@inproceedings{luo-wang-2023-deepblueai,
title = "{D}eep{B}lue{AI}@{D}ravidian{L}ang{T}ech-{RANLP} 2023",
author = "Luo, Zhipeng and
Wang, Jiahui",
editor = "Chakravarthi, Bharathi R. and
Priyadharshini, Ruba and
M, Anand Kumar and
Thavareesan, Sajeetha and
Sherly, Elizabeth",
booktitle = "Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.dravidianlangtech-1.23",
pages = "171--175",
abstract = "This paper presents a study on the language understanding of the Dravidian languages. Three specific tasks related to text classification are focused on in this study, including abusive comment detection, sentiment analysis and fake news detection. The paper provides a detailed description of the tasks, including dataset information and task definitions, as well as the model architectures and training details used to tackle them. Finally, the competition results are presented, demonstrating the effectiveness of the proposed approach for handling these challenging NLP tasks in the context of the Dravidian languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-wang-2023-deepblueai">
<titleInfo>
<title>DeepBlueAI@DravidianLangTech-RANLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhipeng</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruba</namePart>
<namePart type="family">Priyadharshini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">M</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sajeetha</namePart>
<namePart type="family">Thavareesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Sherly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a study on the language understanding of the Dravidian languages. Three specific tasks related to text classification are focused on in this study, including abusive comment detection, sentiment analysis and fake news detection. The paper provides a detailed description of the tasks, including dataset information and task definitions, as well as the model architectures and training details used to tackle them. Finally, the competition results are presented, demonstrating the effectiveness of the proposed approach for handling these challenging NLP tasks in the context of the Dravidian languages.</abstract>
<identifier type="citekey">luo-wang-2023-deepblueai</identifier>
<location>
<url>https://aclanthology.org/2023.dravidianlangtech-1.23</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>171</start>
<end>175</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DeepBlueAI@DravidianLangTech-RANLP 2023
%A Luo, Zhipeng
%A Wang, Jiahui
%Y Chakravarthi, Bharathi R.
%Y Priyadharshini, Ruba
%Y M, Anand Kumar
%Y Thavareesan, Sajeetha
%Y Sherly, Elizabeth
%S Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F luo-wang-2023-deepblueai
%X This paper presents a study on the language understanding of the Dravidian languages. Three specific tasks related to text classification are focused on in this study, including abusive comment detection, sentiment analysis and fake news detection. The paper provides a detailed description of the tasks, including dataset information and task definitions, as well as the model architectures and training details used to tackle them. Finally, the competition results are presented, demonstrating the effectiveness of the proposed approach for handling these challenging NLP tasks in the context of the Dravidian languages.
%U https://aclanthology.org/2023.dravidianlangtech-1.23
%P 171-175
Markdown (Informal)
[DeepBlueAI@DravidianLangTech-RANLP 2023](https://aclanthology.org/2023.dravidianlangtech-1.23) (Luo & Wang, DravidianLangTech-WS 2023)
ACL
- Zhipeng Luo and Jiahui Wang. 2023. DeepBlueAI@DravidianLangTech-RANLP 2023. In Proceedings of the Third Workshop on Speech and Language Technologies for Dravidian Languages, pages 171–175, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.