Mean-
ing Bank (PMB; Abzianidze et al., 2017) changed
this situation by offering full Discourse Representa-
tion Structures (DRSs; Kamp, 1981b) for substan-
tial amounts of text in Dutch, English, German,
and Italian. The current release, 4.0.0, contains
more than 10,000 sentences in English and between
1,400 and 2,800 sentences in other languages. How-
ever, the dataset contains both bronze (automatic),
silver (partial manual disambiguation), and gold
(full manual disambiguation) data, and the gold
sentences are consistently very short (mostly <10
words). Since the dev, test, and eval sets contain
only gold data, this means that DRS parsers are
tested only on very short sentences, yielding an
overly optimistic assessment of results in this area.

In this paper, we improve on the situation by
offering a gold standard dataset containing DRSs
with a more realistic sentence length distribution.
We call this dataset DRASTIC, for ‘Discourse Rep-
resentation Annotation with Sentence Texts of In-
creased Complexity’.1 An additional strength of
DRASTIC is that the texts it contains – three contigu-
ous documents plus a selection of medium-length

1The dataset and accompanying scripts are available here:
https://github.com/Universal-NLU/DRASTIC.

sentences – are from the GUM corpus (Zeldes,
2017), allowing users to explore connections be-
tween the DRS annotation and the rich annotation
available in GUM: beside morphosyntactic anno-
tation following the Universal Dependencies (UD)
scheme (de Marneffe et al., 2021), this also in-
cludes entity recognition, coreference, discourse
structure and more.2 The current size of our dataset
is small, at 157 sentences with full manual disam-
biguation, but around 1,000 more sentences have
received a first manual annotation by student anno-
tators and will subsequently be integrated into the
dataset.

DRS parsing gets harder as sentences grow
longer (cf. van Noord et al., 2020, 4594f.). This
is natural, but some peculiarities of the PMB anno-
tation are especially hard to capture, and contribute
only little extra information. Cases in point are
recursive presuppositions, strict separation of dif-
ferent presuppositions of a single sentence, and the
use of discourse relations with relatively bland con-
tent such as CONTINUATION. As the sentence
grows in length, these result in a complex network
of embedded DRSs. In such cases, parser output
that is (more or less) logically equivalent to the
gold can still get a low score. To avoid this, we
simplify the annotation of such structures (see Sec-
tion 2.2). Since our corpus is small and does not
include training data, we provide a script that flat-
tens PMB-style annotations to our format. This
can be used to flatten PMB data before training
a parser, or alternatively to flatten the output of a
parser trained on the PMB.

The structure of the paper is as follows. In Sec-
tion 2, we introduce Discourse Representation The-
ory (DRT), as well as the PMB annotation and our
simplifications of it. In Section 3, we describe our
corpus, and Section 4 studies the effects of sen-

2The list at https://gucorpling.org/gum/annotations.html
(accessed 31 May 2023) provides the full set of annotation
layers.
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tence length on DRS parsing and offers baseline
modelling results on our data.

2 The format: Discourse Representation
Structures

In Discourse Representation Theory (Kamp, 1981b;
Kamp and Reyle, 1993; Kamp et al., 2011; Kamp
and Reyle, 2019) the meaning of a sentence is anal-
ysed as its contribution to the existing semantic
representation of the discourse context, called a
Discourse Representation Structure (DRS). This
means that DRT belongs to the family of theo-
ries called dynamic semantics, although DRT treats
only the process of interpretation as dynamic, not
the notion of meaning itself.3

DRSs are traditionally represented as boxes di-
vided into two: a universe of discourse at the top,
containing a number of discourse referents, which
can then be referred to by the set of conditions in
the lower part of the box. DRS conditions are by
and large simply formulae of some predicate logic,
but can also contain complex conditions relating
multiple DRSs via logical operators like negation,
implication, and disjunction, or modal operators
like possibility and necessity. By way of illustra-
tion, Figure 1 gives a DRS for the sentence Jadzia
thought that Miles or Julian had been hurt. DRT
is compatible with many different specific theoreti-
cal approaches to semantics; in Figure 1, as in our
corpus, we use a Neo-Davidsonian event semantics
where events and states (collectively called eventu-
alities) are treated as first-class entities in the ontol-
ogy, and semantic dependents are related to their
heads via thematic role predicates such as Agent,
Patient, etc. (on event semantics see e.g. Davidson,
1967; Parsons, 1990). A basic representation of
tense is also given, by including the relation Time
between an eventuality and its time, and relating
that time to the constant ‘now’ (referring to the
time of utterance) or to other times.

Aside from the rich body of theoretical work
in DRT exploring various knotty semantic phe-
nomena such as anaphora (Kamp, 1981b; Haug,
2014), tense (Kamp, 1981a), rhetorical structure
(Lascarides and Asher, 1993; Asher and Lascarides,
2003), propositional attitudes (Asher, 1986; Kamp,
1990), and others, one other good reason for us-
ing DRSs as our semantic representations is the

3Muskens (1994, 1996) provides a compositional interpre-
tation of DRT using the lambda calculus, which also treats
meaning itself as dynamic, thus uniting two divergent ap-
proaches within the dynamic semantics family.

existence of the Parallel Meaning Bank (PMB;
Abzianidze et al., 2017), a multilingual corpus of
DRS-annotated texts in English, Dutch, Italian, and
German, to which we aim to contribute.

2.1 DRT in the PMB

The PMB makes a number of specific choices
with regard to its DRS representations, which we
endeavour to follow. Firstly, it represents DRSs
not as graphical boxes, but as machine-readable
text files, in a clausal format (van Noord et al.,
2018a). An example PMB-style DRS and its cor-
responding translation into the clausal format is
shown in Figure 2. Each clause begins with the
label of a DRS (a ‘box’, hence the b), indicat-
ing where the condition is introduced. It then con-
tains one of three types of condition: (1) a unary
or binary predicate name, followed by its argu-
ment(s), as in b1 scowl.v.01 e1; (2) the ex-
plicit introduction of a discourse referent, as in
b1 REF e1; or (3) a relation between DRSs, as
in b2 PRESUPPOSITION b1, which states that
the contents of DRS b2 is a presupposition of
b1.4 Finally, the clause contains information about
which word it originates from, and gives the char-
acter offsets of that word in square brackets.

As indicated in Figure 2, the PMB also repre-
sents presupposition, following the approach of
Projective DRT (Venhuizen, 2015; Venhuizen et al.,
2018). In the graphical representation, we indi-
cate presupposed material with a prefixed aster-
isk, ‘∗’, since we flatten any embedded presuppo-
sition structure so that we just have a single box
containing all presupposed material for the sen-
tence (see Section 2.2 for more on our simplifica-
tions of the clausal format). On the clausal side,
b2 PRESUPPOSITION b1 means that DRS b2
is a presupposition of DRS b1. A full list of PMB
relations, including temporal relations (such as
TPR, temporal precedence, used in Figure 2) is
available on the PMB website.5.

The PMB representations do not include any
indication of number (singular vs. plural, etc.),
nor of aspect, but they do contain detailed lex-
ical semantic information, because each lexical
concept, i.e. unary predicate, is identified with a
WordNet synset (Fellbaum, 1998) indicating which

4Other relations between DRSs used in the PMB follow
the rhetorical relations of Segmented DRT (SDRT; see e.g.
Asher and Lascarides 2003), but we do not use these in the
DRASTIC corpus – see Section 2.2.

5https://pmb.let.rug.nl/drs.php (accessed 31 May 2023).
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b1 ∶

e1 x1 t1

person(x1)
Name(x1, ‘Jadzia’)
think(e1)
Experiencer(e1, x1)
Topic(e1, b2)
time(t1)
Time(e1, t1)
t1 < ‘now’

b2 ∶

e2 x4 t2

hurt(e2)
Patient(e2, x4)
time(t2)
Time(e2, t2)
t2 < t1

x2

x2 = x4

person(x2)
Name(x2, ‘Julian’)

∨
x3

x3 = x4

person(x3)
Name(x3, ‘Miles’)

Figure 1: DRS for Jadzia thought that Miles or Julian had been hurt

b1 ∶

e1 ∗ x1 ∗ t1
∗person.n.01(x1)∗Name(x1, ‘Benjamin’)
scowl.v.01(e1)
Agent(e1, x1)∗time.n.08(t1)
Time(e1, t1)∗t1 < ‘now’

(a) Graphical representation

b2 PRESUPPOSITION b1
b2 REF x1 % Benjamin [0...8]
b2 person.n.01 x1 % Benjamin [0...8]
b2 Name x1 "Benjamin" % Benjamin [0...8]
b1 REF e1 % scowled [9...16]
b1 scowl.v.01 e1 % scowled [9...16]
b1 Agent e1 x1 % scowled [9...16]
b2 REF t1 % scowled [9...16]
b2 time.n.08 t1 % scowled [9...16]
b1 Time e1 t1 % scowled [9...16]
b2 TPR t1 "now" % scowled [9...16]

(b) Clausal notation

Figure 2: Graphical vs. clause-based representation of a PMB-style DRS for the sentence Benjamin scowled

particular word sense is implicated. That is, the
clause b2 person.n.01 x1 indicates that the
discourse referent x1 falls under the first nominal
sense of the lexeme PERSON listed in WordNet,
i.e. a human being, as opposed to a body or the
grammatical category (senses 2 and 3).

2.2 Simplifications

In general, the DRASTIC corpus follows the PMB
annotation style, to allow the transfer of tools and
techniques developed for the PMB, and in particu-
lar to provide test data involving longer sentences
for the evaluation of parsers trained on the PMB.
However, there are two areas in which we have
chosen to simplify the PMB scheme in DRASTIC.

Firstly, we flatten DRSs by removing extrane-
ous presuppositional sub-DRSs. To see what this
means, consider the sentence Jenna’s car stopped.
Here we have (at least) three distinct existential

presuppositions: the possessive construction pre-
supposes the existence of Jenna’s car; the proper
noun Jenna itself introduces a presupposition that
someone called ‘Jenna’ exists; and the past tense
presupposes the existence of some time before the
present. In PMB, this would result in three separate
presuppositional DRSs, with two related directly
to the main, outer DRS, and one related indirectly,
via another of the presuppositional DRSs. This is
shown in Figure 3a. In our own representations, all
presuppositional material that originates in a given
DRS is collapsed into a single sub-DRS, as shown
in Figure 3b.

Since presuppositional material is ultimately not
interpreted where it originates, but at the level to
which it projects (on presupposition projection in
DRT, see Venhuizen et al. 2018), this move is harm-
less with respect to the content of the DRSs in
question. We lose track of which presuppositions
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b1 ∶

e1

b2 ∶

x2

Owner(x2, x1)
car.n.01(x2)
PRESUPPOSITION(b1)
b3 ∶

x1

person.n.01(x1)
Name(x1, ‘Jenna’)
PRESUPPOSITION(b2)

stop.v.01(e1)
Theme(e1, x2)
Time(e1, t1)
b4 ∶

t1

time.n.08(t1)
t1 < ‘now’
PRESUPPOSITION(b1)

(a) Unflattened presuppositional DRS

b1 ∶

e1

b2 ∶

x1 x2 t1

Owner(x2, x1)
car.n.01(x2)
person.n.01(x1)
Name(x1, ‘Jenna’)
time.n.08(t1)
t1 < ‘now’
PRESUPPOSITION(b1)

stop.v.01(e1)
Theme(e1, x2)
Time(e1, t1)

(b) Flattened presuppositional DRS

Figure 3: Unflattened vs. flattened DRS for Jenna’s car stopped

originated together, but this is not essential for in-
terpretation. Moreover, when it comes to evaluating
DRS parsing, we avoid many cases where logically
equivalent DRSs are identified as distinct, owing
to inconsequential differences in presupposition
structure, which will then inappropriately suppress
performance scores for DRS parsers.

This move also has the major advantage of mak-
ing the representations easier for contemporary
general-purpose neural networks to learn in the first
place. As van Noord et al. (2018b, 619) observe,
“DRSs are recursive structures and thus form a chal-
lenge for sequence-to-sequence models because
they need to generate a well-formed structure and
not something that looks like one but is not inter-
pretable”. By collapsing largely extraneous struc-
ture, we reduce one major source of difficulty for
sequence-to-sequence models in producing DRSs.

The second simplification that we make is to
eliminate rhetorical/discourse relations from our
representations. This is more destructive than our
first change since some such relations are gen-
uinely informative (e.g. EXPLANATION). How-
ever, by far the most common relation in the PMB
is CONTINUATION, the semantics of which re-
duces to conjunction, meaning that nothing is lost
by eliminating it. Annotation of such rhetorical re-
lations is also rather more subjective than other as-
pects of semantic annotation, which can inevitably
lead to inconsistencies within or between annota-
tors. Finally, removing these relations once again
results in flatter DRSs, and so also serves to aid

machine learning of DRS parsing.
However, since our corpus is too small to train

a parser on our simplified format, model training
must still rely on the PMB training set. Since most
sentences there are very short, the structures that
we simplify are unlikely to arise in large numbers;
nevertheless, to make sure that the annotations are
compatible, we provide a script that flattens PMB-
style annotations as described above. This can be
used to flatten the PMB data before training (to
train a parser directly on this simplified format) or
to flatten the output of a parser trained on the PMB
directly. In Section 4, we report the results of some
experiments using this second approach.

3 The corpus

3.1 The texts
The DRASTIC corpus consists of four sub-corpora:
three entire documents from the biographical sec-
tion of GUM, and one selection of shorter sentences
drawn from different sub-parts of the GUM corpus.

The three biographical texts are Wikipedia arti-
cles relating to Czech composer Antonı́n Dvořák
(GUM bio dvorak), YouTuber Jenna Marbles
(GUM bio marbles), and translation theorist Eu-
gene Nida (GUM bio nida), while the short texts
corpus contains sentences 6–19 words long from
6 academic articles included in the 216 texts of
the GUM corpus (the specific texts are shown in
Table 1). Table 2 gives details about the size of the
sub-corpora. ‘Tokens’ in this table refers to ortho-
graphic words separated by whitespace or hyphens,
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GUM academic art
GUM academic census
GUM academic eegimaa
GUM academic enjambment
GUM academic epistemic
GUM academic games

Table 1: GUM texts from which the short-texts
corpus draws

Sub-corpus Sentences Tokens UD tokens

dvorak 28 668 678
marbles 43 842 926

nida 46 878 917
short-texts 40 512 539

TOTAL 157 2900 3060

Table 2: Size breakdown of the DRASTIC corpus

and to some punctuation characters (., ,, !, ?, ;).
The UD tokenisation used in the GUM CoNLL-U
files is more morphosyntactically motivated (e.g.
possessive ’s is separated from its host), and as such
gives a larger number.

The major contribution of our corpus is that the
sentence length distribution is more evenly spread
and has a far wider range than that of the PMB data
(especially the test set). For instance, the median
sentence length in our corpus is 17, compared to 8
in the PMB data overall, and 6 in the PMB test set.
The full distributions are shown in Figure 4, while
Table 3 gives some further descriptive statistics
about sentence length across the (sub-)corpora.

(Sub-)corpus Median Mean St.dev.

dvorak 23 23.9 9.68
marbles 17 19.6 12.4

nida 18 19.1 11.1
short-texts 13 12.8 4.29

DRASTIC (all) 17 18.5 10.6

PMB (all) 8 10.0 9.53
PMB (test only) 6 6.60 2.08

Table 3: Sentence length across (sub-)corpora

Although it only has a modest number of sen-
tences, the DRASTIC corpus nevertheless also man-
ages to exemplify a range of complex linguistic
phenomena, including negation, modal expressions,
meta-linguistic usage, appositions, relative clauses,
complement clauses, and a variety of other kinds

of multi-clausal structure.

3.2 The annotation procedure
In the first instance, our annotation procedure fol-
lows that of the PMB as described in Abzianidze
et al. (2017).6 Our texts were uploaded to the PMB,
where they were automatically analysed on several
layers: tokenisation, CCG parsing, semantic tag-
ging and WordNet sense selection. With this infor-
mation, the Boxer system (Bos, 2008, 2015) then
automatically produces a DRS representation for
the sentence. All layers were subject to manual cor-
rection by trained annotators, and annotations were
harmonised through weekly meetings and subse-
quent retagging of texts. This was done for around
1,000 sentences. For the 157 sentences released in
the current version of the corpus, all sentences were
also checked by the authors of this paper, and this
process will continue.

The PMB interface imposes compositionality, in
the sense that the final representation cannot be
edited; only the representation of the tokens can be
changed, and Boxer will then assemble a new repre-
sentation of the sentence. While this is theoretically
desirable, it can be practically limiting. Consider
the sentence She paid $800 rent by working var-
ious jobs, like bartending, working at a tanning
salon, blogging, and go-go dancing at nightclubs.
Because this is a sequence of coordinated gerund
VPs, Boxer produces disjoint DRSs connected by
the discourse relation CONTINUATION. By man-
ual intervention, we can instead make sure that the
gerunds are coordinated to form one complex event,
which bears an Instrument role to the matrix event.

To deal with such complicated cases, we there-
fore exported our data from the PMB and manually
corrected remaining errors. Because we wanted to
factor out anaphora resolution as a separate task, we
exported the data with no anaphora resolved. How-
ever, all cases of sentence-internal anaphoric refer-
ence were noted, and we distribute the data in two
versions: with and without anaphoric resolution.
The former is the standard of the PMB and was
used in our subsequent experiments. Unfortunately,
it is not easy to represent cross-sentential anaphoric
references when each DRS represents one sentence
only; for that the DRSs must be merged or con-
nected by discourse relations. This is a task for
full-fledged discourse parsing, which we do not

6We are grateful to the PMB team, in particular Johan Bos
and Rik van Noord, for helping us with both technical and
linguistic issues in using the PMB interface.
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Figure 4: Length distribution in PMB 4.0.0 datasets compared to our corpus

attempt here. However, it is worth noting that this
is an area where the additional annotation layers
of the GUM corpus will be particularly useful. In
this instance, the discourse annotation layer, based
on Rhetorical Structure Theory (Mann and Thomp-
son, 1988; Taboada and Mann, 2006), may aid in,
for example, reconstructing the SDRS rhetorical/
discourse relations which DRASTIC omits.

3.3 The format

Each of the two versions of the corpus, with and
without anaphoric resolution, is provided as a set
of files, one for each sentence, named after their
GUM sent id. Each file contains the raw text of the
sentence and its clausal DRS annotation. We make
the connection from the DRS annotation to both
the original text and the GUM UD format explicit
by decorating clauses in our data not only with
character offsets, as shown in Figure 2, but also
with UD token offsets, taken from the CoNLL-U
files. This indicates which word(s) the clause in
question originates from.

4 Modelling results

4.1 State of the art DRS parsing

Work on DRS parsing has recently involved apply-
ing deep neural networks. The majority of the work
in this area (van Noord et al., 2018b; van Noord,
2019; Evang, 2019) has used sequence-to-sequence
(seq2seq) LSTMs (Hochreiter and Schmidhuber,
1997). Table 4 presents recently reported perfor-

mances of DRS parsing on the PMB datasets,
along with the best results from our seq2seq exper-
iments (Yıldırım and Haug, 2023), which, unlike
previous work, also reports results on PMB 4.0.0.7

We trained this state-of-the-art parser following the
design principles used by van Noord et al. (2020),
but instead of an LSTM we used transformer-based
encoders and decoders. Here, we report the results
obtained by using bert base cased as a frozen en-
coder along with a non-pretrained (randomly ini-
tialized) transformer as the decoder (12 layers, 12
attention heads per layer, using the Wordpiece tok-
enizer (Wu et al., 2016) used by the input (encoder)
for the output as well).

The results in Table 4, with F1 scores in the
high 80s/low 90s, clearly leave room for improve-
ment, but do suggest that DRS parsing is a rela-
tively straightforward task for current systems. The
results are better, for example, than state-of-the-
art parsing for Abstract Meaning Representation
(AMR; Langkilde and Knight, 1998), which is in
the low to mid 80s (Bai et al., 2022). This is sur-
prising, because the expressive power of AMR is
strictly less than that of DRT (Bos, 2016), and be-
cause the PMB DRSs capture many phenomena
that AMR ignores, particularly involving scope.

However, there is reason to believe that DRS
parsing as evaluated on the PMB test set under-
states the difficulty of the task. One issue that was

7Poelman et al. (2022) report performances of parsing
Discourse Representation Graphs (DRG), a simpler form of
DRSs, using PMB 4.0.0.
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PMB 2.2.0 PMB 3.0.0 PMB 4.0.0
dev test dev test dev test eval DRASTIC

van Noord et al. (2020) 86.1 88.3 88.4 89.3 – – – –
Liu et al. (2021) – 88.7 – – – – – –

Yıldırım and Haug (2023) 87.5 89.2 89.8 90.3 88.1 89.0 86.9 36.2

Table 4: Recently reported F1 scores for PMB 2.2.0, 3.0.0, and 4.0.0 datasets, and our result for DRASTIC

noticed by van Noord et al. (2020, 4594f.) is that,
unsurprisingly, all models in their experiments per-
formed worse as sentences got longer. In this con-
text, the short length of the sentences in the PMB
test set becomes especially noteworthy. The distri-
bution of sentence lengths in the PMB was already
shown in Figure 4. We see that it is very differ-
ent between the training set and the dev/eval/test
sets. As noted above, this is because the latter only
include data that have been fully corrected man-
ually – generally very short sentences – whereas
the training set also contains data with no or only
partial manual disambiguation, and those sentences
are much longer. This mismatch is in itself a po-
tential problem and may be the reason why several
teams have fine-tuned their models on only the gold
data of the training set, which has a similar length
distribution to that of the test set.

4.2 DRS parsing and sentence length
More worrying than the mismatch between train-
ing and evaluation is the overall short length of
the sentences in the PMB dataset. We observe that
sentences longer than 10 tokens are very rare. This
is quite different from what one encounters in most
genres of running text. Owing to the small range of
sentence lengths in the PMB test set, the deleteri-
ous effect of increased length noted by van Noord
et al. (2020) is only weakly felt there. The cor-
relation between sentence length and F1 score in
the PMB test set has a Pearson’s r value of −0.21
(p < 5 × 10−10), a trend shown in Figure 5 (with
regression line and 95% confidence intervals). In
the DRASTIC data, with its more varied sentence
lengths, the correlation with F1 scores is slightly
more pronounced, as shown in Figure 6 (Pear-
son’s r = −0.29, p < 4 × 10−4). Nevertheless, it
is still fairly weak. Although longer sentences may
confuse the transformer architecture by virtue of
their length alone (because there was little or no
data with the same positional encodings in the train-
ing phase), linguistic complexity (e.g. the presence
of negation or other scopal operators, along with
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Figure 5: Performance vs. length in the PMB test set
obtained by using the model reported under PMB 4.0.0
in Table 4 by Yıldırım and Haug (2023)

embedded structures) is another, semi-orthogonal
source of difficulty, which will affect performance
independently of length. Of course, the two are not
entirely unrelated, since longer sentences also tend
to be linguistically more complex (especially in
terms of sentential embedding), exhibiting more
structures that are rarely seen in the training data.

4.3 Performance on our dataset
Since our data structures are simplified (‘flattened’)
compared to the PMB annotations, as described in
Section 2.2, we transform the output of our parsers,
which are trained on the original PMB data. This is
done automatically in three steps:8

1. Removing discourse relations: Each clause
of the form x REL y, where REL is
one of CONTINUATION, CONTRAST,
ELABORATION or EXPLANATION, is elim-
inated. All occurrences of the box variable x
are replaced by y in all clauses.

8The script to perform this transformation has been
made available along with the data at https://github.com/
Universal-NLU/DRASTIC.
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Figure 6: Performance vs. length in the DRASTIC corpus
obtained by using the model reported under PMB 4.0.0
in Table 4 by Yıldırım and Haug (2023)

2. Flattening recursive presuppositions:
for all occurrences of pairs of clauses
of the form x PRESUPPOSITION y,
y PRESUPPOSITION z, we remove the
first clause and replace all occurrences of the
box variable x by y.

3. Grouping presuppositions: for all occurrences
of clause pairs x PRESUPPOSITION y,
z PRESUPPOSITION y, we remove the
first clause and replace all occurrences of the
box variable x by z.

For the purposes of this paper, we perform these
transformations on the output of the DRS parser
before measuring performance on our dataset. This
allows us to use the same model both on PMB data
(with unflattened output) and on our data (with
flattened output). As an alternative, it would be
possible to train the model on flattened PMB output,
so that the model will have seen the simplified
structures directly during training; we leave this for
future research.

We saw in Figure 6 the performance of our best
model across sentences of different lengths in the
DRASTIC corpus. Often for longer sentences the
output of the model contains far fewer clauses than
the gold data, suggesting an effect of length alone.
But the model also performs much worse on DRAS-
TIC than on the PMB in general, as witnessed by the
low F1 score of 36.2 shown in Table 4.9 Partly, this

9And this is true even when length is held constant: for

is because our dataset is more linguistically com-
plex than the PMB. Sentences involving negation,
for example, cause particular problems, and the
negative meaning is often absent from the model
output. Interaction between scopal elements such
as negation and modality is also difficult: for the
sentence While the impact of a translation may be
close to the original, there can be no identity in
detail, the model incorrectly stacks the possibility
operators and flips the scope of negation and pos-
sibility, so that the meaning of the second clause
becomes “it is possible that it is possible that there
is no identity in detail”, while in This is, perhaps,
not the best example of the technique . . . , the nega-
tion disappears altogether.

Linguistic complexity cannot be the whole story,
however. There are also unusual errors such as
names that occur in our data but not in the PMB
being incorrectly rendered in the parser output: e.g.
the name “Marbles” becomes ‘georgia strawberry’,
‘margau’, ‘margis’, and ‘name’. It is surprising to
see such behaviour in a parser that performs so
well on the PMB test set. This might indicate that
the models overfit on peculiarities of the PMB.10

A deeper investigation into what causes this drop
in performance is clearly required – for example,
one could replace names in the DRASTIC corpus
with frequently-occuring names in the PMB to see
if this improves performance. Whatever the exact
origins of these deficiencies turn out to be, we be-
lieve our more varied data can contribute to more
robust DRS parsers, especially as DRASTIC grows
in size.

5 Summary

We have presented a new dataset, the DRASTIC cor-
pus, which contains PMB-style DRSs annotated
over sentences with more realistic lengths than
the original PMB dataset, and which is, accord-
ingly, much more of a challenge for state-of-the-art
parsers. We hope that this will lead both to a more
realistic assessment of the difficulty of DRS pars-
ing and, in the longer term, to the development of
more robust models.

example, in the PMB, the majority of sentences of length 8 are
parsed to an F1 score of 0.75 or higher, whereas in our data,
only one “sentence”, of length 1, gets a score at this level.

10As an anecdotal example, we can mention that that 15-
20% of the sentences across the PMB subsets contain the
proper name Tom.
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Abstract

Rooted in AMR, Uniform Meaning Rep-
resentation (UMR) is a graph-based for-
malism with nodes as concepts and edges
as relations between them. When used
to represent natural language semantics,
UMR maps words in a sentence to con-
cepts in the UMR graph. Multiword ex-
pressions (MWEs) pose a particular chal-
lenge to UMR annotation because they de-
viate from the default one-to-one mapping
between words and concepts. There are dif-
ferent types of MWEs which require differ-
ent kinds of annotation that must be speci-
fied in guidelines. This paper discusses the
specific treatment for each type of MWE
in UMR.

1 Introduction
Uniform Meaning Representation (UMR) (Gy-
sel et al., 2021) is a graph-based formalism
designed to represent natural language seman-
tics. It is based on Abstract Meaning Repre-
sentation (AMR) (Banarescu et al., 2013), but
is enriched and extended in accordance with
typological principles to account for linguistic
uniformity and variation across a wide range
of languages of the world, from languages like
Arabic, Chinese, and English that have a large
population of speakers, to languages like Ara-
paho, Kukama, Navajo, and Sanapana with a
relatively small number of speakers. Expand-
ing on AMR, UMR also includes a document-
level representation that represents linguistic
relations that go beyond sentence-boundaries,
such as coreferential relations and temporal
and modal dependencies.

Like AMR, the basic building blocks of a
UMR graph are concepts and relations, with
concepts typically mapping to words in a sen-
tence and relations representing how those

words are related semantically. UMR concepts
are typically lemmas or sense-disambiguated
lemmas, but they can also be abstract con-
cepts that do not map to specific word tokens
and are instead inferred from the context of
the sentence. Common in a UMR graph are
subgraphs that represent predicate-argument
structures in which the predicate is the parent
and its arguments are its children. The rela-
tions between a predicate and its arguments
are typically the semantic roles that each ar-
gument plays with respect to the predicate,
but they can also be other types of semantic
relations. A UMR example containing a mul-
tiword expression (MWE) is provided in (1):

(1) They are willing to throw America under
the bus.

. (w / will-02

. :aspect State

. :modstr FullAff

. :Arg0 (p / person

. :ref-person 3rd

. :ref-number Plural)

. :Arg1 (t2 / throw-under-bus-08

. :Arg0 p

. :Arg1 (c / country

. :name (n / name

. :op1 ”America”))))

The mapping between UMR concepts and
words in a sentence is complex. While most
UMR concepts map to single words, there are
also UMR concepts as in (1) that map to mul-
tiple words, in this case four words. The op-
posite is true as well where one word can map
to multiple UMR concepts, which is often the
case in polysynthetic languages like Arapaho
(Gysel et al., 2021).

In this paper, we draw from a broad range of
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annotated examples from different languages
to discuss the properties of different types of
MWEs and how they can be annotated in
UMR. Because UMR annotation occurs in two
stages– one called stage 0 for languages with-
out rolesets, and one called stage 1 for lan-
guages with rolesets– we discuss differences in
the strategies used for MWE annotation at
both stages. Here we adopt an operational
definition of MWE in the context of UMR
annotation. When multiple words map to a
single concept in UMR, these words form an
MWE. Since they are so common, formulating
a consistent approach for representing MWEs
in UMR is critical to the success of UMR as a
representation. This requires, first of all, that
we have a good understanding of what types
of MWEs exist in languages of the world, and
then design a consistent set of guidelines to
direct their annotation in UMR.

The MWEs that we consider in this paper
include light verb constructions (LVCs) (Sec-
tion 2), MWEs without a strong figurative in-
terpretation (Section 3), non-consecutive mul-
tiword expressions that occur in certain con-
structions (Section 4), idioms (Section 5),
proverbs (Section 6), and two-part allegorical
sayings (Section 6.1). These categories dis-
tinguish MWEs by how they are handled in
UMR, both in terms of how tokens are incorpo-
rated into UMR graphs, and whether/how fig-
urative meaning is conveyed through the UMR
schema. We expect that this work will be use-
ful for UMR annotation in the future, and is
broadly relevant to studies of abstract mean-
ing in formal semantic representations.

2 Light Verb Constructions

Light verb constructions take the form of a
semantically-light verb with a nominal pred-
icate as its object. The arguments are se-
lected by the nominal predicate rather than
the light verb, although the light verb can
contribute proto-roles as well as aspectual in-
terpretations of the construction as a whole.
Following AMR, the UMR concept used to
represent the LVC in a graph is derived from
the nominal predicate, with the light verb con-
tributing to the aspectual annotation for the
predicate. In the English example in (2), the
light verb “make” pairs with the nominal pred-

icate “break”, which has arguments for an en-
tity in motion (literal or abstract) and a des-
tination. In the UMR graph, the light verb
is glossed by the appropriate PropBank sense
break-20, along with its arguments1.

(2) The children made a break for the play-
ground.

. (b / break-20

. :Arg0 (c / child

. :refer-number Plural)

. :Arg2 (p / playground)

. :aspect Performance

. :modstr FullAff)

LVCs are also common in Chinese In (3),
for example, the light verb 获得 (“get”) takes
a nominal predicate 认可 (“acceptance”) as
its object and together they form an LVC in
which the nominal predicate selects the argu-
ments and the light verb contributes to a Per-
formance aspectual value, meaning the accep-
tance event has been successfully completed.

(3) 这
this
一
one
方法
method

获得
get
认可
acceptance

。
.

“This method got accepted.”
. (x1 / 认可-01
. :aspect Performance
. :modstr FullAff
. :Arg1 (x2 / 方法
. :mod (x3 / 这)))

With the Spanish LVC “dar miedo” (scare,
lit. give someone fear), UMR annotation omits
the light verb and substitutes the whole con-
struction with the roleset for the verb “asus-
tar,” which also means to scare2.

(4) Le
him

di
I.gave

miedo.
fear

“I scared him.”
. (a / asustar-01
. :Arg0 (p / person
. :refer-person 1st
. :refer-number Singular)
. :Arg1 (p / person

1From the English PropBank Lexicon:
https://github.com/propbank/

2In accordance with Spanish roleset conventions
(Wein et al., 2022)
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. :refer-person 3rd

. :refer-number Singular)

. :aspect Performance

. :modstr FullAff)

In Czech, the same phenomenon exists3. Ex-
ample (5) shows the LVC “vznést připomínku”
(“to comment” or “to remind,” lit. “raise a
reminder”), which is similar to the previous
Spanish example in that the LVC can be rep-
resented in the UMR graph with a roleset for
a synonymous verb “připomenout” (lit. “to
remind”)4.

(5) Vznesl
Raised

poté
after-that

připomínku.
a-comment.

“He then made a comment.”
. (p / připomenout-01
. :Arg0 (p2 / person
. :ref-person 3rd
. :ref-number Singular)
. :temporal (p3 / poté)
. :aspect Performance
. :modstr FullAff)

There are also cases in Czech, however,
where the LVC is complex and cannot be
replaced by a single related verbal roleset
without some of the meaning being lost.
An example is “projít zkouškou ohněm” (lit.
“go_through test [by]fire”, experience ordeal
by fire). Here, the nominal portion is itself id-
iomatic. The preferred UMR approach in such
cases is to use an MWE predicate reflecting the
whole construction.

(6) Prošel
go_through

zkouškou
exam

ohněm.
by_fire

“He passed the ordeal by fire.”
. (z / zkoušet-ohněm-01
. :Arg1 (i / individual-person
. :ref-person 3rd
. :ref-number Singular)
. :aspect Performance
. :modstr FullAff)

3The usual Czech linguistic terminology uses the
term “compound [verb] phrases.”

4In Examples 5 and 6 that since Czech is a pro-
drop language, subject personal pronouns are usually
dropped because all person and number information is
provided on the verb thanks to grammatical agreement
rules. However, UMR graphs still provide a node for
this argument to enable co-reference.

3 MWEs Without Strong
Figurative Interpretation

Some MWEs do not have a strong figurative
interpretation, i.e., any figurative interpreta-
tion can still be derived from the parts. This
category includes everything from fully-fixed
MWEs like complex function words (Constant
et al., 2017) to semi-fixed MWEs (Sag et al.,
2002) like Verb Particle Constructions (VPCs)
and ’decomposable’ idioms (Sag et al., 2002),
as well as everything in between. Fixed MWEs
are consecutive and do not vary at all, while
semi-fixed MWEs can allow a wide array of
variations. Where lexical variation is allowed,
it ranges from inflection to token addition, al-
ternation, or elision. Some semi-fixed MWEs
include a core set of tokens that provide the
key semantics and are never altered beyond
inflection. These can be combined with ad-
ditional tokens that can be replaced or mod-
ified to contextualize the MWE’s semantics.
Some semi-fixed MWEs have a fixed word or-
der, and others, such as many VPCs, allow
variable word order.

UMR has a similar array of treatments
for annotating these MWEs. At any an-
notation stage, core tokens can be concate-
nated to form the concept used in the UMR
graph. If the MWE is clausal, requires sense-
disambiguation, or has a distinct argument
structure, a new roleset can be created for it.

3.1 Fixed MWEs
A fixed MWE (Sag et al., 2002) is an unmodifi-
able, consecutive sequence of word tokens that
maps to a single UMR graph concept. Many
fixed MWEs are complex function words like
by-and-large in English (Constant et al., 2017).
These do not have argument structures and
do not need anything beyond a single concate-
nated node in the graph (e.g., (b / by-and-
large)).

Many predicating prepositional phrases are
also fixed (in_love, in_arrears). Since these
are clausal and take at least one argument,
they are treated as a predicate in UMR, us-
ing the UMR participant roles during stage 0
annotation (7) and being assigned a roleset in
stage 1 annotation (8).

(7) “The bank was in arrears.”
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. (i / in-arrears

. :theme (b / bank)

. :aspect State

. :modstr FullAff)

(8) “John was in love with Mary.”
. (l / love-01
. :Arg0 (p / person
. :name (n / name :op1 ”John”))
. :Arg1 (p2 / person
. :name (n2 / name :op1 ”Mary”)
. :aspect State
. :modstr FullAff)

During roleset creation, predicating PPs can
either be assigned a unique roleset or included
with one that already exists and is seman-
tically/etymologically related. For example,
in-arrears would be assigned its own roleset
since it has no corresponding verbal or nominal
roleset (i.e., in-arrears-01, :Arg1-entity owing
money, :Arg2-amount, :Arg1-money owed),
but, in-love can be included as part of love-01,
which already exists for verbal/nominal love.

3.2 Verb Particle Constructions
Verb Particle Constructions are semi-fixed
MWEs that include a specific verb and one
or more specific particles. The verb may be
inflected, and many VPCs allow the verb and
particle to be split up. In UMR, VPCs are
represented as a concatenated predicate. In
English, they are included as their own role-
sets, separate from the base verb.

(9) The sheep ate the flowers up.
. (e / eat-up-02
. :Arg0 (s / sheep)
. :Arg1 (f / flower
. :refer-number Plural)
. :aspect Performance
. :modstr FullAff)

Fixed and semi-fixed MWEs like these are
highly language-specific, and different lan-
guages may express similar concepts with dif-
ferent types of MWEs. For example, VPCs in
English often correspond to verb compounds
in Chinese (Sun et al., 2023) as the particle is
generally considered to be a verb. However,
the UMR annotation is similar, with the verb

compound as a whole is treated as a UMR con-
cept.

(10) 小
little

羊
sheep

把
BA
花
flower

吃掉
eat up

了
ASP

。
.

“The little sheep ate up the flower.”
. (x5 / 吃掉-01 [“eat up’]
. :aspect Performance
. :modstr FullAff
. :Arg0 (x2 / 羊 [“sheep”]
. :mod (x1 / 小 [“little”]))
. :Arg1 (x4 / 花 [“flower”]))

Interestingly, Czech has no VPCs in the
proper sense. Instead, some verbs (in one or
more of their senses) can require a particular
preposition as the only acceptable form of ex-
pression of one of its arguments. However,
the preposition is not considered to be part
of the predicate, even if neither the meaning
of the verb and the preposition, nor the prepo-
sition and the noun phrase which form a PP,
is compositional. An example is “zmínit se o
něčem” (“to mention sth”, lit. “to mention
about sth(.locative-case)”), where the prepo-
sition “o” (“about”), requiring locative case,
loses its meaning of “aboutness”. Such con-
structions are thus not considered MWEs from
the predicate point of view, and they would get
the following UMR annotation:

(11) zmínit
mention

se
[refl.]

o
about

něčem
something

“to mention something”
. (z / zmínit-se-01
. :Arg1 (n / něco)
. :aspect Perfective
. :modstr FullAff)

The example also shows that verbs with re-
flexive particles (such as “se” in this case), hav-
ing a “frozen” meaning which is required to be
used in the sentence simply as a [mostly dis-
continuous] part of the predicate, are always
considered an MWE.

3.3 Semi-fixed MWEs
Many MWEs fall into the semi-fixed category,
being semi-compositional, modifiable, and fig-
uratively transparent, while not being entirely
literal. Such MWEs are also handled in UMR
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by concatenating core tokens in a graph predi-
cate and using either participant roles or num-
bered arguments associated with a unique (or
related) roleset. In some cases, there are a
cluster of closely related MWEs that can be
grouped together into a single roleset. In
(12), a roleset “keep-eye-out-02” is used for in-
stances of “keep an eye out for”, “keep an eye
open for”, and “keep your eyes peeled for”:

(12) “He was keeping [an eye out]/[an eye
open]/[his eyes peeled] for potholes.”

. (k / keep-eye-out-02

. :Arg0 (p / person

. :refer-person 3rd

. :refer-number Singular)

. :Arg1 (p2 / pothole

. :refer-number Plural)

. :aspect Activity

. :modstr FullAff)

Inside the roleset file, a slot/token structure
shows that the first slot is always keep, the
third slot is always eye (or its plural), and
the third slot can take variants out, open, and
peeled. (See Figure (1) for more on slots.)

4 Non-consecutive Constructions
Another challenge in UMR annotation lies in
representing constructions that are cued by a
non-consecutive (and sometimes inter-clausal)
sequence of words. They are also MWEs in
the sense that they consist of multiple words,
but the words may be predominantly function
words, and the meaning may not be derived
from any one particular word in the sequence.
Following AMR, UMR uses abstract rolesets
to represent the established semantics of such
constructions. For example, “the more ... the
more ...” (the Xer, the Yer) is annotated with
an abstract roleset called correlate-91, which
take as arguments the two predicates that are
correlated:

(13) The more I studied, the less I understood.

. (c / correlate-91

. :Arg1 (m / more

. :Arg3-of (h / have-quant-91

. :Arg1 (s / study-01

. :Arg0 (i / i)

. :aspect Activity

. :modstr FullAff)))

. :Arg2 (l / less

. :Arg3-of (h2 / have-quant-91

. :Arg1 (u / understand-01

. :Arg0 i

. :aspect State

. :modstr FullAff))))

Chinese has a similar construction that also
maps to the abstract concept correlate-91:

(14) 时间
time

越
more

临近
get close

，
,
我
I
就
then

越
more

感到
feel

幸福
happy

。

“The closer the time comes, the happier I
will be”

. (c / correlate-91

. :Arg1 (x3 / 临近-01

. :aspect Performance

. :modstr FullAff

. :Arg0 (x1 / 时间))

. :Arg2 (x8 / 感到-01

. :aspect Performance

. :modstr FullAff

. :Arg1 (x9 / 幸福)

. :Arg0 (i / individual-person

. :ref-person 1st

. :ref-number Singular)))

The same example could be given for Czech,
with the correlation expressed via a pair of
pronouns “čím ..., tím ...”, for example “Čím
důležitější schůzka, tím jsem nervóznější.”, lit.
“The more important the meeting [is], the
more nervous I am.”

5 Idioms - MWEs that Have a
Figurative Interpretation

Idioms are MWEs that are ambiguous between
a literal meaning and a figurative interpreta-
tion, where ambiguity can be resolved in con-
text. Depending on how MWEs are inter-
preted, they are mapped to UMR concepts
in different ways. If the literal meaning is in-
tended given the context, such an expression
can be represented compositionally in UMR.
However, if the figurative meaning is intended,
UMR concepts are created by concatenating
the word tokens in the MWE, similar to how
fixed or semi-fixed expressions are handled.
We illustrate this with the expression “jump
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on the bandwagon” in English, with a graph
for the literal interpretation in (15) and one
for the figurative interpretation (16). With
the idiomatic interpretation, an English Prop-
Bank roleset jump-on-bandwagon-09 is used,
shown in Figure (1).

(15) “He jumped on the bandwagon.” (lit.)
. (j / jump-03
. :Arg0 (p / person
. :ref-person 3rd
. :ref-number Singular)
. :Arg1 (b / bandwagon)
. :aspect Performance
. :modstr FullAff)

(16) ”He jumped on the bitcoin bandwagon.”
(’he joined the bitcoin boom’)

. (j / jump-on-bandwagon-09

. :Arg0 (p / person

. :ref-person 3rd

. :ref-number Singular)

. :Arg1 (b / bitcoin)

. :aspect Performance

. :modstr FullAff)

Rolesets for idiomatic MWEs are able to be
quite descriptive about the relationships be-
tween the MWE’s tokens and between the el-
ements in the literal and figurative frames, as
illustrated in Figure (1).

First, numbered roles are provided for par-
ticipants in the idiomatic frame as well as any
modifiers the expression can take. Here, the
Arg0 of jump-on-bandwagon-09 corresponds
to the same agent that appears in (15). Ad-
ditionally, the expression ’jump on the band-
wagon’ is modifiable, so the roleset provides
an Arg1 for any phrase that might be used
to modify ’bandwagon’. The idiomatic mean-
ing of the expression is ’to join in with others
who are following a certain fad’, and it conveys
this by evoking historical imagery of political
parade-goers jumping onto the wagon that car-
ried the band at the front of the parade. In cur-
rent use, speakers identify the ’bandwagon’ in
the expression with a fad, and tell us what the
fad is by modifying that token syntactically.

Next in the roleset, the tokens are identi-
fied and labeled with slot position, part of
speech, and syntactic head. Then, two par-
allel graphs are given that use the slot labels

(A-D), the numbered arguments (N-ARG0 and
N-ARG1), and token values to map between
the literal frame and the metaphorical frame.
The token ’jump’ in slot A is equated with
the ’jump-03’ roleset (physical jumping) in the
literal interpretation and with the ’join-in-05’
roleset (joining a group) in the idiomatic inter-
pretation. The token ’bandwagon’ in slot D ap-
pears as the destination argument of jump-03
in the literal frame and is equated with ’peo-
ple following a fad’ in the figurative frame. N-
ARG0 is equated with the literal jumper and
the figurative fad-joiner. Lastly, N-ARG1 tells
us what kind of fad is being discussed in the
figurative frame (as in He joined the bitcoin
boom).

Alias:
TOKENS:    jump   on    the   bandwagon
SLOTS:   A         B        C              D
POS: VB        PP      DET    NN

HEAD:  -          A        D     B

Idiom Mapping:
LITERAL: 
  (A / jump-03
      :arg0 (n / N-ARG0)
      :destination (D / bandwagon))

FIGURATIVE:

  (A / join-in-05
      :arg0 (n / N-ARG0)
      :arg1 (D / people
          :arg0-of (f / follow-01
          :arg1( f2/ fad
              :topic (n1 / N-ARG1))

Jump-on-bandwagon-09   
  :ARG0 fad-follower                  

  :ARG1 the fad
Definition: join with others in following a fad

Jump-03 physically leap

  :ARG0 jumper

Join-in-05 join a group

  :ARG0 joiner

  :ARG1 group

Follow-02 adhere to

  :ARG0 follower

  :ARG1 thing adhered to

Figure 1: Roleset for jump-on-bandwagon-09 with
token breakdowns and mappings between literal
and figurative frames.

5.1 Chinese Idioms
Chinese idioms, known in Chinese as xiyu, can
also have literal or figurative interpretations
and are annotated in a similar manner to En-
glish. For example, the Chinese expression 炒
鱿鱼 (’stir fry squid’) can have a literal or fig-
urative meaning depending on the context. In
(17),炒鱿鱼 should be interpreted literally and
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compositionally, mapping to two UMR con-
cepts, one for 炒 (stir-fry) and one for 鱿鱼
(squid):

(17) 他
he
在
at
厨房
kitchen

里
inside

炒
stir-fry

鱿鱼
squid

。
.

“He was stir-frying squid in the kitchen.”

. (x5 / 炒-01

. :Arg0 (i / individual-person

. :ref-person 1st

. :ref-number Singular)

. :Arg1 (x6 / 鱿鱼)

. :place (x4 / 厨房)

. :aspect Activity

. :modstr FullAff)

More often, however, the expression has a
figurative interpretation of ’fire from a job’, as
in (18). In this case, it is treated as an MWE
that maps to a single UMR concept.

(18) 他
he
被
BEI

那
that

个
CL
公司
company

炒
stir-fry

了
ASP

鱿鱼
squid

.

.

“He was fired from that company.”

. (x6 / 炒鱿鱼-00 [“fire”]

. :Arg1 (i / individual-person

. :ref-person 3rd

. :ref-number Singular)

. :Arg0 (x5 / 公司 [“company”]

. :mod (x3 / 那 [“that”]))

. :aspect Performance

. :modstr FullAff)

Chinese Chengyu Chengyu (成语) are id-
ioms that obey the grammar of ancient Chi-
nese but have become fixed expressions in mod-
ern Chinese. The literal meaning of such ex-
pressions often describes a scenario in the past
that no longer applies today. This is illus-
trated in (19), where the underlined expression
is an idiom meaning step by step:

(19) 他
he
因
because

初次
first time

创业
start business

，
,

所以
therefore

凡事
everything

都
all
步步为营
step by step

。
.

“Because he started his own business for
the first time, he took everything step by
step.”

. (x9 / 步步为营-00
. :Arg0 (i / individual-person
. :ref-person 3rd
. :ref-number Singular)
. :mod (x7 / 凡事 [“everything”])
. :mod (x8 / 都 [“all”]))
. :cause (x4 / 创业-01
. :Arg0 i
. :mod (x3 / 初次 [“first time”])
. :aspect Performance
. :modstr FullAFF)
. :aspect Activity
. :modstr FullAFF)

5.2 Spanish Idioms
Idiomatic phrases in Spanish can also be taken
literally or figuratively. For example, the
Spanish phrase “con las manos en la masa”
(meaning caught red-handed or in the act, lit.
“with hands in the dough”) could refer to an ac-
tual dough thief caught because of their messy
fingers, or some other crime a person is caught
committing.

(20) él
he

fue
was

atrapado
trapped

con
with

las
the

manos
hands

en
in

la
the

masa.
dough.

“he was caught red-handed.”
. (a / atrapar-01
. :Arg0 (p / person
. :ref-person 3rd
. :ref-number Singular)
. :manner (c / con-manos-en-masa-01
. :Arg0 p))

The UMR graph captures the idiomatic
meaning by modifying a ’caught’ verb with a
roleset for the ’caught in the act’ sense of ’with
hands in the dough’.

The Spanish idiom “el que corta el bacalao”
which denotes the person in charge (literally he
who cuts the cod) is handled similarly, with a
roleset for the idiomatic interpretation of ’cut
cod’:

(21) el
he

que
who

corta
cuts

el
the

bacalao
cod

“person in charge.”
. (c / cortar-bacalao-01
. :Arg0 (p / person
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. :ref-person 3rd

. :ref-number Singular))

5.3 Czech Idioms
In Czech, the same literal vs. figurative in-
terpretations exist for many expressions, with
most being interpreted idiosyncratically or fig-
uratively (i.e., non-compositionally). In such
cases, using a single synonymous predicate
is generally preferred, although the choice
of predicate can be context-dependent. (22)
shows two different solutions used for the id-
iom “jít z kopce” (lit. “go downhill”): the first
one uses a predicate corresponding to the lit-
eral meaning of the idiom (but which could
also be interpreted figuratively), whereas the
second solution (with the predicate “chudnout-
01”) assumes that the context implies that it
means “he was getting poorer.”

(22) šlo
went

to
it

s
with

ním
him

z
down

kopce.
[the]hill.

He deteriorated/became poorer/became
more sick/became asocial/was getting
worse results at work/...

. (j / jít-z-kopce-01

. :Arg0 (p / person

. :refer-person 3rd

. :refer-number Singular))

. (c / chudnout-01
. :Arg0 (p / person
. :refer-person 3rd
. :refer-number Singular))

5.4 Arapaho Idioms
Arapaho is an agglutinating polysynthetic lan-
guage and as such has very few construc-
tions that might qualify as multiword expres-
sions. Still, Arapaho has idiomatic construc-
tions that need to be treated in a way that
allows literal interpretations to be separated
from figurative ones. In (23), ’nih3iikoncebeit’
is a word/phrase (lit. ’a ghost shot him [with
an arrow]’) that means that someone gave the
person in question a disease. In the mor-
phological breakdown, /3iikon-/ is a noun-
incorporating preverb that refers to the ghost.
While Arapaho might not normally include
such preverbs as part of the predicate in a
UMR graph (instead, using just /ceb/, ’shoot’,

as the predicate), in the case of idiomatic
expressions like this, the graph predicate in-
cludes it. A roleset for this phrase would
include numbered arguments for the shooter
(disease-giver) and victim as well as the dis-
ease. A source/target mapping in the roleset
file would link /3iikon-/ (ghost) to the num-
bered argument for disease. This roleset is
separate from the roleset for literal shooting
(ceb-01), but is included in the same file.

(23) nih-
past-

3iikon-
ghost-

ceb
shoot

-eit
-4/3

”Someone gave him a disease.”
. (x / 3iikonceb-01
. :Arg0 (p / person
. :refer-person 3rd
. :refer-number Singular)
. :Arg1 (p2 / person
. :refer-person 3rd
. :refer-number Singular)
. :Arg2 [implicit-for-coref]
. :aspect Performance
. :modstr FullAff)

6 Proverbs
Like idioms, proverbs also have a literal and
figurative interpretation. Unlike idioms, how-
ever, proverbs are often self-contained sen-
tences with all participants of the predicates
filled, and it is hard to construct alternative
contexts in which the proverbs can be inter-
preted literally. Since they tend to be longer
than idioms and their literal meaning can be
constructed compositionally in UMR, we an-
notate proverbs with an abstract roleset called
proverb-91, which takes two arguments. The
first argument is required and is annotated
compositionally; the second argument will be
described in the next section. We illustrate a
standard proverb that uses the Arg1 with a
Chinese proverb in (24).

(24) 山
mountain

高
high

皇帝
emperor

远
far away

“The mountains are high and the emperor
is far away.”

. (p / proverb-91

. :Arg1 (a / and

. :op1 (x2 / 高-01 [“high”]

. :Arg0 (x1 / 山 [“mountain”])
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. :aspect State

. :modstr FullAFF)

. :op2 (x4 / 远-01

. :Arg0 (x3 / 皇帝 [“emperor”])

. :aspect State

. :modstr FullAFF)))

6.1 Xiehouyu, or two-part allegorical
sayings

Xiehouyu, also known as a two-part allegorical
saying (Lai, 2008), is common in Chinese and
other Asian languages; similar forms can be
found in other languages as well. Xiehouyu
consists of two parts–an antecedent that is
a highly allegorical and figurative expression,
and a consequent that provides an explanation
for the antecedent. We represent such sayings
with proverb-91 as well, using Arg1 for the an-
tecedent and Arg2 for the consequent:

(25) 你
you
这
this
是
be
大炮
cannon

打
shoot

蚊子
mosquito

——
-

小题大做
solving small problem with big action

“(By doing this), you are shooting cannon
at mosquitoes - making too much out of
something small.”

. (c / proverb-91

. :Arg1 (x5 / 打-02 [“shoot”]

. :Arg0 (i / individual-person

. :ref-person 2nd

. :ref-number Singular)

. :Arg1 (x6 / 蚊子 [“mosquito”])

. :instrument (x4 / 大炮 [“cannon”])

. :aspect Habitual

. :modstr FullAff)

. :Arg2 (x8 / 小题大做-01 [”make too

. much out of something small”]

. :aspect Habitual

. :modstr FullAff))

The English saying “Life is like a box of
chocolates– you never know what you’re going
to get.” follows the same format, and two-part
proverbs (where the second part is optional)
are also present in Russian (Dahl, 2000).

7 Related & Future Work
MWEs have always been a thorny issue for
computational linguistics (Sag et al., 2002)
and have been studied from various perspec-
tives, from linguistic modeling (annotation) to

automatic identification. The existence of a se-
ries of workshops focusing on MWEs (Markan-
tonatou et al., 2020; Cook et al., 2021; Bha-
tia et al., 2022) attests to the interest of a
large community of researchers. For many
European languages, multiword expressions
including verbal ones have been tackled in
the PARSEME project5 (Rosén et al., 2015;
Savary et al., 2017). For Czech, previous work
on identification and extraction of verbal (and
other) MWEs from treebanks is described in
(Uresova et al., 2013; Urešová et al., 2016;
Bejček et al., 2017).

This work addresses the representation of
MWEs in UMR, resolving many of the issues
surrounnding many-to-one word-to-concept
mappings. It builds on previous work respect-
ing light verb constructions in multilingual
PropBanks (Hwang et al., 2010) and AMR an-
notation of certain English constructions (Bo-
nial et al., 2018), and expands it to include
additional MWEs in multiple languages. We
have discussed different types of MWEs that
present challenges to UMR annotation and
presented solutions for their treatment. Users
with an existing valency lexicon or PropBank
may wish to undertake creating new MWE
rolesets based on recommendations we have
outlined. Forthcoming work will build on the
strategies outlined here as we tackle one-to-
many word-to-concept mappings.
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Abstract
Despite the significant progress made in Natu-
ral Language Processing (NLP) thanks to deep
learning techniques, efforts are still needed to
model explicit, factual, and accurate meaning
representation formalisms. In this article, we
present a comparative table of ten formalisms
that have been proposed over the last thirty
years, and we describe and put forth our own,
Meaning Representation for Application Pur-
poses (MR4AP), developed in an industrial con-
text with a definitive applicative aim.

1 Introduction

An efficient human-machine interface is one of the
dreams of Artificial Intelligence (AI). In NLP, de-
spite the dazzling progress of the last few years
with the emergence of large language models, it is
necessary to resort to formal representations of tex-
tual statements, so that the machine can structure its
result and reason while providing the explanation.

The last thirty years have witnessed numerous
formalism proposals, the most recent of which
are Universal Conceptual Cognitive Annotation
(UCCA, Abend and Rappoport, 2013), Abstract
Meaning Representation (AMR, Banarescu et al.,
2013), Uniform Meaning Representation (UMR,
Van Gysel et al., 2021) and BabelNet Meaning
Representation (BMR, Navigli et al., 2022). The
adoption of a meaning representation formalism
is not a trivial choice, especially in an industrial
context, as is the case of the authors of this paper.
In this context, it is required that a formalism be
explicit and factual while maximizing the richness
and accuracy of the most semantically salient lin-
guistic phenomena (Abzianidze and Bos, 2019).

The contribution of this article is twofold. On
the one hand, we facilitate the comparison of ten
formalisms via a table (section 2). To the best
of our knowledge, although it is one of the short-
comings expressed by the community (Abend and

Rappoport, 2017), only Koller et al. (2019) and
Žabokrtský et al. (2020) have established such a
comparison12, but their studies and ours do not
overlap much. Moreover, we include the most re-
cent formalisms. It is on this basis that we present
our own, Meaning Representation for Application
Purposes (MR4AP, section 3), which we are al-
ready exploiting in an industrial context with an
applicative focus. In section 4, we put forward
three examples of our representation choices, while
section 5 describes the first version of an annotated
corpus following our formalism as well as a first
small-scale manual annotation effort, accompanied
by the annotation guidelines. Before concluding,
we discuss some limitations and prospects for fu-
ture work (section 6).

2 Meaning Representations comparison

In this section, we compare ten meaning represen-
tation formalisms, with which we compare our own
(see Table 1). Each of the formalisms occupies a
column (from oldest to newest), while the rows
represent some of the linguistic features and phe-
nomena that are fully covered (✓), partially covered
(#), or not covered at all (empty space). The rows
are grouped into five clusters, respectively related
to genericity, structure, explicitness, various intra-
and inter-sentence relations, and diversity of an-
notated attributes. For this last characteristic, we
symbolize it from the least rich (+) to the richest
(+++).

Partial coverage (#) has several meanings. It
can mean that a feature is covered, but only in
one of the formalism’s extensions. This is the

1Other works address and compare in a more or less exten-
sive way a number of formalisms (Bonn et al., 2023; Hersh-
covich et al., 2020; Pavlova et al., 2022; inter alia).

2Flanigan et al. (2022) have also prepared a tutorial in
which they present and compare several meaning representa-
tion formalisms, but this tutorial was unknown to the authors
at the time of writing and was not yet available.
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DRT UNL MRS PDT GMB UCCA AMR UDS UMR BMR MR4AP
Multilingual ✓ ✓ ✓ # # ✓ # ✓ ✓ ✓ ✓
Invariance # # # # ✓ ✓ ✓ ✓ ✓
Multi-sentence ✓ ✓ ✓ ✓ # ✓ # ✓
P-A structure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Named rel. ✓ # # ✓ # # # ✓ ✓
Sem. typing ✓ ✓ # # # ✓ ✓ ✓ ✓ ✓
Anaph. & coref. ✓ ✓ # # # ✓ ✓ ✓
Event coref. ✓ # # ✓ ✓ ✓
Temporal rel. ✓ # # ✓ ✓ ✓ # # ✓ # ✓
Discourse rel. ✓ # # ✓ # ✓ # # # ✓
Modal rel. ✓
Attr. richness ++ +++ ++ +++ + + + + +++ ++ ++

Table 1: Comparative table of meaning representation formalisms

case, for example, for the multilingual nature of the
Prague Dependency Treebank’s Tectogrammatical
Layer (PDT-TL, whose original version was only
for Czech (Mikulová et al., 2006) before covering
English as well (Hajič et al., 2012)) and Gronin-
gen Meaning Bank (GMB, which was only for
English (Basile et al., 2012) before being extended
to German, Dutch, and Italian with Parallel Mean-
ing Bank (PMB, Abzianidze et al., 2017)). The
need to use an extension also holds true for AMR,
a formalism for which various works have aimed at
making it multi-sentence (O’Gorman et al., 2018)
or enriching the annotated attributes (such as tense
and aspect in Donatelli et al., 2018). This is also
the case for UCCA with respect to coreference res-
olution (entities and events), which is dependent
on a layer over the foundational one (Prange et al.,
2019b)3.

Partial coverage can also mean that a feature is
covered but only in a limited way. This is the case
for relations that are numbered rather than named
(:ARG0, :ARG1, etc., in AMR), for labels that
are insufficiently fine-grained (UCCA), or when
nodes carry the label that is traditionally assigned
to the arcs (PDT-TL). This partial coverage mainly
concerns the group of intra- and inter-sentence re-
lations: when one of these relations is taken into
account by the formalism, however this coverage is
only realized at one of the two levels (for instance,
UMR’s discourse relations), we consider that it is

3Other works have enriched UCCA at different levels: role
labeling of core (Shalev et al., 2019) and non-core (Prange
et al., 2019a) arguments based on the supersenses of Schneider
et al. (2018), refinement of implicit argument types (Cui and
Hershcovich, 2020), inter alia.

incomplete.

The different formalisms proposed over the years
diverge on many points and converge on others.
One of the most salient points of divergence is
the distance between the meaning representation
and the surface syntactic form. The Czech school
with the PDT-TL formalism is among those that
remain closest to syntax. Several layers of annota-
tion are superimposed, the highest of which being
the so-called tectogrammatical layer (t-layer),
which combines syntax and semantics. Many lin-
guistic phenomena are encoded (grammatical tense,
coreference and anaphora, semantic types), some of
which are largely discarded by other formalisms (el-
lipsis, focus/topicalization). However, its obvious
proximity to syntax means that complex sentences
that are semantically similar, but whose main and
subordinate clauses would have been inverted pro-
duce drastically different results (Abend and Rap-
poport, 2017).

The invariance of representations for semanti-
cally close segments, regardless of their syntactic
configuration (active/passive voice, paraphrasing,
cleft sentences), is a consensus feature. AMR,
UMR and BMR are among the formalisms that
adhere to it. All three belong to the non-anchored
semantic graphs (i.e., of type 2 according to the
typology of Kuhlmann and Oepen, 2016), that is
to say that there is no direct and explicit correspon-
dence between the graph’s nodes and the source to-
kens. AMR uses PropBank (Palmer et al., 2005), a
resource whose concepts are represented by frames
and whose relations are symbolized by an enumera-
tion of arguments noted :ARG0, :ARG1, etc. This
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opacity has been preserved by UMR, but not by
BMR, whose authors consider that it prevents an
explicit understanding of the semantics attached to
the relation. A selection of 25 of the 39 thematic
roles of VerbNet (Schuler, 2005) were preferred.

Although these two resources (PropBank and
VerbNet) are regularly chosen for relation labeling,
other formalisms deviate from them. This is the
case with UCCA, which exploits a smaller set of
relations. UCCA is a multilingual formalism based
on Basic Linguistic Theory (Dixon, 2010) that uses
acyclic directed graphs (DAGs). Unlike AMR and
its followers, UCCA is an anchored multi-layer
formalism: for a given text, each token consti-
tutes a leaf of the graph. The textual content is
seen as a set of Scenes that can describe actions
or states. Each Scene has a root node linked to
the main relation (or main process) of the state-
ment. To represent relations, the UCCA founda-
tional layer has a dedicated set of only twelve la-
bels, rendering the annotation process, according
to the authors, quite simple, even for people with-
out linguistic training. However, the semantics at-
tached to a predicate’s participants (all represented
with the single label A) is far from fine-grained.
In contrast, Universal Decompositional Semantics
(UDS, White et al., 2016) is a formalism that does
not use any discrete values to symbolize the re-
lations between predicates and their arguments.
Instead, the authors use proto-roles from Dowty
(1991), which have numerical values appended
to them. Instead of being labeled Agent, an ar-
gument can have a value related to its attributes
Awareness, Volition, Instigation, etc.
This representation, described as feature-based and
opposed to traditional systems (White et al., 2020),
has been extended to different phenomena, namely
semantic typing of entities, factuality of events
(Rudinger et al., 2018), genericity of entities and
events (Govindarajan et al., 2019), and temporal
relations between events (Vashishtha et al., 2019).

3 MR4AP’s position

In this section, we focus on positioning MR4AP
with respect to the other formalisms on the points
that seem most salient to us.

Applicative aim. MR4AP is a formalism that
has been designed with an industrial and, therefore,
applicative aim. Although we base our choices on
existing research works, we have made them with
the requirement of being factual, meaning that the

annotation should not be left to the subjective in-
terpretation of the annotator. There should not be
several possible annotations for the annotator to
choose from. Therefore, despite the originality of
their approach compared to other formalisms, we
detach ourselves from UDS’s choices of continuous
representation, mainly because such representation
using probabilities can make the annotation process
complex and be difficult to assess accurately. More-
over, we move away from theoretical formalisms
such as Discourse Representation Theory (DRT,
Kamp et al., 1993) and Minimal Recursion Seman-
tics (MRS, Copestake et al., 2005).

Genericity. MR4AP has been designed with
genericity as its watchword. This applies both
to the multilingual character of the representation
and the invariance of the representations despite
syntactic idiosyncrasies. Most recent formalisms
aim at abstracting away from syntax, and MR4AP
joins them on this point. Therefore, we detach
ourselves from those that have a strong correla-
tion with syntactic representations, as is the case
of PDT-TL and UDS. On the same note, and al-
though they are only notation variants (Oepen et al.,
2019), the inverted arguments of AMR and its ex-
tensions (:ARG0-of) force parsers on the one
hand to normalize relations (making graphs de
facto multi-rooted), and on the other hand mod-
ify the graph, furthermore creating more cycles in
supposedly acyclic graphs (Kuhlmann and Oepen,
2016). MR4AP being multi-rooted does not allow
inverted arguments.

Explicitness. From our point of view, a mean-
ing representation must be as explicit as possible.
This explicitness is expressed at several levels. On
the one hand, we agree with Di Fabio et al. (2019)
on the need to name all relations between nodes:
if a relation is not typed with a sufficiently speci-
fied label (UCCA), or is not usable without gloss-
ing (AMR/UMR), or is not represented by a dis-
crete value (UDS), much of the semantics attached
to the relationship is lost. Like BMR, MR4AP,
therefore, uses a subset of VerbNet roles, to which
some labels are added to specify temporal, spatial,
discourse, and coreference relations. Likewise, it
seems to us necessary to make entities’ types as ex-
plicit as possible thanks to a label, mainly to avoid
having to gloss their meanings.

Intra- and inter-sentence relations. We con-
sider that a meaning representation would not be
complete if it did not include the different rela-
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tions that exist in a document at the intra- and inter-
sentence levels. In this respect, MR4AP is close to
UMR, because the latter includes a representation
at the document level, although UMR’s is parallel
to the one at the sentence level while MR4AP’s
isn’t. UMR’s parallel document-level structure in-
cludes anaphora and coreference relations (between
entities and between events), temporal relations be-
tween events, and modal relations, a representation
unique to UMR and based on the work of Vigus
et al. (2019). Thus, all discourse relations are ex-
cluded from their document-level representation,
despite the carryover of the modal strength cor-
responding to the :condition and :purpose
relations. MR4AP differs from UMR on several
points regarding inter-sentence representation. On
the one hand, there is no distinction between the
two levels, which are perfectly inseparable. On
the other hand, and this follows from this single
structure, in addition to coreference and temporal
relations, all discourse relations are represented at
both levels, simply because they can occur in adja-
cent sentences (see section 4). Finally, modality is
represented by an attribute linked to the predicate
that is modified.

Attribute richness. Following Bonial et al.
(2019), we believe that a meaning representa-
tion of the text must include a certain amount
of information conveyed by the morphosyntax.
Among this information, we can count grammat-
ical tense, aspect, and number. It is precisely
these three elements that are missing in AMR
and that motivated BMR’s authors to incorporate
them in their formalism (Martı́nez Lorenzo et al.,
2022), although in a minimal way. On the con-
trary, UMR adds a lot of complexity by introduc-
ing deep lattices, multiplying the possible labels
for each phenomenon. That holds true in partic-
ular for aspectual values with twenty-three pos-
sible labels against two for BMR (:ongoing +
and :ongoing -) and seven for MR4AP, based
on UMR’s work (habitual, state, process,
atelic process, activity, endeavor
and performance). This important multiplica-
tion of attributes and associated values is also vis-
ible for Universal Networking Language (UNL,
Uchida et al., 1999) and PDT-TL. We prefer a
smaller set of attributes while keeping those neces-
sary for an objective and factual representation of
the textual content.

4 MR4AP representation examples

In this section, we apply our formalism to represent
three distinct examples. Each of these examples
illustrates one or more parts of the formalism that
we consider important.

4.1 Document-level representation and main
points

The first example will be used to introduce the for-
malism in its broad outline. It will also allow us
to demonstrate that a representation at the docu-
ment level, taking into account all intra- and inter-
sentence relations, is possible. It consists of the
following three sentences:

1. Luke and John are singing songs.
2. As a result, Mary cannot sleep.
3. She will reprimand them tomorrow morning.

Predicate-argument structure. In Fig-
ure 1, the three main predicates (red squares
with solid edges) are vn:performance-26.7,
vn:snooze-40.4, and vn:judgment-334.
Each of these predicates is linked to its arguments
by a thematic role (bold arcs). The conjunction of
the proper nouns in (1) gives rise to the reification
(red square with dotted edges) of an :addition
node, whose arguments are the :Agents of the
predicate vn:performance-26.7.

Inter-sentence relations. Inter-sentence
relations are resolved at several levels. At the
coreference level, the tokens She and them
are linked to their respective antecedents (or
to what symbolizes them), namely Mary and
:addition, via the :SameAs relation. At
the discourse level, the causal relation between
the predicates vn:performance-26.7
and vn:snooze-40.4 is represented by
the :Cause and :Consequence rela-
tions. At the temporal level, the predicate
vn:snooze-40.4 is linked by a relation
:TimeMax to vn:judgment-33, i.e., the
former is realized before the latter.

Attributes. Each predicate and each entity
has its own attributes (dotted arcs). The verbal
predicates can have a modal value, an aspectual

4Even though those three are VerbNet’s classes (hence
the vn: prefix), MR4AP does not cling to one resource in
particular. We consider that the formalism must remain at
the conceptual level and that linking a specific resource to it
would already be tantamount to instantiating it. This instan-
tiation could be done from any resource, or even from any
conjunction of resources, as is the case in Figure 2.
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Figure 1: Document-level MR4AP representation example (see subsection 4.1). Note that all the attribute arcs are
in fact by default reified, as is the case for the :modality node. Solely for readability reasons is it the only attribute
node visibly reified in the graph. It is made so in order to take into account the negation’s scope, hence the negative
polar value for this node. The relations :Argument{In,Out} are empty relations meant to link a node to its value.
They are used for every reified attribute node. To be perfectly clear, triples like (“Luke” :Type “masculine”) are in
fact always two triples such as the following: (:type :ArgumentIn “Luke”) and (:type :ArgumentOut “masculine”).

Figure 2: MR4AP representation example of MRP’s running example (see subsection 4.2)
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value, a polarity value, and temporal attributes
(:Time{Min,Max,Exact,Fuzzy,Duration}).
Nominal entities can have attributes related to their
number, semantic type, and gender. Both semantic
types (introduced by the em: prefix) and gender
values are introduced with a :Type attribute.

4.2 MRP’s running example

This subsection is dedicated to the representation of
the running example used during the 2019 and 2020
Meaning Representation Parsing (MRP) shared
tasks (Oepen et al., 2019, 2020). This will allow
readers to more easily compare the frameworks that
took part in those campaigns with our formalism.
Here is the sentence:

4. A similar technique is almost impossible to
apply to other crops, such as cotton, soybean,
and rice.

This example was chosen because it presents
a number of difficulties, namely a tough adjec-
tive (impossible), a scopal adverb (almost), and
an appositive conjunction of more than two terms
(cotton, soybean, and rice) illustrating a collection
(crops) (Oepen et al., 2019).

Tough adjective. Tough constructions (TCs) are
a syntactic turn in which the logical object of an
embedded non-finite verb is the main verb’s syn-
tactic subject (Hicks, 2009). In (4), the seemingly
missing object of to apply is in fact the syntactic
subject of be (almost) impossible (that is to say
technique). This can be paraphrased into two other
configurations: either, acting as the subject, an ex-
pletive it (it is almost impossible to apply a similar
technique) or an infinitival clause (to apply a simi-
lar technique is almost impossible). To be as fac-
tual as possible and leave the annotator no choice,
we always represent adjectives, whether attribu-
tive or predicative, with a :property attribute
node linking the object and the adjective using the
:Argument{In,Out} empty relations. There-
fore, the attributive adjectives other and similar,
which respectively trigger the pb:other.01 and
pb:similar.01 nodes, are linked to crop and
technique via :property nodes. As for impossi-
ble, it is treated in the same way. We consider that
to apply a technique is impossible is similar to the
impossible application of a technique. Thus, the
two surface forms should produce the same graph.
As a result, we link the pb:possible.01 node
to vn:use-105 via a :property node. Also

note that said node has a negative polar value trig-
gered by its source token’s prefix (im-).

Scopal adverb. Regarding the scopal adverb
almost, it modifies the adjective impossible and
makes it uncertain. Consequently, the modal value
uncertainty is added to the :property node
linked to pb:possible.01. It should be re-
membered that the :Modality relation is in fact
a reified node by default. Therefore, had the ad-
verb been preceded by a negation particle (i.e., not
almost impossible), the reified :modality node
would have had a negative polar value.

Enumeration in apposition. This representa-
tion does not differ from the conjunction of proper
nouns in (1). An :addition node is reified, and
each of the terms of the enumeration is linked to
this node by an :Addition relation. The term re-
ferring to the collection of these examples is crops,
and the :addition node is linked to it by the
discourse relation :Illustration (such as).

4.3 Other difficult phenomena
The last example focuses on the representation of
three arguably difficult elements: event corefer-
ence, interrogative sentences, and multiword ex-
pressions (MWEs), especially when they include
event nominals. In addition, it helps to demonstrate
the formalism’s resistance to paraphrasing. The
representation is the same for the following pair of
paraphrases (see Figure 3):

5. Who committed the murder of that police offi-
cer, and was it for revenge or for love?

6. Was this murder perpetrated out of revenge or
out of love? And who killed that policeman?

Event coreference. The event coreference ap-
pears in (5) between (committed the) murder and
it, then in (6) between murder (perpetrated) and
killed. In the same way that we represent corefer-
ence between entities in (1), we do not merge the
nodes corresponding to each mention of the event,
but rather join them with the :SameAs relation.
The light verbs accompanying the event nominals
are dropped from the representation. We discuss
this further below.

Interrogative sentences. As for the repre-
sentation of interrogative sentences, and espe-
cially that of unknown elements during the ut-
terance of these sentences, we distinguish three
types, to which are attached three different la-
bels linked to the :Type attribute: polar ques-
tions (question-closed, whose answers are
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Figure 3: MR4AP representation example for subsection 4.3

either positive, negative, or doubtful), alterna-
tive questions (question-choice, whose an-
swers are mentioned in the question with an al-
ternative being offered), and variable questions
(question-open, whose answers are quite
open-ended, although governed by the nature of
the unknown element). In examples (5-6), two
elements are unknown: the perpetrator (i.e., the
:Agent of vn:murder-42.1) and the motive
of the latter (i.e., the possible choices linked to the
:alternative node5).

For the first one, it is an :Agent relation
to an :unknown node that is created from
vn:murder-42.1. This same node is thus
typed question-open. For the second one,
the :alternative node, linked to its predi-
cate with a :Purpose relation, offers a choice
between two known options. To mark the inter-
rogativeness attached to the vn:murder-42.1
node, we use an :Unknown relation to point to-
wards an :unknown node, itself pointing towards
a question-choice value. Moreover, had the
coordination of the questions not been made ex-

5Such nodes also appear in non-interrogative statements to
represent disjunctions (I reckon John wrote novels or poems).

plicit by the conjunction and but had remained
implicit with a paratactic conjunction, the repre-
sentations would have remained identical. Our ex-
ample does not display any polar questions, but
had the question been Was the police officer mur-
dered?, the vn:murder-42.1 node would have
had an :Unknown relation pointing towards an
:unknown node whose :Type value would have
been question-closed.

Multiword expressions. MWEs are known to
be a pain in the neck (Sag et al., 2002), both be-
cause of their heterogeneity and their pervasiveness.
We choose to consider them non-compositionally
as most MWEs’ meaning can not be broken down
according to their constituents (Constant et al.,
2017). Considering an MWE as a single seman-
tic entity enables a greater graph similarity from
one language to another (Navigli et al., 2022), or
even when comparing a set of paraphrases. For
instance, in (5), police officer (which could have
been translated into officier de police, agente di
polizia, or even d. ābit aš-šurt.a in French, Italian,
and Arabic respectively) becomes in (6) the sin-
gle word token policeman (which could have been
translated into policier, poliziotto, or even šurt.iyy).
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Having a single node for both expressions of the
same real world’s concept seems mandatory as
far as uniformity is concerned. MWEs can be
the source of a relation (the prepositional locu-
tion out of for :Purpose), of a non-event en-
tity (the compound police officer), or of an event
(nominal or verbal, like the light verb construction
to commit murder). In the latter case, the light
verb is simply dropped because it is redundant,
but the accompanying event nominal inherits the
arguments and the various linguistic features at-
tached to it. For example, committed in (5) is a
preterite verb, hence the :TimeMax relation to-
wards the DCT; it denotes a completed action that
led to a result, hence the performance aspec-
tual value; and there is no negation particle, hence
the positive polar value. The police officer is
the :Patient of the murder rather than its com-
mission’s, and the unknown subject is its :Agent.
The vn:murder-42.1 node actually inherits the
arguments and linguistic features of what could
have been a vn:complete-55.2 node with the
former as its :Theme.

5 Annotated corpora

We first applied MR4AP to French short sentences
from the TaPaCo corpus (Scherrer, 2020) to en-
sure its usability on low-complexity sentences. We
then applied it to more complex sentences from
Wikipedia articles in five languages to also test
its multilingual compatibility. Both datasets are
available on the GitHub repository6.

MR4AP-tapaco. In order to demonstrate the
viability of our formalism, we produced an anno-
tated dataset. Version 0.1 of the MR4AP-tapaco
corpus7 is relatively small, but it is bound to grow
as contributions are made. So far, 100 short sen-
tences in French from the TaPaCo paraphrase cor-
pus have been automatically annotated using our
own tool before being manually checked and vali-
dated. Choosing paraphrases is not insignificant as
it will allow us to gauge the similarity of the graphs
obtained after annotating sets of paraphrases once
we have enough data. Some statistics regarding
this corpus can be found on the remote repository.

Multilingual compatibility experiment. In or-
der to validate MR4AP’s multilingual compatibility
in practice, as well as to explore ways to propose a

6https://github.com/Emvista/MR4AP/
tree/main/corpora

7https://github.com/Emvista/MR4AP/
tree/main/corpora/MR4AP-tapaco

protocol and a manual annotation tool, we started a
first small-scale annotation project. First, we wrote
guidelines8 that present MR4AP in an exhaustive
and extensive way. In a second step, to avoid con-
tent bias, we randomly selected five Wikipedia arti-
cles in French and kept the first three sentences of
each. After setting up all the necessary parameters
in the INCEpTION platform (Klie et al., 2018), our
annotation tool of choice that allows the annotation
of both explicit and implicit elements, we anno-
tated the five texts. In a third step, we automatically
translated them into English, Spanish, Italian and
Modern Standard Arabic (MSA), and annotated
them9. Despite the small scale of the annotation
effort and the relatively modest language panel con-
sidered, we were able to determine that MR4AP
seems to be multilingually compatible. Pursuing
the annotation effort is however mandatory.

MR4AP-wikipedia. Having established that the
formalism can be used with different languages,
the five annotated texts in French, English, Spanish,
Italian and MSA constitute the first annotated texts
for the MR4AP-wikipedia corpus10. The objective
is to obtain a fully manually annotated dataset that
would serve as a gold standard. This dataset will
be regularly enriched with new annotated texts.

Data format. We use JSON files with three
fields: id (the document identifier), text (the
document’s textual content), and rdf (the RDF11

representation of the text). An RDF data model con-
sists of RDF triples where each RDF triple codifies
a statement in the form of subject–predicate–object
expressions. RDF triples have no ordering and
triples can be linked to other triples according to
their common elements (so that a graph is obtained).
Using RDF, we make the assumption that regard-
less of the order in which the sentences are written,
the text will systematically produce the same se-
mantic graph (i.e., the same set of triples). Finally,
RDF triples applied with OWL12 can be used as
input for a reasoner that in turn could be used to
saturate the graph with inferred annotations. Our
dataset’s RDF graphs can be viewed with an appli-

8https://github.com/Emvista/MR4AP/
tree/main/guidelines/guidelines.md

9The annotation was carried out by the two authors.
10https://github.com/Emvista/MR4AP/

tree/main/corpora/MR4AP-wikipedia
11Resource Description Framework: https://www.w3.

org/RDF/
12Web Ontology Language: https://www.w3.org/

OWL/
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cation such as Protégé13 (Musen, 2015).

6 Limitations and perspectives

Although our formalism is able to address some
shortcomings that other formalisms can’t, some
limitations remain. On the one hand, given all
the elements that MR4AP represents, annotation
remains a time-consuming and rather complex pro-
cess. Moreover, this complexity only increases
with the length of the texts. The multilingual an-
notation experiment described above only exacer-
bated the need for a perhaps more efficient annota-
tion strategy.

On the other hand, while the annotation was car-
ried out on texts in five different languages, the
variety was somewhat limited: three of them are
Romance languages with few differences; English
is a standard; only MSA, due to its important dif-
ferences with the other four languages, really al-
lows us to conclude that MR4AP seems compatible
with multilingualism. Continuing the annotation
effort with languages from different families or
low-resource languages would enable us to support
this assertion.

Moreover, from a cross-formalism perspective
and following the recent mapping effort made be-
tween AMR and UMR (Bonn et al., 2023), we
would like to follow suit and align MR4AP to these
two formalisms. This mapping would allow the pro-
duction of a multi-formalism corpus, which could
in turn allow the implementation of comparative
experiments on the performance of each formalism
from the same source material.

Important questions remain to be tackled: Which
tool to use/develop to annotate more efficiently
with a formalism such as MR4AP? And how to
ensure annotation completeness for a given text?
Does the level of anchoring have an impact on the
explainability of semantic parsers (e.g., to source
graph nodes)? Knowing that graph linearization is
an important topic and that edge ordering can have
a “big negative effect” on the evaluation measures
of some tasks (Bevilacqua et al., 2021), is RDF
appropriate and what impact would this have on
the performance of state-of-the-art parsers?

7 Conclusion

We have highlighted the divergences and conver-
gences between ten meaning representation for-
malisms. On this basis, we have put forth and

13Protégé: https://protege.stanford.edu/

positioned MR4AP, our application-oriented for-
malism. We have extensively described it both
through guidelines and through several examples
demonstrating its efficiency in representing mean-
ing at the document level by taking into account
discourse, coreference and temporal relations, its
potential to represent some of the most complex
linguistic phenomena, and its robustness to para-
phrasing and multilingualism. We have also briefly
presented the first version of the MR4AP-tapaco
corpus as well as a first small-scale manual annota-
tion effort to assert the multilingual compatibility
of the formalism in practice. We concluded that
MR4AP is usable regardless of the text’s language,
and this annotation effort allowed us to create the
MR4AP-wikipedia corpus, which will serve as a
gold standard. Note that a hybrid semantic parser,
which does not need any training data to annotate
textual content, has been developed with this for-
malism, is already in production, and will be the
subject of a future publication.
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Abstract
We propose the use of modal dependency
parses (MDPs) aligned with syntactic depen-
dency parse trees as an avenue for the novel
task of claim extraction. MDPs provide a
document-level structure that links linguistic
expression of events to the conceivers responsi-
ble for those expressions. By defining the event-
conceiver links as claims and using subgraph
pattern matching to exploit the complementar-
ity of these modal links and syntactic claim
patterns, we outline a method for aggregating
and classifying claims, with the potential for
supplying a novel perspective on large natural
language data sets.

Abstracting away from the task of claim extrac-
tion, we prototype an interpretable information
extraction (IE) paradigm over sentence- and
document-level parse structures, framing
inference as subgraph matching and learning
as subgraph mining. We make our code open-
sourced at https://github.com/BBN-E/

nlp-graph-pattern-matching-and-mining.

1 Introduction

A promise of natural language processing (NLP)
tools is to bring fast understanding of large cor-
pora of unstructured data. This has been achieved
through tasks such as summarization (Prudhvi
et al., 2020), knowledge base population (Glass
and Gliozzo, 2018), and question-answering sys-
tems (Arbaaeen and Shah, 2020), among others.
These outcomes provide different views into the
chosen data source, highlighting aspects such as
event timelines, known and novel relationships be-
tween entities, causality, and others. A less ex-
plored view of unstructured data may take the form
of a Claim Bank, in which NLP tools provide ac-
cess to a set of differentiated claims expressed by
explicit claimants within a document corpus.

We will define a claim as an assertion that is
explicitly linked to a source. The source may be

a person or an organization. The source may be
explicit or implicit; a common example of the latter
case is when the author of a document is the source
of a claim and is defined as part of the metadata, but
is not explicit in the document content. Our goal is
to automatically identify claims in, and learn claim
structures from, natural language text. Such claims
could then be the impetus for claim verification,
clustering, provenance graph generation, etc., as
described below.

2 Related Work

2.1 Claim Extraction

Recent work in claim verification is closely related
to the effort at hand. In particular, Zhang et al.
(2020) build a provenance graph for claims, linking
each claim to its likely sources. The “query” claims
are derived from the opinion corpus developed in
Choi et al. (2005). In Zhang et al. (2020), sentences
relevant to a query claim are first retrieved from
a variety of documents, and the implicit (author)
and explicit (named) sources identified via a Tex-
tual Entailment task, followed by a classification
task to identify the relationship between source and
statement. Thus, a set of related claims is derived
from an original, provided claim. The provenance
graph built from these efforts is used to identify
supporting, contradictory, or neutral relationships
between statements relating to a claim.

Similarly, FEVER (Thorne et al., 2018), HOVER

(Jiang et al., 2020) and WICE (Kamoi et al., 2023)
are open source datasets of related facts for the
NLP community to make shared progress on claim
verification. The relationship between facts (the
term is used interchangeably with claims in these
studies) is of interest, rather than their relationship
to sources. Facts or claims enter the corpus through
a crowdsourced annotation effort or automatically
from Wikipedia as in the case of WICE.
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An earlier important work (Choi et al., 2005)
identifies sources responsible for opinions, emo-
tions, and sentiment through a dataset collection
effort. The authors test an automated approach
for detecting these relationships with conditional
random fields, as an information extraction task.

These works do not give a definition of a claim,
though the intuitive notion seems to be that a claim
is a declarative statement that could be given a truth
value. In the present work, we add the constraint
that a claim must be associated with a claimer. The
DARPA Active Interpretation of Disparate Alterna-
tives (AIDA) program (Onyshkevych, 2017; Hovy,
2020) has helpfully defined the truth-valued state-
ment as the “inner claim,” and its epistemic or sen-
timental association with a claimer as the “outer
claim” – together, the inner and outer claim con-
stitute a claim that can be compared to others in
terms of support, contradiction, relevance, etc.

The NEWSCLAIMS benchmark (Reddy et al.,
2022) is the most recent and closely related par-
allel work on claim detection since it also stems
from AIDA definitions of claims — the released
dataset consists of claims annotated over the sub-
set of articles from the LDC corpus LDC2021E11
related to COVID-19 (cf. §6.2). We recommend
it as a reference for the task at hand despite slight
terminological differences; unlike the methodology
explored here, the authors experiment with zero-
shot and prompt-based baselines.

The goal of this work is to introduce a novel way
of automatically identifying claims according to
this definition; in particular, we identify that inner
and outer claims are often, but not always, identifi-
able through a sentence-level predicate-argument
structure. In cases where the outer and inner claim
are expressed over multiple sentences, a document-
level structure must be accessed to reveal the rela-
tionship. We describe an algorithm for combining
structural and semantic information from the sen-
tence and document levels to automatically identify
claims. This effort might be seen as a precursor to
the studies described above; we aim to automate
the initial task of finding the claims for analysis.

2.2 Subgraph Matching and Mining

DotMotif (Matelsky et al., 2021), a declarative li-
brary for identifying and extracting frequent motifs
from large graphs of connectomes, begs the explo-
ration of an analogous approach in NLP, where
text can be viewed as the tip of the iceberg in a rich

network of underlying syntactic, semantic and prag-
matic parses or “deep structures”. We describe our
algorithmic approach to subgraph isomorphism in
§4.7; “soft”, neural implementations such as Neu-
roMatch of (Ying et al., 2020a) use graph neural
network (GNN) encoders to achieve 100x speedup
over traditional combinatorial approaches. While
the latter GNN architectures were designed with
molecular graphs in mind, Marcheggiani and Titov
(2017); Bastings et al. (2017); Nguyen and Grish-
man (2018); Rozonoyer (2021) successfully tai-
lored the GCN (Kipf and Welling, 2016) and GAT
(Veličković et al., 2017) architectures to encode
dependency syntax for semantic role labeling, neu-
ral machine translation, event detetion, and AMR
parsing, respectively.

3 Linguistic Motivation

Our approach to claim extraction leverages Modal
Dependency Parsing (MDP), a document-level an-
notation scheme for modality introduced by Vigus
et al. (2019) and adopted by Yao et al. (2021) to
crowdsource a dataset and train a neural parser. We
use MDP in conjunction with sentence-level syn-
tactic dependency parses. Document-level MDP
restricts the extraction space to a pool of potential
claims that include inter-sentence inner/outer claim
relationships. Sentence-level dependency parses
provide the grammatical structure that allows us
to further constrain the pool of potential claims to
those that match our analysis of the clausal struc-
ture of claims.

3.1 Modal Dependency Parsing
MDPs provide a document-level structure that links
events to their conceivers, including the author con-
ceiver, which is at the root of the document. Fur-
thermore, the MDP edges provide epistemic values
of the relationship between the conceiver and the
event: whether the conceiver is certain that the
event occurred, uncertain, or believes the event did
not occur. This provides essential information to
understanding how claimers and claims interact.

In Figure 1, we show the MDP for sentence (1)
below, cited and manually annotated in Vigus et al.
(2019):

(1) [About 200 people were believed killed
and 1,500 others were missing in the Cen-
tral Philippines on Friday when a landslide
buried an entire village], the Red Cross
said.
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Figure 1: MDP for sentence (1)

In this sentence-sized document, the Red Cross is
a conceiver making a claim about the “missing”,
“landslide”, and “buried” events with positive (cer-
tain) epistemic value. The passive construction be-
lieved killed introduces a null conceiver (“believed
by whom?”) in the mental space of the governing
“the Red Cross”. The source introducing predicate
“said” is a clue to attributing the other events in
this sentence to “the Red Cross”, while the saying
event itself can be attributed to the author of the
document with positive epistemic value.

3.2 Claim Structure in Syntax

We observe that there are typical syntactic struc-
tures associated with our intuition of claim. Con-
sider the sentence:

(2) [US officials nsubj] [said SIP] [numerous
social media sites launched an effort to
spread misinformation ccomp].

“Said” serves as the source introducing predicate
(SIP) that syntactically governs the claimant US
officials (its noun subject) and its clausal comple-
ment, the semantic “inner claim.”

We can convey the exact same claim informa-
tion in an altogether different lexical and syntactic
structure:

(3) Numerous social media sites launched
an effort to spread misinformation,
[[according to case] US officials obl].

The conceiver US officials, which used to be the
subject of the main clause, is now an oblique ar-
gument of the inner claim’s predicate launched.
Our claim-finding approach aims to account for
this variation in expression, among other syntac-
tic possibilities, and the presence of inter-sentence
claim/claimant relationships.

3.3 Complementarity of Modal and Syntactic
Structure

The modal and syntactic structures inform each
other to the extent that the former is responsi-
ble for providing the evidential semantics of who-
claims-what-with-what-certainty, while the latter
comprises the clausal or grammatical form to ex-
press these semantic relations.

To see that the relationship between these struc-
tures is not trivial, consider the sentence:

(4) [[According to case] the Pythagorean the-
orem obl], the square of the hypotenuse
equals the sum of the squares of the sides.

Although this sentence has the same syntactic skele-
ton as the previous sentence, the Pythagorean theo-
rem is nevertheless not a viable claimant semanti-
cally. It is the job of the modal dependency parser
to predict that US officials is a conceiver but the
Pythagorean theorem is not; the basic syntactic
structure does not provide us with the lexicose-
mantic information to tell apart potential claimants
from non-claimants.

However, Modal Dependency Parsing is a bud-
ding technology that is not entirely robust, and
due to the broad event annotation scheme in the
crowdsourced dataset (Yao et al., 2021) the parsers
in practice tend to be high-recall and low preci-
sion, such that automatically-generated MDPs are
expected to contain false positive edges. This
provides a motivation to use more reliable depen-
dency parse (DP) clausal structures for pruning the
original claim space consisting of every possible
Conceiver-Event edge. In one preliminary study, a
seedling set of DP patterns allowed us to focus our
attention on 34% of the proposed MDP edges.

4 Claim Extraction via Subgraph Pattern
Matching

In order to algorithmically exploit this synergy be-
tween evidential/modal and clausal/syntactic struc-
ture, we explore the task of claim extraction within
the framework of subgraph isomorphism.
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4.1 Problem Definition as Subgraph Matching
Our approach entails matching query graphs corre-
sponding to basic claim structures against a com-
position of the document-level modal parse and
sentence-level syntactic dependency parses.

The document-level MDP is a directed acyclic
graph, and the sentence-level DP is a directed tree
between token nodes. To compose the MDP and
per-sentence DPs into a single graph, we construct
directed edges from the MDP nodes to their corre-
sponding token nodes, resulting in a composition
that is also a directed acyclic graph for the entire
document.

4.2 Node and Edge Types
Node Types. We define two node types in the
composed modal-syntactic graph:

• modal nodes to represent abstract Conceiver
and Event nodes

• token nodes to represent words

Edge Types. We define three edge types:

• modal edges connect conceivers with con-
ceivers or conceivers with events, and are la-
beled with modal relations e.g. pos, neg, pp1

• syntax edges connect tokens, and are labeled
with syntactic dependency relations e.g. nsubj,
ccomp, advcl

• modal-token edges connect modal nodes with
token nodes, e.g. the Conceiver node corre-
sponding to the Washington Post entity in the
MDP with every token in the multiword ex-
pression “The Washington Post”.

4.3 Graph Structure Formalization
We formalize the definition of graph structures in
our domain as G = (V,E, ϕ, ψ) where V is the
set of nodes, E is the set of edges, and ϕ and ψ
are the node and edge type assignment functions,
respectively, for the edges described in §4.2:

ϕ : V → {modal, token}
ψ : E → {modal, syntax, modal-token}

Additional categorical node and edge feature func-
tions are contingent on the node’s ϕ or edge’s ψ
type, respectively, as shown in Table 1.

1partially positive

Node/Edge Type Feature Function(s)
ϕ(n) = modal µ(n) ∈ {Conceiver,Event}

ϕ(n) = token
τ(n) = text of token
υ(n) = UPOS of token
χ(n) = XPOS of token

ψ(e) = modal µ(e) ∈ {pos, neg, neut}
ψ(e) = syntax σ(e) = syntactic relation

ψ(e) = modal-token no further typing

Table 1: Node and edge feature functions for composed
modal-syntactic graphs

4.4 Document Digraph

We produce a document-level graph in the Net-
workX2 API by 1) storing the document-level
modal dependency parse as a NetworkX DiGraph
(directed graph), 2) storing each sentence’s syn-
tactic dependency parse as a NetworkX DiGraph,
and 3) composing the graphs into a single Net-
workX DiGraph. We connect the document-level
modal nodes with the sentence-level token nodes
via modal-token token edges described in §4.2.

4.5 Pattern Digraphs

We create pattern NetworkX DiGraphs as small
graph structures that combine the core elements of
the syntactic and modal structures constituting a
claim. We use a subgraph isomorphism algorithm
(§4.7) to match these claim pattern digraphs against
the document digraph in order to discover claims.
Each pattern digraph is accompanied by a node-
match and edge-match function (§4.6) that allows
a pattern node/edge to be underspecified with re-
spect to irrelevant features but still match a fully
annotated node/edge in the document digraph. In
effect, we can view the pattern digraph as a “query”
graph that is as generic a structure as possible for
the intuition of the claim structure we are trying
to match. The pattern digraphs expressing the two
claim structures in sentences (2) and (3) are shown
in Figures 2 and 3.

Figure 2: ccomp pattern
graph

Figure 3: according to
pattern graph

2https://networkx.org/
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4.6 Node-Match and Edge-Match Functions

In addition to simply defining modal-syntactic
pattern structures to match claims in the docu-
ment, as mentioned in §4.5, we define node-match
and edge-match functions (with a Boolean return
value) that allow us to specify custom criteria when
checking for node or edge equivalence between
a pattern structure and document structure. We
show a base set of functions in Table 2. For ex-
ample, we may require an exact match for the syn-
tactic relation on a syntax edge, while allowing
any value for the modal relation on a modal edge
because it merely specifies the epistemic stance of
the claimant toward the inner claim, and does not
determine the inherent claim structure.

4.7 Algorithm

We employ the NetworkX GraphMatcher3 API
over the document digraph and a pattern digraph
in order to return the nodes in the document graph
isomorphic to the nodes in the pattern graph. The
matcher uses the VF2 (sub)graph isomorphism al-
gorithm (Cordella et al., 2004). While subgraph
isomorphism is an NP-complete problem, the time
complexity of the VF2 algorithm is Θ(N2) in the
best case and Θ(N !N) in the worst case, and main-
tains a Θ(N) space complexity. Given that N is
the union of all tokens in a given document with
abstract modal dependency nodes (which never ex-
ceed the number of tokens in sufficiently complex
sentences), neither time nor space complexity poses
an obstacle to the algorithm’s practical application
in prototyping this approach.

4.8 Relaxed Patterns with On-Match Filtering
for Generalized Structures

Some claim structures may be accounted for with
less deterministic pattern definitions. A salient in-
stance is found in sentence (1) above and many
other annotated examples in our analysis: multiple
events are assigned the same modal pattern, and are
grammatically subordinated to the clausal comple-
ment of the same SIP. However, each event trigger
has a different location at a potentially different
depth in the SIP subtree.

We generalize the 1-hop relation in the ccomp
pattern graph into a k-hop relation in the re-
laxed ccomp pattern, shown in Figure 4, by defin-

3https://networkx.org/documentation/
stable/reference/algorithms/isomorphism.
vf2.html#graph-matcher

Figure 4: relaxed ccomp pattern graph that requires
ancestor-checking filter

ing two distinct nodes, α and β, to match the im-
mediate (1-hop) clausal complement of the SIP
and any other (k-hop) event token node subordi-
nated to it, respectively. The definition imposes
no syntactic requirement on β (only that it be the
token of a modal event node). To ensure that the
match for β is actually subordinate to the SIP’s
clausal complement, we implement an on-match
filter4 that for each returned isomorphism checks
is ancestor(α, β) and discards matches where β
falls outside the subtree governed by α.

On-match filtering allows us to generalize claim
patterns insofar as we can exploit the topology of
the graph to prune away uncompliant extractions.

5 Building a Claim Bank

We apply our claim extraction algorithm to the
crowdsourced English modal dependency dataset
(Yao et al., 2021), over which we additionally ran
the default Stanza dependency parser5 (Qi et al.,
2020) (English ewt model) to have both the MDP
and DP information available for every document.

As a minimal qualitative assessment for the pro-
totyped approach, we build a Claim Bank by run-
ning the subgraph pattern matcher with the ccomp
and according to claim patterns over the train, dev
and test portions of the crowdsourced dataset with
289, 32 and 32 parsed documents, respectively. We
show in Table 3 raw MDP conceiver-event edge
counts to illustrate the large cardinality of the claim

4“on-match” terminology borrowed from spaCy’s rule-
based matching API (https://spacy.io/usage/
rule-based-matching)

5Version 1.2
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node type match ϕ(n1) = ϕ(n2)

node match on feature function γ node type match(n1, n2)∧
(γ(n1) ∧ ¬γ(n2)) ∨ (¬γ(n1) ∧ γ(n2)) ∨ (γ(n1) = γ(n2))

edge type match ψ(e1) = ψ(e2)

edge match on feature function δ edge type match(e1, e2)∧
(δ(e1) ∧ ¬δ(e2)) ∨ (¬δ(e1) ∧ δ(e2)) ∨ (δ(e1) = δ(e2))

Table 2: Customizable Boolean logic for determining equivalence of nodes and edges during subgraph matching of
claim pattern graphs to document graph. γ and δ stand for generic node and edge feature functions, respectively

train dev test
#C-E total 14460 1732 1641
#C-E, C linked to token(s) 8001 1022 1044
#C-E cross-sentence6 1736 240 163
#ccomp 558 76 86
#ccomp1-hop 544 71 85
#*ccomp>1-hop 1887 233 242
#ccomp>1-hop 926 111 130
#according to 61 5 6

Table 3: Conceiver-event (C-E) edges and claim extrac-
tion counts, grouped by pattern

pool provided by MDP that gets pared down by con-
straining MDP with DPs. We categorize the ccomp
family of extractions in terms of how far away the
event token is from the clausal complement of the
source introducing predicate (ccomp≥1-hop corre-
spond to the relaxed ccomp pattern, and an asterisk
indicates the number of extractions before applying
the on-match is ancestor filter).

We confirm that there is no intersection between
the node isomorphism matches returned by each of
the claim patterns of interest. We randomly sam-
pled 10 examples from the train set for the extracted
according to claims and the ccomp-family claims.
For all 20 examples, the extractions match our intu-
ition of a claim as an assertion (“inner claim”) ev-
identially related to an opinion-holding conceiver.
Sentences (5) and (6) are examples of according to
and ccomp extractions, respectively, from our ran-
dom samples:

(5) As of Wednesday, the state had more than
16,460 known cases and 539 known deaths,
according to the department.

(6) The DPA is being used to obtain about
60,000 test kits, Gaynor told CNN’s New
Day.

A high-quality Claim Bank, containing overt
claimants linkable to real-world entities, facilitates

an exploration of claims by individuals of interest,
and provides an avenue for sifting through conflict-
ing perspectives on events.

6 Subgraph Matching as Inference,
Subgraph Mining as Learning

Our approach outlines an entirely algorithmic in-
ference procedure to extract knowledge elements
(KEs), and may therefore be reminiscent of sym-
bolic AI. We have so far discussed how to extract
claims with predefined human-curated patterns, but
curating such patterns manually is as unreliable
and time-consuming as feature engineering, and
we want to automatize extracting such patterns
from parsed, annotated corpora. We propose sub-
graph mining as a general-purpose methodology
for “learning” patterns, as capable of extracting
schematically-defined KEs as the parses are expres-
sive of them. The generality and interpretability
of the method we formulate below make it as an
appealing alternative to task-specific and at times
brittle neural extractors, or to powerful but even
less interpretable prompt-based approaches.

An annotated corpus of claims such as
LDC2021E11 or NEWSCLAIMS consists of KEs
containing the token indices a of the claimer and b
of the inner claim, and labels for the claim topic and
claimer stance. We can therefore view the claims
corpus as C = {c1, ..., cn} where each claim ci has
the structure7:

ci =





TEXT = sentence or document

SPANS =

{
{a1, ..., ak}
{b1, ..., bl}

}

LABELS =

{
CLAIM TOPIC

CLAIMER STANCE

}





Instead of learning span extractors and classifiers
from token-level “surface” annotations, we first

7This structure can be generalized to various KEs such as
entity-relations, event-relations and event-argument frames
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apply sentence- and document-level parsers and
compose the resulting parses into a digraph as out-
lined in §4.4. 8

We hypothesize that in the graph composed of
available parse types P , features predictive of the
KEs of interest will be contained in the graph neigh-
borhoods of the annotated tokens. We thus de-
fine a neighborhood function that returns the k-
hop portion of the digraph D surrounding given
tokens t, where directionality d can be specified
to only outgoing (↑) or only incoming (↓) edges
from the token node(s), or both (↕). Subgraphs cre-
ated via those neighborhoods are then passed into
a subgraph mining procedure (§6.1) for subgraph-
matching-based inference. The learning paradigm
is summarized in Algorithm 1:

Algorithm 1 Pattern discovery algorithm

Input: C, P , k ≥ 1, d ∈ {↑, ↓, ↕})
Output: Claim patterns for subgraph matching

1: G ← ∅
2: for ci in C do
3: parsesi ←

⋃
Parser∈P

Parser(TEXT(ci))

4: Di ← CreateDigraph(parsesi)
5: t← ⋃

SPANS(ci)
6: g ← neighborhood(t,Di, k, d)
7: add g to G
8: end for
9: patterns← Mining(G)

10: return patterns

6.1 SPMiner

SPMiner9 (Ying et al., 2020b) is the first and only
neural approach we are aware of to extract frequent
subgraphs from a collection of graphs. SPMiner
uses a GNN encoder to embed graphs in an order
embedding space, and is trained to enforce a partial
ordering such that subgraphs reside to the lower-
left of their super-graphs in this space. This neural
matching subroutine is used in a search (greedy
search, beam search or Monte Carlo tree search;

8Our implementation supports composing sentence-level
syntactic dependency parses (DP) and abstract meaning rep-
resentation (AMR) (Banarescu et al., 2013), and document-
level modal and temporal dependency parses (MDP and TDP)
(Zhang and Xue, 2018; Zhang, 2020), into a composite di-
graph that is “held together” at the token nodes, since every
parse type includes them (AMR nodes can be aligned to to-
kens). We can use any relevant subset of {DP, AMR, MDP,
TDP} as our input to the pattern mining procedure.

9http://snap.stanford.edu/
frequent-subgraph-mining

we only explored the first of these) that identifies
frequent motifs of size k by iteratively expanding
nodes and edges of candidate motifs (starting with
seed nodes at random), and selecting those that re-
tain the most points to their top right in the embed-
ding space (i.e. the motifs with highest frequency).

A challenge of applying SPMiner to our NLP do-
main is that it was developed with molecular graphs
in mind that have more variable connectivity pat-
terns than parses, while allowing for at most one
label per node or edge (unlike the token nodes in
our setting). To mitigate this mismatch, we expand
out the graphs so that each attribute is encoded by a
synthetic node-edge connection, cf. Figures 5 and
6. The transformation is invertible, such that the
expanded graph can be unambiguously collapsed
into the original. Given the unreliability of SP-
Miner’s default GNN encoder for our graphs, in the
search procedure we swap out the neural (batched)
subgraph isomorphism with the much slower VF2
algorithm to ensure that the random walk’s results
are not confounded by the encoder’s performance.
This substantially slows down our exploration and
is a point for future work (cf. §6.3). Finally, instead
of arbitrary seed nodes, we force SPMiner to start
the growth with the token nodes for the claimer and
inner claim, so as to force the resulting motifs to
contain the full claim information.

6.2 Mining for Claims

In another proof-of-concept evaluation, we create
a silver corpus of high-precision within-sentence
claims from LDC corpus LDC2021E11 (10 doc-
uments with 1219 sentence total) that we parsed
for dependency syntax and MDP and annotated
with the human-curated “seed” patterns discussed
in §4. We then use SPMiner to mine for syntax-
only patterns from the silver claims. We obtain 100
patterns, which we then apply over the same cor-
pus, examining the quality of the predicted claims.
Many of the mined patterns are very simple (high-
recall, low-precision), resulting in numerous spu-
rious matches10. However, after filtering out any
patterns that found over 1000 matches, we are left
with syntactic claim patterns that are interpretable
and that found reasonable claims not identified by
our MDP-constrained seedling patterns. Figure 7
visualizes a non-trivial mined pattern that recovers
the overall ccomp structure (with some admittedly
superfluous edges), Sentence (7) is a claim from

10449536 total matches, 53630 unique matches
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Figure 5: Unexpanded dependency syntax graph for
“The White House”

Figure 6: Expansion of dependency syntax graph for
“The White House” into graph with a single attribute per
each node and edge. n2e stands for node-to-edge and
e2n for edge-to-node

the silver corpus and Sentence (8) is a novel claim
extracted by the mined pattern:

(7) [Tim Trevan, a biological safety expert
based in Maryland Claimer], said [most coun-
tries had largely abandoned Inner Claim] their
bioweapons research after years of work
proved fruitless.

(8) [Richard Ebright, a professor of chemi-
cal biology at Rutgers University Claimer],
said earlier this year in an interview with
The Washington Post: [“Based on the virus
genome and properties, there is no indica-
tion whatsoever that it was an engineered
virus.” Inner Claim]

Mining the silver corpus after parsing it for AMR
yielded 21 AMR-only claim patterns, and after
parsing it for both AMR and dependency syntax
yielded 29 composite DP-AMR claim patterns.

Figure 7: Over 10 documents, this dependency syntax
pattern detected 46 claims, 27 of which were not cap-
tured by our original DP+MDP patterns

6.3 Challenges and Future Work

The subgraphs returned by SPMiner do not come
equipped with node- or edge-match functions as
defined in §4.6. This works out in the case of
the expanded single-attribute-per-node/edge graph
input to SPMiner, as we can simply require that
the functions match on all attributes and trust that
the mining algorithm will exclude irrelevant/non-
predictive attributes from its frequent motifs. We
leaving mining for frequent attributes jointly with
frequent motifs to future work.

We have yet to explore training NLP-specific
GNN encoders such as discussed in §2.2 for accu-
rate neural subgraph isomorphism to speed up the
mining procedure and allow for a thorough hyper-
parameter search that is not prohibitively slow.

Finally, we would like to explore this approach at
different linguistic levels, including discourse-level
argumentation structures such as that of Stab and
Gurevych (2017) or Rhetorical Structure Theory
(RST) (Mann and Thompson, 1987).

7 Conclusion

We demonstrate the viability of a simple paradigm
for extracting and learning KE structures from a
variety of parses. We outline avenues to make this
approach more efficient and robust, and surmise
that as linguistic representations and parsers con-
tinue to improve in scope and in accuracy, the NLP
community will benefit from interpretable graph-
based techniques over them.
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A Subgraph Isomorphism vs Subgraph Monomorphism

We conducted our subgraph matching experiments with the NetworkX subgraph isomorphism matcher,
unaware of the subtle difference between subgraph isomorphism and subgraph monomorphism. Our
implementation of the relaxed ccomp pattern (cf. §4.8), where we deliberately did not define any edge
between α and β to generalize their distance from each other, kept failing to match claims in which α was
the parent of β (i.e. exactly 1-hop above it). This led us to implement the pattern ccomp1-hop in addition to
ccomp>1-hop to get full coverage; the latter pattern having no edge between α and β (as intended), while
the former containing the edge corresponding to the 1-hop distance between those two nodes.

We refer the reader to https://networkx.org/documentation/stable/reference/algorithms/

isomorphism.vf2.html#subgraph-isomorphism, from which we cite, for a mathematical definition of
subgraph isomorphism and monomorphism: “to say that G1 and G2 are graph-subgraph isomorphic is to
say that a subgraph of G1 is isomorphic to G2”.

The key point to note is that in the NetworkX VF2-based subgraph isomorphism, “subgraph” always
refers to node-induced subgraph:

• If G′ = (N ′, E′) is a node-induced subgraph, then:

– N ′ is a subset of N , E′ is the subset of edges in E relating nodes in N ′

• If G′ = (N ′, E′) is a monomorphism, then:

– N ′ is a subset of N , E′ is a subset of the set of edges in E relating nodes in N ′

The node-induced subgraph requirement of isomorphism necessitates the complete subset of edges
connecting nodes in N ′. This explains the failure of the relaxed ccomp pattern to match the case where
α is a parent of β, since the pattern subgraph does not contain the edge between α and β. By contrast,
monomorphism does yield a match in this case, as it requires the pattern to define merely a subset of the
set of edges connecting nodes in N ′: “if G′ is a node-induced subgraph of G, then it is always a subgraph
monomorphism of G, but the opposite is not always true, as a monomorphism can have fewer edges.”

B SPMiner Hyperparameters

We used the following hyperparameters for SPMiner:

Parameter Value
node anchored true
n neighborhoods 3000
n trials 100
min pattern size 10
max pattern size 50
min neighborhood size 10
max neighborhood size 60
search strategy greedy

Table 4: SPMiner hyperparameters

https://github.com/snap-stanford/neural-subgraph-learning-GNN/blob/master/

subgraph_mining/config.py
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C Visualizations

Figure 8: Syntactic dependency parse for “The World Health Organization also warned Monday that the virus had
not suddenly become less lethal.”

Figure 9: Modal dependency parse for “The World Health Organization also warned Monday that the virus had not
suddenly become less lethal.”
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Figure 10: Composed modal and syntactic parse for “The World Health Organization also warned Monday that the
virus had not suddenly become less lethal.”

Figure 11: Composed syntactic and AMR parse for “The Guangzhou South China Agricultural University says that
two of its researchers have identified the pangolin as the potential source of COVID-19.”, with 1-hop neighborhood
around claimer and inner claim head tokens. Note amrAlignedToken edges that connect an AMR node to the
token it has been aligned to
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Figure 12: Example local neighborhood graph for dependency syntax parse of a claim

Figure 13: AMR pattern example, analogous to dependency syntax example in Figure 7

135



Proceedings of the 4th International Workshop on Designing Meaning Representations, pages 136–153
June, 2023. ©2023 Association for Computational Linguistics

Which Argumentative Aspects of Hate Speech in Social Media
can be reliably identified?

Damián Furman1,2, Pablo Torres3, José A. Rodríguez3,
Diego Letzen3, Vanina Martínez4, Laura Alonso Alemany5,6

1 Departamento de Computación, Universidad de Buenos Aires, Argentina
2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
3 Facultad de Filosofía, Universidad Nacional de Córdoba, Argentina

4 Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain
5 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Argentina

6 Fundación Via Libre, Argentina

Abstract
With the increasing diversity of use cases of
large language models, a more informative
treatment of texts seems necessary. An argu-
mentative analysis could foster a more reasoned
usage of chatbots, text completion mechanisms
or other applications. However, it is unclear
which aspects of argumentation can be reliably
identified and integrated in language models.

In this paper we present an empirical assess-
ment of the reliability with which different
argumentative aspects can be automatically
identified in hate speech in social media. We
have enriched the Hateval corpus (Basile et al.,
2019) with a manual annotation of some ar-
gumentative components, adapted from Wage-
mans (2016)’s Periodic Table of Arguments.
We show that some components can be identi-
fied with reasonable reliability. For those that
present a high error ratio, we analyze the pat-
terns of disagreement between expert annota-
tors and errors in automatic procedures, and
we propose adaptations of those categories that
can be more reliably reproduced.

1 Introduction

With the impressive advances obtained in Large
Language Models (LLMs), applications of auto-
mated language generation are quickly expanding
to affect more and more areas of human activity,
specially with the generalization of conversational
chatbots. It is known that these models tend to am-
plify stereotypes, resulting in the naturalization of
prejudices and finally the dehumanization of social
groups in the form of hate speech.

Hate speech is a grave danger. The International
Convention on the Elimination of all Forms of
Racial Discrimination states that hate speech “re-
jects basic human rights principles of human dig-
nity and equality and seeks to degrade the position
of individuals and groups in society’s esteem"1.

1United Nations Strategy and Plan of Action on Hate

Through the amplification provided by social
media and LLMs, its effects are also amplified,
as it can deepen prejudice and stereotypes (Citron
and Norton, 2011). That is why great efforts have
been made to detect and neutralize it. The most
common form of neutralization to date has been
banning hate speech from public forums. However,
this strategy collisions with the right to freedom of
expression. In addition, it is usually implemented
by resorting to human moderators who are exposed
to toxic content for long workdays.

Automatic argumentation analysis enables alter-
natives to censorship like argument retrieval and
organization or automatic generation of counter-
arguments. The recent developments of LLMs
make these tasks more feasible. But, although they
behave in a competent way from a purely conversa-
tional point of view, they do have not been designed
to reason or argue. Moreover, they do not seem to
be able to prevent harmful effects beyond very shal-
low guardrails, which is a critical concern when
dealing with hate speech. That is why it seems
necessary to enhance them beyond pure unanno-
tated text, to obtain a more nuanced treatment of
the argumentative dimension of texts.

The question remains, how can we know which
argumentative aspects will be useful for LLMs to
improve their performance in nuanced, risky tasks
like automatic generation of counter-arguments
against hate speech in social media?

In this work we present the Argumentation Struc-
ture Of Hate Messages Online (ASOHMO), a pro-
tocol to annotate argumentative information in hate
tweets, and an annotated dataset of tweets to train
automatic classifiers. These annotations are an
adaptation of Wagemans (2016)’s proposal for hate
speech in Twitter, where much of the argumenta-
tion refers to implicit elements, and one finds typos,

Speech: Detailed Guidance on Implementation for United
Nations Field Presences, 2020.
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incomplete phrases and incoherent syntax. Despite
this challenging context, by applying our protocol,
we obtained substantial agreement between differ-
ent human judges to identify the argumentative
structure of tweets. We also found that LLMs can
successfully detect some of these argumentative
components, even when few annotated examples
are provided, which seems to indicate that it is
feasible to finetune them to address some specific
argumentation tasks and domains.

The rest of the paper is organized as follows. In
the next Section we discuss relevant work, includ-
ing the foundational Wagemans (2016)’s proposal.
Section 3 describes the categories that we distin-
guish in our annotation framework, and in Section
4 we present how they apply to hate speech in social
media, more concretely, to the manual annotation
of the Hateval corpus (Basile et al., 2019). Finally,
in Section 5 we show how LLMs can identify some
argumentative components, but not others, with
varying degrees of success. We analyze the causes
of low success and propose how to adapt the defini-
tion of the target argumentative aspects to improve
their reliability of annotation, both manual and au-
tomatic.

2 Relevant Work

There are many different proposals on how to
model the argumentative aspects of texts, even if
we only consider those aimed or used for com-
putational application. We are not providing an
exhaustive overview of approaches here, but just
some examples to motivate and frame the model of
argument that we present in this work.

One of the main distinctions between proposals
is whether they are general purpose or domain spe-
cific. Domain-specific approaches propose tailored
categories, like Teufel et al. (1999)’s "background",
"aim" or "comparison" for scientific papers, or Al-
Khatib et al. (2016)’s "anecdote" or "statistics"
for the argumentative analysis of editorials. They
tend to achieve good inter-annotator agreement and
good accuracy in automatic identification, but are
not portable to different domains.

General-purpose argumentation models have
very different approaches. Many computation-
oriented proposals are based on Toulmin (2003)’s
theory of practical argument. They distinguish be-
tween two main components of arguments, "conclu-
sion" (also called "claim") and "fact" (also called
"justification" or "premise"). They usually try

to identify relations between components and be-
tween arguments, aiming to create a full argument
tree that accounts for the argumentative structure
of a text. This kind of model has been applied to es-
says (Stab and Gurevych, 2014) or user-generated
discourse (Habernal and Gurevych, 2017). It is
very general, thus easily portable to different do-
mains. At the same time, it is not very stable, since
inter-annotator agreement is not high, and the in-
formation it provides about the argument is not as
rich as in the case of domain-specific approaches.

Another approach to modelling argument in texts
are schemes. Argument schemes are “patterns of
informal reasoning" (Walton et al., 2008) that “rep-
resent forms of argument that are widely used in
everyday conversational argumentation" (Macagno
et al., 2018). Argument Schemes specify a pattern
of reasoning and a set of critical questions oriented
to test the defeasibility conditions on the pattern.
This pattern and critical questions provide very
insightful, actionable information about the argu-
ment, which can be later used for applications like
building a counter-argument.

Several authors have adapted Walton’s schemes
to specific purposes, even proposing alternatives
to critical questions (Atkinson and Bench-Capon,
2018; Kökciyan et al., 2018). The main drawback
of these proposals is that the inventory of scheme
is very profligate, and it has become clear that,
identifying a scheme within a given text becomes
quite difficult, both manually and automatically.

2.1 The Periodic Table of Arguments

Trying to find a trade-off between the excessive
detail of schemes and the scarce information pro-
vided by claim-premise approaches, Wagemans
(2016) proposes an analytic approach to argument
schemes, aimed to obtain the core schemes pro-
posed by Walton et al. (2008), with fewer cate-
gories based on a limited set of general argument
features.

This is a characteristic that we find particularly
useful for building a simple system that is easy to
annotate without an enormous effort and achieving
a high level of agreement between human annota-
tors, which leads us to expect higher reproducibility
in inferred models. Moreover, an analytic approach
allows determining which aspects of argumentation
are more feasible to detect automatically, and iden-
tifying which particular aspects are more useful for
a given application, such as components that could
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be used to elaborate a response.
All arguments under Wagemans’s system have

a premise and a conclusion labeled with one Type
of statement each. But it goes beyond the mere
premise-conclusion information. The PTA is a fac-
torial typology of arguments that offers a compre-
hensive overview of the various types of arguments
by describing them as a unique combination of
three basic characteristics (Wagemans, 2019):

1. first order or second order argument. A
common term between premise and conclu-
sion transfers the acceptability from one to the
other. If this common term is explicit, then it
is a first order argument. If a reconstruction is
needed, then it is a second order argument.

2. predicate or subject argument. If the com-
mon term is in the subject of the propositions
making the premise and the conclusion, then
it is a subject argument, otherwise, it is a pred-
icate argument.

3. policy, fact or value. The conclusion and
premise can be labeled each as a statement
of policy (the speaker mandates or states that
something should be done), a statement of
value (the speaker issues an opinion about
something), or a statement of fact (the speaker
conveys a proposition as a true fact).

Visser et al. (2021) conducted an exhaustive
research on annotating the US 2016 presidential
debate corpus using both Walton’s schemes and
Wagemans’s Periodic Table of Arguments. They
reported a higher agreement for Wagemans’s ty-
pology, specially without considering classification
between first and second order arguments. More-
over, they sustain that for Wagemans’s typology,
“the division into independent sub-tasks simplifies
the annotation while maintaining reliability".

We adapted Wagemans’s proposal to hate speech
on social media, with the goal of identifying ele-
ments that can be relevant to either a human or a
machine in the task of analyzing or countering hate
speech.

Focusing on hate speech on Twitter, we have
to take into account that many argumentative hate
tweets are based on assumptions justified by prej-
udice or context information that is difficult to re-
cover. This means that in many cases, it is difficult
to rebut them from the perspective of formal deduc-
tive logic. We believe that an approach based on

informal logic, like the one proposed by Wagemans
(2016), is more adequate to capture this kind of ar-
guments that are organized with informal relations.

In the following Section we describe our ap-
proach. We provide an overview of other social
media corpora annotated with argumentative infor-
mation in Appendix H.

3 A Framework to Identify Argument
Components on Twitter Hate Speech

The goal of our argumentation model is to provide
an argumentative analysis that can help expose the
core of the reasoning supporting a hate message.
We believe that this can help both humans and
automatic models to better address hate speech.

We are labeling two kinds of informa-
tion: domain-specific and argumentative-general.
Domain-specific information allows to exploit par-
ticular characteristics of hate messages on Twitter:
they always mention a collective that is implicitly
or explicitly associated with a negative property, ac-
tion or consequence. Argumentative-general struc-
ture is based on a simplification of Wageman’s
proposal that is aimed to increase inter-annotator
agreement. Reaching acceptable levels of inter-
annotation agreement is very important to our pur-
pose, as it indicates that the annotation process can
be systematized and possibly automatized.

We created an annotation protocol2 where both
kinds of argumentative information are defined in
a procedural manner. This protocol was applied
by human analysts to annotate hate speech tweets,
with five steps that are described as follows. The
annotation team and environment are described in
Appendix A.

3.1 Argumentative or Non-argumentative

Following (Wagemans, 2019), “an argument (...)
consist(s) of two statements, namely a conclusion
– the statement that is doubted – and a premise".
We consider a tweet to be argumentative if it is
possible to divide it in these two components. Ex-
amples of non-argumentative tweets can be found
in Appendix E: exhortations to some action without
justification, insults, name callings, support for a
particular policy or description of facts without an
explicit conclusion.

2Annotation guidelines can be found at shorturl.at/
cv458.
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Figure 1: Example of labeled argumentative hate tweet.

3.2 Domain-specific components: Collective
and Properties

All hate messages are directed towards a specific
group by definition. Usually, the content of the
message is to associate this group with a negative
property or an undesirable action or consequence.
If this property3 is explicit, we label it.

3.3 General argumentative components:
Justification and Conclusion

All argumentative tweets are labeled with one and
only one Conclusion and Justification, though these
can be separated in many non-contiguous parts
inside the tweet. Annotators were instructed to
choose the longest Conclusion and Justification
that they could find, leaving out only hashtags indi-
cating topics, links, user mentions or non-relevant
words or information. Justifications may be argu-
ments themselves, having their own inner structure
involving different premises, but this is not anno-
tated as we are only interested in capturing the main
standpoint that the user wants to gain acceptability
for.

When labeling these components, we are not con-
sidering the subject-predicate structure proposed by
Wagemans. Visser et al. (2021) warned about how
this model presupposes that premises and conclu-
sions of arguments consist of complete categorical
propositions comprising a clear subject-predicate
structure, which is not always the case in user-
generated, informal social media text.

3.4 Argumentative relation: Pivot

Following Wagemans, argumentative components
transfer reason from one to the other. We assume
that there can be textual cues of this transfer, in
the form of an element that is common to both
components. We call this element the pivot. We
identify pivots as two sequences of words, one for
each premise, that can be related to the element
that those premises have in common.

This relation is generally not unique; the underly-
ing common ground between the premises could be

3A property is anything that is associated with the targeted
community, whether it is an adjective, a consequence, an
action, etc.

expressed in different forms or could present multi-
ple aspects signaled by different words. Whenever
this element is explicit in the text (it might be not),
we annotate it.

The pivot holds a relation with Wagemans’s cat-
egories of first and second order arguments. If an
argument is considered first-order, it means that
the common element between premises must be
explicit (by definition, it must be either of the form
A is X because A is Y or B is Z because C is Z).
For a second-order argument, there might still be
an explicit pivot or not.

3.5 Types of Proposition

Wagemans proposes “a characterization of the
types of arguments based on the combination of
the types of propositions they instantiate” (Wage-
mans, 2016). These types are taken from debate
theory (Schut, 2014), where three distinctions on
propositions are made: (1) policy (P), (2) value (V)
and (3) fact (F).

We label our propositions using the same types
and add to our annotation manual different guide-
lines on how to recognize each one: a policy propo-
sition is a mandate often expressed as orders, im-
peratives, or actions that need to be accomplished
in the public domain. Fact and value propositions
were reported to be more difficult to differentiate.
As a general criterion, a proposition to be labeled
as value must have explicit markers of the speaker
being involved in the assertion expressed (opinion-
ated adjectives, verbs of thought, etc.). Otherwise,
the premise is considered as fact. Examples can be
seen in Appendix E.

4 The ASOHMO Corpus

We applied our argumentation model via the anno-
tation protocol described in the previous Section
to the HatEval 2019 corpus (Basile et al., 2019).
Focusing on argumentative tweets, we did not an-
notate tweets labeled as “aggressive", consisting
mostly of abusive language (name callings, insults,
exhortations to action and other types of attacks),
nor tweets targeted against specific individuals or
women, as they were almost exclusively abusive
and non-argumentative. After these filters, a corpus
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Domain-specific Argument-general
Argumentative Collective Property Pivot Justif. Concl. Type of Conc. Type of Just.

κ .85 .64 .60 .52 .62 .64 .60 -.03
Table 1: Agreement scores between two annotators for 150 tweets.

of 970 tweets in English and 196 tweets in Spanish
remained.

The dataset is released4 for the free use of the
scientific community, together with the scripts for
reproducing experiments.

4.1 Inter-annotator Agreement

We calculated inter-annotator agreement to assess
the reproducibility of the annotations and the feasi-
bility of automatic identification. While the whole
corpus was annotated by a single annotator, 150
tweets (15% of the corpus) were labeled by a sec-
ond annotator5. Then, per-category agreement was
calculated with Cohen’s κ (Cohen, 1960). Agree-
ment was calculated in a per-tweet basis for the
Argumentative vs. Non-Argumentative category
using a binary label, and for the Type of Conclu-
sion and Justification categories, using one label
with three possible values representing fact, value
and policy. For all other categories, agreement was
calculated in a per-word basis with a binary label
assigned to each word, marking whether it belongs
to the category or not.

In Table 1 we can see that annotators can reach a
substantial level of reproducibility, around κ = .6
for Collective, Property, Justification, Conclusion
and Type of Conclusion and .85 for the distinc-
tion between Argumentative or non-Argumentative
tweets. In contrast, the Pivot presents a moderate
level of inter-annotator agreement, and the Type of
Justification presents no agreement at all.

To calculate agreement, we follow a criterion
similar to that of Visser et al. (2021): while com-
paring two annotators, if at least 50% of the words
in the smallest component marked by one of the an-
notators overlaps with words marked by the other
one, then it is considered an agreement. For exam-
ple, if one annotator marked "the damage illegals
do" as a Property associated to a Collective and the
other annotator marked just "damage" as a Property

4https://github.com/ASOHMO/
ASOHMO-Dataset

5The sample’s size for the test is proportionally higher
than many of the previous works: Bosc et al. (2016) used 100
tweets to calculate agreement over a dataset of 4000 whereas
Dusmanu et al. (2017) used 100 tweets for its first dataset of
1887 tweets, 80 tweets for its second dataset of 1459 tweets
and used the whole third dataset of 368 tweets.

we consider that 100% of the words in the shortest
"damage" in both examples and assume that all the
other words are marked as not being part of the
Property in both cases.

@user @user sanctuary cities are against
the law.PLEASE SHUT THEM DOWN &
ARREST/PROSECUTE ALL CRIMINAL GOVERNORS

& MAYORS

Figure 2: Disagreement concerning Pivot. One annotator is
underlined, while the other is bolded. Justification is marked
with italics and Conclusion with capitalization

When inspecting examples of disagreement be-
tween annotators for Pivot, as shown in Figure 2,
we found that in many cases both annotations could
be considered accurate, as there may be more than
one possibility for annotators to tag. Furthermore,
as the relation is very deep in the layers of meaning,
annotators may interpret it as signalled by different
surface features, and as a consequence they may
tag different sequences of words while considering
the same relation.

Finding patterns in the disagreements between
annotators can be used to redefine categories
(Teruel et al., 2018). In a second annotation phase,
we will be redefining the Pivot category to obtain
more agreement between annotators. We under-
stand that this element is particularly challenging,
because it signals a very deep relation and its cor-
respondence with surface textual phenomena may
not be direct, or multiple. That is why we plan to
rethink it as a binary classification problem, where
human judges are presented with one or more pos-
sibilities of Pivots for a given argument, and they
have to say whether they consider any of them to
be a valid Pivot for the example.

5 Automatic Identification of Arguments

We conducted several experiments to assess the
feasibility that LLMs can automatically identify
different argumentative aspects.

For each set of hyperparameters used, we fine-
tuned the same language models using different
random tweets for each partition, always respect-
ing this proportion. We report the average of these
three fine-tuned models’ F1, Precision and Recall
to detect or classify argument components. For
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RoBERTa BERTweet XLM-RoBERTa-Mix XLM-RoBERTa-XL
F1 Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec

Arg./Non-Arg. .89±.02 .84 .95 .88±.01 .84 .93 .87±.04 .84 .91 .84±.03 .84 .85
Justification .73±.05 .69 .76 .77±.05 .75 .78 .76±.05 .71 .81 .75±.01 .71 .80
Conclusion .55±.02 .60 .51 .61±.03 .64 .58 .60±.02 .59 .61 .54±.03 .59 .49
Type of Just. .41±.09 .48 .39 .42±.09 .48 .41 .35±.05 .34 .37 .33±.03 .33 .35
Type of Conc. .58±.05 .62 .57 .65±.11 .67 .65 .61±.06 .65 .62 .63±.02 .66 .62
Collective .59±.03 .56 .64 .58±.05 .55 .62 .59±.06 .58 .60 .27±.07 .41 .21
Property .46±.04 .52 .41 .47±.03 .50 .43 .50±.03 .57 .43 .42±.04 .42 .43
Pivot .45±.04 .52 .41 .40±.08 .43 .39 .39±.08 .42 .38 .33±.08 .41 .27

Table 2: F1, precision and recall for the target class in the automatic detection of argument components in tweets.
Each experiment was carried out with three randomized partitions, the mean and standard deviation of the F1 are
presented. Best results for F1 for each category are highlighted in boldface.

multi-label classification, the macro average is cal-
culated, otherwise, we report the score of the target
class. We also report per-class F1 scores for the
three possible Types of premises: Fact, Value and
Policy.

Models. We fine-tuned the following LLMs:

RoBERTa (Liu et al., 2019): a BERT-like (De-
vlin et al., 2018) LLM, pre-trained with more data.

BERTweet (Nguyen et al., 2020): a RoBERTa-
based LLM trained on data from Twitter.

XLM-Roberta (Conneau et al., 2019): a
RoBERTa based multilingual LLM. We fine-tuned
it with a Mixed Language (Mix) version using both
English and Spanish for training and testing and
with a Cross-Lingual version (XL) using English
for training and Spanish for testing.

5.1 Predicting Individual Components

We trained different kinds of models to automati-
cally recreate the annotation process one compo-
nent at the time: one for sequence binary classi-
fication, to predict if a tweet is argumentative or
not; five models for token classification, to predict
for each word, if it is labeled as part of the collec-
tive, the property associated to that collective, the
pivot, the justification or the conclusion, respec-
tively; and two models for sequence classification,
fed only with the correspondent text of the premise
(Justification or Conclusion), to predict the Type
associated with it (fact, value or policy). Results of
this experiment are shown in table 2.

Distinguishing argumentative from non-
argumentative tweets achieves a very satisfying
.89 F1. In general, components with higher
inter-annotator agreement perform better, with
justifications identified with .77 F1. Components
with low inter-annotator agreement are also
identified with more errors: conclusions have an
F1 of .61 (κ = 64), collective F1=59, (κ = 64),

Figure 3: F1 score for “predictions" done by a human
annotator and compared with predictions done by the
best performing automatic classifiers (BERTweet for
Justification, Conclusion and their Types - trained with
all the premises -, Roberta for Argumentative and Pivot
and XLM-Roberta for Collective and Property).

property F1=.50 (κ = 60) and finally pivots only
reach an F1 of .45 (κ = 52).

In Figure 3 we compared the F1 scores of the
best performing models with inter-annotator agree-
ment. We calculated the F1 score of the 150 tweets
labeled by two judges using one as the ground truth
and the other as the one being evaluated. We can
see that both scores are highly correlated, although
human annotators tend to agree slightly more than
the automatic predictor with respect to the human
ground truth, so there is still room for improvement
for automatic predictors.

Analyzing predictions for the worst performant
components (Property and Pivot), we can see that
the models predicting Properties have a tendency
to recognize any word with a negative charge, dis-
regarding if it is referring to the Collective itself.
Models recognizing Pivots sometimes find more
than one possibility to label. Figure 4 shows how
the model predicts the real pivot, but then also
predicts another one not labeled on the original
example that could be valid. This shows that, at
least partially, some mistakes are made because of
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the subjective nature of the task and the multiple
valid possibilities of labelling. To overcome this
problem, annotators should consider the possibility
of multiple pivots and try to label them all.

Salvini prosecuted for defending italian
sovereignity and finally preventing
hundreds of migrants to invade Italy
grande Salvini, help us preserve the
european culture against the invasion
#StopIslamization #ComplicediSalvini
#StopInvasion #RefugeesNotWelcome

Figure 4: Example of prediction of Pivot. Labeled
justification is in blue, while conclusion is red. Real
pivot is underlined, while predicted Pivot is bolded.

Regarding the different models, BERTweet
achieves the best performance on most experiments
involving Justifications, Conclusions or their types,
and is close to the best results on other components.
RoBERTa achieves higher results for Pivots.

Multilingual experiments achieve a performance
similar to their monolingual counterparts for most
components, specially Properties, indicating that
training with mixed languages does not decrease,
and can even improve, performance.

Results on cross-lingual experiments where mod-
els are trained with English and tested against Span-
ish, on the other hand, show different behavior
depending on the component: for finding argumen-
tative tweets, Justifications, Types of Justification
and Types of Conclusion, results are similar to their
counterparts on monolingual experiments. Collec-
tive, on the other hand, has a major drop in perfor-
mance for all experiments compared to all other
model settings. This is explained because of the
very specific lexicon used for naming collectives,
with lots of out of vocabulary and slang words. The
pivot also suffers a drop in performance on both
multilingual settings, but more so on cross-lingual.

5.2 Predicting Components Simultaneously

The goal in this case is to measure the performance
of the models when simultaneously predicting com-
ponents labeled on the same annotation step. We
want to assess whether training with information
about both components helps to improve the perfor-
mance when predicting each of them individually
or not. We ran an experiment to jointly predict Col-
lective and Property and another for Justifications
and Conclusions. Each word is assigned one of
three labels, indicating if they belong to either of
the two searched components or not.

Joint prediction of components labeled on the

same annotation step produces almost the same
results as predicting them individually. This has
the advantage of consuming half of the resources
and time; however, the definition of the problem
changes, as each token can only be part of one or
none component, but not both.

5.3 Predicting the Type of Premises
The Type of Conclusion or Justification (Fact, Pol-
icy or Value) should be independent of its premise
(Justification or Conclusion), so in terms of seman-
tic information, to predict this, it should not matter
if models are trained with just one or both of them.

Moreover, using both kinds of premises in-
creases the number of training examples and can
help to overcome the unbalance between Fact and
Policies (specially on Justifications, where facts
are the vast majority).In Table 3 we can see that
models trained to predict the Type of Premise with
both Justifications and Conclusions perform much
better than models trained with just one or the other.
For Type of Justification, these models achieve F1
scores that are between 10 and 20 points higher.
For Type of Conclusions, their F1 scores are around
5 points higher. When checking the per-class F1
scores, the improvement in performance is concen-
trated on the minority classes. For Type of Justifica-
tion, both Value and Policy classes improve highly,
and for Type of Conclusion the most difference is
on the Value class.

5.4 Impact of training dataset size
We want to assess how much data is needed for the
models to achieve an acceptable performance. For
this purpose, we ran several experiments follow-
ing the same settings as in 5.1 but using smaller
portions of the original datasets. Our goal is to
measure the impact of having smaller datasets for
each component and the relative gain of adding
new examples, considering that the task of labeling
them is expensive. We used a random sample of
25%, 50% and 75% of the corpora used for training
and compare the F1 scores with those obtained by
the models trained with the whole corpus.

Figure 5 compares the F1 scores of the best per-
forming models for each component in 5.1 with
those obtained by the same models trained with
smaller portions of the same datasets. On the left,
we show the evolution of the F1 score when increas-
ing the size of the training dataset. On the right,
we show the percentage of improvement of the F1
score between each size of the dataset for each com-
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RoBERTa BERTweet XLM-RoBERTa-Mix XLM-RoBERTa-XL
Macro F V P Macro F V P Macro F V P Macro F V P

Models trained with both Justifications And Conclusions
Type of Just .49±.07 .92 .13 .41 .53±.08 .93 .19 .47 .55±.01 .94 .37 .34 .52±.17 .93 .41 .21
Type of Conc .63±.14 .82 .22 .85 .70±.14 .85 .37 .87 .67±.16 .78 .37 .86 .57±.04 .78 .34 .60
Type of both .66±.05 .90 .28 .79 .69±.12 .91 .34 .82 .67±.04 .88 .35 79 .60±.03 .89 .39 .53

Models trained with just one of them
Type of Just .41±.09 .95 .28 .00 .42±.09 .95 .13 .17 .35±.05 .97 .00 .08 .33±.03 .95 .0 .05
Type of Conc .58±.05 .81 .07 .85 .65±.11 .84 .20 .89 .61±.06 .70 .28 .85 .63±.02 .78 .45 .65

Table 3: Results for identification of Type of premises tested against both Justification and Conclusion, only
Justifications and only Conclusions. Results are compared against those achieved by the best performing model
trained with only one of the two kinds of premises.

Figure 5: Evolution of F1 scores per argumentative component when increasing the size of the dataset used for
training. The figure on the left shows F1 score absolute values, while the one in the right shows the percentage of
the score wrt the final value obtained when reducing the dataset.

ponent. For example, the model predicting Pivot
trained with 75% of the dataset achieved a score of
0.36 while the model trained with the whole dataset
(100%) achieved a score of 0.45, which represents
an improvement of 26.6% of this score.

When looking at performance of models trained
with smaller fractions of the dataset (figure 5.1) we
can see that those components with better scores
can achieve similar results using fewer data, while
components with worse performance (Property,
Pivot and Type of Justification) are much more
sensible to the amount of examples on the dataset.
This could be considered as an indicator that the
size of the dataset is enough for most components
but for these last three, if more examples were
added to the dataset performance could improve.

6 Discussion of results

We have seen that some argumentative aspects of
hate speech in tweets can be successfully identi-
fied by Large Language Models (LLMs), namely,
whether a tweet is argumentative or not and Justifi-

cations, Conclusions and the Type of Conclusions.
This kind of information may be useful to pro-

vide an argumentative analysis of tweets, possibly
for argument retrieval. It is probably also useful
to guide the (semi-)automatic generation of some
counter-narratives, like those that are aimed to ques-
tion the Justification or those aimed to some kinds
of Conclusions, like Values or Policies.

Domain-specific argument information, like Col-
lective and Property, are not very successfully
identified. Different strategies, like Named Entity
Recognition approaches, may yield better results.

Pivots, aiming to identify the relation between
Justification and Conclusions, and a key compo-
nent to reconstruct Wagemans’s typology, cannot
be successfully identified, either by humans or au-
tomatically. It seems that a different approach must
be taken to identify them manually, possibly identi-
fying all possible sequences of words that elicit a
relation between Justification and Conclusion.

These results will be instrumental for the anno-
tation of a bigger annotated corpus, specially for
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Spanish, and to integrate these concepts into LLMs.

7 Summary and Future Work

We have presented an approach to determine which
aspects of argumentative information from hate
speech in social media is liable to be integrated
into LLMs. We have adapted the analytic approach
of an informal logic based on (Wagemans, 2016)
and have developed annotation guidelines which
have then used to enrich a reference dataset for hate
speech with argumentative information.

We developed a robust annotation process and
guidelines to obtain high agreement between an-
notators. Indeed, an initial assessment of inter-
annotator agreement, shows agreement above κ =
.6 for most categories, except the most interpreta-
tive ones. Considering we are dealing with user-
generated text, we find this a very hopeful scenario.
We are also working on adapting the categories
with more disagreement, like Pivot, based on the
patterns of the disagreemeent between annotators,
so that in further annotation efforts they can be
identified in a more reproducible ways, both by
humans and automatic methods.

We show to which extent it is possible for Large
Language Models to automatically identify the ar-
gumentative components, so that this kind of infor-
mation can be integrated with purely data-driven
approaches to enrich the analysis of text and pro-
duce more insightful, reasoned outputs.

Finally, the published dataset is also a contribu-
tion to the existing corpora of argument mining on
social networks. It is publicly available at https:
//github.com/ASOHMO/ASOHMO-Dataset.

For future work, we plan to annotate bigger cor-
pora, focusing on improving reliability on difficult,
yet potentially useful, components, like Pivot. We
also plan to add counter-narratives associated to
each tweet and train models to automatically gen-
erate them. We want to assess to which extent the
argumentative information helps in better generat-
ing automatic responses.

8 Limitations and Ethical Considerations

In the first place, we would like to make it clear that
the human annotations presented here are the result
of the subjectivity of the annotators. Although they
have been instructed through a manual and training
sessions, there are still significant variations be-
tween interpretations, and further researchers may
assign different categories to examples.

Also, it is important to note that the automatic
procedures obtained are prone to error, and should
not be used blindly, but critically, with attention to
possible mistakes and how they may affect users,
groups and society.

Then, it is also important to note that the corpus
used for this research is very small, specially in the
Spanish part, so the results presented in this paper
need to be considered indicative. A bigger sample
should be obtained and annotated to obtain more
statistically significant results.

The findings of this research can potentially in-
form the development and improvement of lan-
guage models and chatbot systems. However, we
emphasize the importance of responsible use and
application of our findings. It is essential to en-
sure that the identified argumentative components
are utilized in a manner that promotes reasoned
usage and does not contribute to the spread of
hate speech or harmful rhetoric. We encourage
researchers and developers to consider the ethical
implications and societal impact of incorporating
argumentative analysis into their systems.

The data have been adequately anonymized by
the original creators of the Hateval corpus.

Studying hate speech involves analyzing and pro-
cessing content that may be offensive, harmful, or
otherwise objectionable. We acknowledge the po-
tential impact of working with such content and
have taken steps to ensure the well-being of the
research team involved. We have provided compre-
hensive guidelines and training to our annotators to
mitigate any potential emotional distress or harm
that may arise from exposure to hate speech. Ad-
ditionally, we have implemented strict measures to
prevent the dissemination or further propagation of
hate speech during the research process.

Finally, we have not specifically conducted a
study on biases within the corpus, the annotation
or the automatic procedures inferred from it, nor
on the LLMs that have been applied. We warn
researchers using these tools and resources that
they may find unchecked biases, and encourage
further research in characterizing them.
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APPENDIX

A Annotation team and environment

Two annotators (a philosopher and a computer sci-
entist) have been trained with the guidelines de-
scribed in section 3, with a three stage training
process, where they labeled a first set of exam-
ples, discussed their difficulties, systematized fur-
ther hints and criteria, updated the annotation man-
ual and started again. We prioritized having the
lesser amount of annotators doing the most possi-
ble amount of annotations. Our hypothesis is that
the more annotators, the more difficult it is to reach
a uniform criterion that can be understood in the
same way by everyone. So fewer annotators doing
more work should lead to more reliable annotations
and to better inter-annotator agreement.

The average time for annotators to label a tweet
is approximately 4 minutes per example. The an-
notation time changes depending on whether the
tweet is argumentative or not. For argumentative
tweets, the average time is around 5 minutes, while
for non-argumentative tweets the average time is
less than 1 minute.

The first annotator annotated 800 tweets in En-
glish and 196 in Spanish, while the second anno-
tated 170 tweets in English.

B Corpus statistics

Table 4 show the percentage of tweets that are la-
beled as non-argumentative in English and in Span-
ish, and also the percentage of tweets in each lan-
guage that have a pair of Collective and Property
and a Pivot labeled. Considering only the non-
targeted and non-aggressive hate tweets against im-
migrants from HatEval, the majority of tweets are
labelled as Argumentative in both languages. Re-
garding the Collective-Property pair and the pivot,
the table shows the percentage of the final dataset
that have them labeled. Table 5 shows the per-
centage of Justifications and Conclusions that are
labeled as Fact, Policy or Value. Justifications
have an ample majority of examples labeled as
Fact, while the distribution between classes is more
even when observing conclusions. In both cases,
the "Value" class is the least frequent.

C Preprocessing

Preprocessing is very important when dealing
with tweets, since they tend to have lots of non-
alphanumeric characters, user handles (@user-
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Non-Arg Collective Pivot
English 25.3% 58.2% 45.1%
Spanish 26.5% 61.1% 37.5%

Table 4: Percentage of tweets labeled as Non-
Argumentative and with Collective-Property and Pivot
labeled

Justification Conclusion
F P V F P V

English 93% 4% 3% 37% 57% 6%
Spanish 97% 2% 1% 56% 28% 16%

Table 5: Percentage of Justifications and Conclusions
labeled as Fact, Policy or Value

name), hashtags, emojis, misspellings, and other
non-canonical text. Following (Nguyen et al.,
2020) and (Polignano et al., 2019) we used a soft
normalization strategy consisting of:

• Character repetitions are limited to a max of
three

• User handles are converted to a special token
@usuario

• Hashtags are replaced by a special token
hashtag followed by the hashtag text and
split into words if this is possible

• Emojis are replaced by their text represen-
tation using emoji library6, surrounded by a
special token emoji.

D Experiment settings

For all monolingual experiments we used 770
tweets of the English portion of the dataset as train-
ing (79%), 100 tweets as development (10.5%) and
100 tweets as test (10.5%). Multilingual experi-
ments were twofold: using both English and Span-
ish for both training and testing, and using English
for training and development and Spanish for test.
In the first case, we used 770 English and 120
Spanish tweets as training (76.3% of the dataset),
100 English and 26 Spanish tweets as development
(10.8%) and 100 English and 50 Spanish tweets
as test (12.9%). In the second case, we used 850
English tweets as training (73% of the total), 120
English tweets as development (10%) and all the
196 Spanish tweets for testing (17%).

In all cases, we tried 5 different values for learn-
ing rate (1e-05, 2e-05, 5e-05, 5e-04 and 5e-06) and
used the development dataset to implement early
stopping with a maximum of 10 epochs. Table 6

6https://github.com/carpedm20/emoji/

shows the values for the hyperparameters used on
all models trained with our examples.

Batch Size 16
Optimizer AdamW
Dropout 0.1
Epochs 10
Weight Decay 0.01
Adam ϵ 1e-06
Adam β1 0.9
Adam β2 0.99

Table 6: Hyperparameters used for training all models
used on our experiments

E Examples And Decisions From The
Annotation Process

In the following section, we show examples of
labeled tweets that illustrate particular decisions
taken when defining the annotation protocol. Ex-
ample 6 shows a frequent case of a non-aggressive,
non-targeted and non-argumentative tweet, consist-
ing on the expression of one or many stances or
exhortation to one or many actions but without any
explicit intention of connecting them.

Example 7 shows an example of a premise where
a user states her opinion as a verifiable fact. Al-
though it could be arguable that she is expressing
a Value about a subject (immigration or assimi-
lation), we consider all tweets that could be fact
checked (specially if the user doesn’t use explicit
markers of her involvement in the statement) to
be of type Fact. Example 8 shows an annotation
of a Collective-Property pair. The Property is any
negative concept, adjective, consequence or aspect
of reality that is explicitly or implicitly associated
with the target of the hate message. In this case,
the tweet is stating that immigrants are not wanted
by the people. The cases where there is no explicit
association between Collective and Property are
diverse, but we present three examples that we be-
lieve represent the majority of the cases. Example
9 shows a case where instead of defining a negative
property associated with the targeted collective, the
user defines a positive Property associated with the
absence of that Collective. Example 10 shows a
case where a negative Property is associated with
the targeted Collective but in an indirect manner
that must be reconstructed using contextual infor-
mation not included in the hate message. In this
case, the reference is made through the mention
of "Operation SOAR", an operation made by the
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ICE in the United States specifically targeting im-
migrants registered as sex offenders and by the
hashtag "StopTheInvasion" referring to a narrative
built against immigrants as if there were a coordi-
nated plan to invade a country. Example 11 shows
a case where the main standpoint of the tweet is
an action that must be taken and there is no ex-
plicit mention of any Property. In these cases, the
Property could potentially be reconstructed by ap-
pealing to find the motivation of these advertised
actions, but it can not be labeled explicitly on the
text of the tweet.

Example 12 shows a Justification labeled as Fact
and a Conclusion labeled as Policy. The main stand-
point of the message must be first identified as Con-
clusion, and then any part of the tweet that fulfills
the role of providing reasons for that standpoint
is identified as Justification. One typical pattern
frequent in many tweets is to express a mandate or
policy that must be followed, usually with the form
of a phrase or hashtag using the imperative mode,
and a Fact (or less frequently also another mandate)
that supports and aims to explain why that mandate
must be followed.

Example 13 show a tweet with a Pivot. In this
case, the user binds the "money" as a cause of im-
migration to conclude that "money" is not needed.
All tweets present some aspect that links Justifica-
tion with Conclusions, but not always that relation
is mentioned directly. Example 14 shows a tweet
where no Pivot was labeled. The link between the
premises relies on the implicit assumptions that the
hate that they supposedly bring to the EU is against
Christians and that because of that hate, Christians
are not safe. But to recognize it, the relationship
must be reconstructed using implicit information
defined by the context, otherwise it is impossible
to establish. In these cases, we do not label the
Pivot for the sake of simplicity. We require that
the relation between the two phrases constituting a
Pivot is direct and easy to spot.

No to #EU migrant camps in Libya,
PM al-Serraj

Figure 6: Example of non-argumentative tweet

@user Time to leave the uk
commonwealth and Europe that
would end immigration people do
not want more refugees enough is
enough

Figure 8: Example of Collective and Property labeled.
Collective is underlined while Property is bolded

Good this makes it a safe country
immigrants can now go home

Figure 9: Example of tweet without Collective and Prop-
erty labeled. In this case, Property is associated with the
absence of immigrants, therefore it is indirectly defined
and not mentioned explicitly

Anyone who, ACTIVELY OR
PASSIVELY, subscribes to
immigration and especially
assimilation is joining the
battle to destroy White

Figure 7: Premise of a tweet labeled as “fact"

F Disagreement between annotators

In the following section, we analyze examples of
disagreement between annotators to better under-
stand the aspects that are most difficult to system-
atize about annotating argumentative components.
Example 15 show a disagreement concerning Col-
lective and Property. Here, one annotator didn’t
consider that there was a Collective and Property to
label, while the other did. We found that most dis-
agreements regarding these components are of this
kind. If both annotators agree that the tweet has a
Collective and Property to label, in most cases they
agree also what parts of the text constitutes them.
In the few cases where both annotators labeled a
Collective and a Property, but they did not match
exactly, they had a major overlap and only differed
on adding a few more words at the beginning or
at the end. Example 16 shows a disagreement of

ICE officers arrest 32 sex
offenders on Long Island as
part of ’Operation SOAR’ :link:
#StopTheInvasion #SecureTheBorde

Figure 10: Example of tweet without Collective and
Property labeled. In this case, the collective is not ex-
plicitly mentioned but referred through contextual infor-
mation
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Canada is an immigrant country
Don’t change it to refugee
country please

Figure 11: Example of tweet without Collective and
Property labeled. In this case, the focus of the mes-
sage is put into an action that must be taken and not on
associating the Collective with a Property

Victims of Illegal Alien Crime
describe heartbreak, frustration
#BuildTheWall #ProtectAmerica
#EndChainMigration
#EndIllegalBirthrightCitizenship
#NeverForget the American Victims
of Illegal Alien Migration

Figure 12: Example of labeling of Justification (in blue)
and Conclusion (in red). Justification is labeled as Fact
while Conclusion is labeled as Policy

Why do foreign individual dump
money (and refugees) into our
country? We don’t need their
money and their programs.

Figure 13: Example of a tweet with a labeled Pivot.
Justification is shown in blue while Conclusion is in red.
Labeled Pivot is shown bolded

Nice tweet , Joyce, Truth is
they flee Iran etc but want to
bring their hate to the Eu even
in refugee camps Christians not
safe.

Figure 14: Example of a tweet without a Pivot labeled.
The Justification is shown in Blue while the Conclusion
is in Red. The link between the two premises relies on
the relation between "hate" and "not safe"

@user @user The idea is to bring
in the "dreamers" so that they
vote for Democrats because
Dems know they have to import
their voters. That is literally
the only reason the Democrats
care about this issue. In the
meantime, YES THEIR PARENTS

Figure 15: Example of disagreement concerning the
Collective and Property. One annotator did not label
any of them. Collective labeled by the other annotator
is underlined while Property is bolded

Mexico’s not sending their
best. They are dumping their
killers aka garbage on us.
#StopTheInvasion #DeportThemAll
#NoAmnesty #BuildTheWall

Figure 16: Disagreement concerning the Property. Col-
lective labeled by both annotators is shown in red. Prop-
erty labeled by one annotator is bolded while the one
labeled by the other annotator is underlined

such kind. Example 17 shows how both annotators
agree on how to split the text but disagree on which
part is the Justification and which is the Conclusion.
To improve the annotation process, the guidelines
should emphasize that the main standpoint of the
tweet should be identified before labeling the Justi-
fication. Example 2 shows disagreement about la-
beling the pivot. In this case, each annotator found
a different Pivot that could be considered correct.
The annotation guidelines enforce each annotator to
label only one Pivot but there are examples, like the
one mentioned above, where multiple Pivots could
be found. This indicates that there could be an op-
portunity of improving the system if we enforce
annotators to label all possible Pivots. Example 18
shows a disagreement on the Type of a Justifica-
tion. The premise has declarative sentences with
informative content (like "It is the third anniversary
of her death") mixed with mandates or actions that
must be followed ("Remember Kate Steinle today"
and "We must not forget"). Depending on the part
of the sentence

G Analysis of differences between
automatic classifications and ground
truth

We analyze the errors made by automatic classi-
fiers when recognizing argumentative components,
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@user @user you come with
the usual lies an insults.
Fact is that mass immigration
into Ireland has been going on
for decades, most illegal and
from other EU countries, still
trans-formative. All the people
seeking asylum

@user @user you come with the
usual lies an insults. Fact
is that mass immigration into
Ireland has been going on
for decades, most illegal and
from other EU countries, still
trans-formative. All the people
seeking asylum

Figure 17: Disageement between annotators concern-
ing Justification and Conclusion. Justification is bolded
while Conclusion is underlined. While both annotators
split the argument in the same fashion, they disagree on
which part is the justification and which is the Conclu-
sion

Remember Kate Steinle today.
It is the third anniversary of
her death We must not forget.
#KateSteinle#IllegalAliens
#OpenBorders#BuildThatWall
#MondayMorning#ImmigrationReform
#ImmigrationIsAWeapon

Figure 18: Example of disagreement concerning type of
premise. Justification (bolded) was labeled as Fact by
one annotator and as Policy by another

trying to determine possibilities of improvement
either in the annotation process or in the settings of
the task of automatic recognition.

Example 19 show an example of a non-
argumentative tweet that was classified as argu-
mentative by the automatic predictor trained as
described in 5.1. The tweet has several hashtags
calling for actions, but there is no explicit intention
of using any of them as a justification of the others.
The tweet refers to a mother who supposedly needs
prayers, indicating that the author is aware of a
context that is missing for us.

Example 20 shows a prediction done by a model
trained following the settings described in 5.1.
Here, the model correctly identifies a Collective
mentioned in a xenophobe tweet, but there is no
explicit Property assigned to them and because of
this, it shouldn’t have been labeled. Though this
model was sometimes able to distinguish when
the Collective should have been labeled or not, we
found this error to be very frequent in experiments
done with these settings. This led us to propose the
experiment described in ?? separating the problem
in two: first identifying if there is a pair of Collec-
tive and Property to label and then finding them
on the tweet. When scoping the problem to find
a Collective in a tweet that we know it is present,
most errors produced by the automatic classifiers
are discrepancies on the amount of words used to
refer to the collective (like in example 22) or when-
ever the tweet mentions multiple collectives besides
the target of the hate message (like example 21).
We think that the first case reveals an opportunity
for improvement on the annotation process, where
sometimes a collective might have been labeled
using one word and other times using many.

Example 23 show an incorrect prediction on the
Property done by a model trained following the
experiment described in 5.1. Although human traf-
ficking could be considered as a negative conse-
quence, the tweet does not explicitly associate it to
a particular Collective. These models tend to iden-
tify phrases with negative connotations as Proper-
ties, disregarding if they are associated with the
target group. This problem arises independently
of the presence of a real Property and usually all
words or phrases that could be considered as "nega-
tives" are labeled by automatic predictors. Another
error that automatic models are prone to are label-
ing bigger or smaller portions of text. Example
24 shows a prediction made by a model trained
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as described in section ??. The model correctly
identified "illegally invade the U.S." as part of the
Property, but missed the rest.

Regarding Pivots, we found that a common prob-
lem derivates from the incapacity of the models to
jointly learn to find the pivot and the separation
of the tweet into premises. Example 4 shows pre-
dictions made by a model trained following the
settings described in 5.1 that found two words in
different parts of the tweet that are directly related,
but that are both within the justification, so they are
not really a pivot between premises. A new setting
for experimentation could provide the model with
the information of where are the Justification and
the Conclusion, and enforce to predict exactly one
phrase within each of them. Another error found
when predicting pivots comes from where multiple
valid Pivots can be found within the premises. Ex-
ample 27 shows prediction of a model also trained
as described in 5.1 that found two valid Pivots:
"Salvini-Salvini" and "invade-invasion". Each one
of them could be considered a valid Pivot, though
the only one that was labeled by the human anno-
tator was "Salvini-Salvini". This phenomenon is
related and could be considered as a consequence
of the disagreement between annotators shown in
the example 2. In order to avoid this kind of er-
ror, annotators should be instructed to label all the
possible Pivots if there were more than one.

For Premises and Conclusions, we found also
several cases where the model correctly divided the
tweet in two premises but failed to assign the kind
of the premise: if it was a Justification or a Con-
clusion. Example 34 shows a prediction done by a
model trained to jointly predict both Justification
and Conclusion at the same time, as explained in
5.2. Here, the model correctly identifies both parts
of the argument but fails to correctly assign the Jus-
tification and Conclusion in itself. It is interesting
to note that models predicting a single component
as described in 5.1 do the same mistake when pre-
dicting Justification and Conclusion for this same
example. This correlates with similar discrepancies
between annotators shown in example 17.

For the Types of premises, models trained follow-
ing the settings described in 5.1 usually fail to pre-
dict the minority classes (’Value’ for Conclusions
and ’Value’ and ’Policy’ on Justifications). On the
contrary, performance on these classes improves
when models are trained following the settings de-
scribed in 5.3. We found that using both kind of

Video: (part 1) London #BNP a
frame trailer with patriotic
sound system on the road in
and around our capital city
"say no to immigration" #Brexit
#Immigration #ImmigrationBan
#London #England #BrexitBorder
#Brexiteer #Brexiteers
#BrexitGoodNews #BrexitChaos

Figure 20: Example of prediction of Collective from
experiment described in 5.1. Though the model finds a
mention of a Collective that seems to be accurate, there
is no explicit Property associated so it shoudn’t have
been labeled

At this time, w-organized
crime/returning jihadists
it’s a matter of national
security. #Italy #Salvini must
ignore international social
engineers/cultural marxists
#V4 Itali Kurz others must
challenge empty threats from
un-eu migration pimps. What can
they really do about it?

Figure 21: Model predicting only on tweets that have
a Collective, besides correctly finding ’immigration’,
also labeled ’jihadists’ and ’marxists’, which are being
used as properties for either the target collective or other
groups (like ’international social engineers’)

premises for training instead of just one no only
increases the amount of examples but also lever-
ages the distribution among classes, which leds to a
significant boost in performance, as shown in table
3. Example 35 shows a Justification predicted as
Policy by a model trained using only justifications
and then correctly predicted as Value by a model
trained using both Justifications and Conclusions.

#Prayers for this mother
#NoIllegals #SendThemAllBack
w/ their families #NoDACA
#BuildTheWallNow

Figure 19: Example of Non-Argumentative tweet in-
correctly labeled as argumentative by automatic model.
The tweet refers to a context that is missing on the text
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Chain migration imported
120K foreign nationals from
terrorist-funding countries
since 2005 - breitbart @user
@user #EndChainMigration
#EndDACA #NoAmesty
#EndBirthrightCitizenshipForIllegalAliens
#BuildTheWall #KeepAmericaSafe

Figure 22: Example of prediction of Collective from
experiment described in 5.1. The prediction seems to
be accurate, but it included the word "chain" associated
with migration. Differences like this arise whenever
there are frequent phrases like "Chain Migration" or
"Illegal immigrants"

@user the disgrace is
the illegal parent who
brought their kids on their cirme
spree to illegally invade the U.S.
so taxpayers pay for their kids
education wic and medicaid.
We don’t owe illegals our tax
dollars #SendThemBack #WalkAway
#Trump #MAGA #RedNationRising

Figure 24: Example of prediction of Property from
experiment described in ??. Real Property is undelined
while prediction is bolded. The model predicted just a
portion of the real Property and left most of it unlabeled

Please dont call it ""rescue""
- it’s human trafficking
#PortsClosed #SendThemBack
#BenefitSeekers

Figure 23: Example of prediction of Property. Predicted
Property is bolded. There was no real property labeled
in this example.

Americans agree with
@user on immigration.
We can not afford to give welfare
to illegals while U.S. citizens
are homeless #VoteDemsOut
#FamiliesBelongTogheterMarch

Figure 25: Example of prediction of Conclusion. Real
conclusion is underlined while predicted is bolded.
Here, the two parts of the argument were correctly iden-
tified but predictor chose the conclusion incorrectly

Americans agree with
@user on immigration. We can
not afford to give welfare to
illegals while U.S. citizens
are homeless #VoteDemsOut
#FamiliesBelongTogheterMarch

Figure 26: Example of prediction of Justification. Real
justification is underlined, while predicted is bolded.
Again, the two parts of the argument were correctly
identified but predictor chose the incorrect half

Pressure on Spain’s maritime
border: Boatloads of #Illegal
#Migrants Storm Spanish
Tourist Beaches & Scatter
#StopTheInvasion #Unregistered
#UnVetted

Figure 27: Example of pivot predicted by model trained
as described in section 5.1. Justification is in blue, while
conclusion is in red. Although the words selected estab-
lish a relation between themselves, they are both part of
the justification, so they are not really a pivot between
both premises

Rich African Countries don’t take
in African Migrants. Rich muslim
countries don’t take in muslim
migrants. Rich latin american
countries don’t take it latin
migrants. But white countries
are supposed to acept them??

Figure 28: The conclusion (bolded) was predicted as
Fact though it is a Policy

Angry that UN @user does its job
and checks Lebanon isn’t coercing
Syrian refugees into returning
home, Lebanon will stop giving
residence permits to the agencys
international staff

Figure 29: This conclusion was predicted as Policy
though it is a Fact

@user Amen: See ’Canada in
Decay’ by Ricardo Duchesne for
the similar reality of Canada.
We are not nations of immigrants.

Figure 30: The justification (bolded) was predicted as
Fact though it is a Policy
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Good news. We are against
illegal immigrants

Figure 31: The justification (bolded) was predicted as
Fact though it is a Value

@user Immigration in a picture
:link: Some basic truths:
Access to White people is not
a human right.

Figure 32: Example of prediction of Justification and
Conclusion. Predicted Conclusion is shown in blue
while the real one is bolded. Predicted Justification is
shown in red while the real one is underlined. Models
were able to correctly divide the tweet in two premises
but failed to correctly recognize Justification and Con-
clusion

@user Immigration in a picture
:link: Some basic truths:
Access to White people is not
a human right.

Figure 33: Example of prediction of Conclusion. Pre-
dicted Conclusion is underlined while the real one is
bolded.

@user Immigration
in a picture :link:
Some basic truths: Access to
White people is not a human right.

Figure 34: Example of prediction of Justification. Pre-
dicted Conclusion is underlined while the real one is
bolded.

I do not want those vile thugs in
our country

Figure 35: Justification labeled as Value by human anno-
tator. This premise was predicted as Policy by a model
trained following the settings described in 5.1 and was
correctly identified as Value by a model trained as de-
scribed in 5.3

H Argument annotated social media
corpora

There exist several datasets with argument annota-
tions, but only a few of them annotate arguments
on Twitter. DART relies on Argumentation The-
ory (Rahwan and Simari, 2009) finding relation-
ships between tweets as a single unit, considered
to be arguments within an Abstract Argumentation
Framework (Dung, 1995). Tweets are considered
as argumentative if they express opinion or claims
showing stance about a particular topic, and then
they are defined according to how they interact with
other tweet-arguments. The work of Dusmanu et al.
(2017) extends the #Grexit subset of DART (987
tweets) with another 900 labeled for argument de-
tection and adds labels for factual arguments recog-
nition and source identification. However, abstract
frameworks do not consider the inner structure of
arguments and are not useful in providing an argu-
mentative analysis in the context of a single tweet.

Schaefer and Stede (2020) labeled 300 replies to
context tweets about Climate Change in German
language with claims and evidence to support the
claims. This was later expanded to 1200 tweets
and the annotation scheme was refined to focus on
particular argument properties (Schaefer and Stede,
2022). This is the only work, to our knowledge,
where spans are annotated within a tweet, but it
is not a hate dataset and does not have domain
specific information.

Finally, Bhatti et al. (2021) created a dataset
of 24100 tweets searching two hashtags support-
ing and attacking Planned Parenthood. The whole
tweet is assigned a single label (i.e., support or not
the claim) and there is no argumentative structure
segmentation within, so it is impossible to differen-
tiate aspects of argumentative information.
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