
Third Workshop on Speech and Language Technologies for Dravidian Languages,
pages 33–42, Varna, Bulgaria, Sep 7, 2023.

https://doi.org/10.26615/978-954-452-085-4_005

33

Improving Reinforcement Learning Agent Training using
Text-based Guidance: A Study using Commands in Dravidian

Languages

Nikhil Chowdary Paleti, Sai Aravind Vadlapudi, Sai Aashish Menta,
Sai Akshay Menta, Vishnu Vardhan Gorantla V N S L,
Janakiram Chandu, Soman K P, and Sachin Kumar S

Amrita School of Artificial Intelligence, Coimbatore,
Amrita Vishwa Vidyapeetham, India.

s_sachinkumar@cb.amrita.edu, nikhil.paleti@outlook.com

Abstract
Reinforcement learning (RL) agents have
achieved remarkable success in various do-
mains, such as game-playing and protein
structure prediction. However, most RL
agents rely on exploration to find optimal
solutions without explicit guidance. This
paper proposes a methodology for train-
ing RL agents using text-based instruc-
tions in Dravidian Languages, including
Telugu, Tamil, and Malayalam along with
using the English language. The agents are
trained in a modified Lunar Lander envi-
ronment, where they must follow specific
paths to successfully land the lander. The
methodology involves collecting a dataset
of human demonstrations and textual in-
structions, encoding the instructions into
numerical representations using text-based
embeddings, and training RL agents us-
ing state-of-the-art algorithms. The results
demonstrate that the trained Soft Actor-
Critic (SAC) agent can effectively under-
stand and generalize instructions in dif-
ferent languages, outperforming other RL
algorithms such as Proximal Policy Opti-
mization (PPO) and Deep Deterministic
Policy Gradient (DDPG).

1 Introduction
Reinforcement learning (RL) has developed
by leaps and bounds in the past few years,
there have been agents capable of beating
world champions in games like go Silver et al.
(2016), there have been agents capable of pre-
dicting protein structures Senior et al. (2020)
and more recently there has also been an RL
agent capable of optimizing computer code
Mankowitz et al. (2023). However, most of
the RL agents optimally find the best solution
by themselves through exploration of the envi-
ronment and there lacks a technique through

which these agents can be guided so that we
can control the path or trajectory that the
agent takes while reaching the optimal solu-
tion.

There has been little work done to guide
or help the RL agents get to the goal state
through text-based instructions, especially in
the Dravidian languages. The current litera-
ture Kaplan et al. (2017) and (Li et al., 2022)
provide a basis for this approach where they
have constructed a Bimodal embedding net-
work to guide the RL agent on text-based
instructions. However, existing literature
doesn’t compare various Reinforcement learn-
ing algorithms and they also don’t consider the
possibility of training the agents to understand
the text instructions in multiple languages.

This paper aims to address this literature
gap by proposing a methodology for train-
ing reinforcement learning agents in the lunar
lander game using text-based embeddings in
four languages: English, Telugu, Tamil, and
Malayalam (K et al., 2021). By encoding in-
structions into meaningful numerical represen-
tations (Nagasai et al., 2021), the agents can
effectively understand and respond to natural
language instructions, leading to more immer-
sive and intuitive user-agent interactions.

The proposed methodology for training RL
agents with natural language guidance in the
lunar lander game involves: 1) collecting a
dataset of human demonstrations and textual
instructions in multiple languages, 2) encoding
the instructions into numerical representations
using text-based embeddings, 3) employing RL
algorithms with the embeddings as input to
train the RL agent, optimizing for successful
landings, 4) evaluating the effectiveness of the
methodology for unseen paths. we show that



34

the trained Soft Actor-Critic agent is capable
of generalizing well to act according to the in-
struction given in any language.

The organization of the remainder of the pa-
per is as follows: Section 2 details the related
works. Section 3 provides a detailed descrip-
tion of the environment used for training the
RL agents. Section 4 presents the proposed
methodology and the results are discussed in
section 5. Finally, we conclude in Section 6
while providing future directions for research.

2 Related Work

Existing work that combines reinforcement
learning and natural language can be catego-
rized into two tasks. In the first task, RL
agents are trained in environments where the
environment is rendered using only text de-
scriptions, unlike the standard 2D or 3D en-
vironments that we traditionally see Jansen
(2022). The second task focuses on help-
ing or guiding Reinforcement learning agents
through natural language, which the present
work focuses on.

In Kaplan et al. (2017), a methodology was
presented to use natural language to train a
reinforcement learning agent to beat “MON-
TEZUMAS REVENGE”, a game that stan-
dard RL agents like A3C fail to solve. To pre-
pare a dataset, games were played manually by
humans, and snapshots of the game state were
taken. The snapshots along with text instruc-
tions were used to train CNN and RNN net-
works using cosine similarity loss to produce
text and image embeddings of the game state.
These embeddings were given to the RL agent
as observations and a new reward function was
designed which incorporated a similarity mea-
sure reward based on the text and image em-
beddings. The agent trained obtained a score
of 3500 which outperformed the best model at
that time by a score of 1000.

The authors in Li et al. (2022) used a similar
methodology to (Kaplan et al., 2017) but they
replaced the RNN-based network for text em-
bedding with a pre-trained Bert model. This
model supports giving instructions using syn-
onyms of original instructions and the model
would still be able to understand the instruc-
tions. Through their experiments, the authors
say that the agent is able to get to the goal

state 24 times out of 100 test tasks with a bert-
distance model and 17 times with a bert-cosine
model.

In recent times, work has focused on us-
ing Large Language Models (LLMs) as RL
agents. In Wang et al. (2023), the authors
have presented Voyager which uses LLM as
an RL agent. The LLM harnesses the world
language learned to generate consistent action
plans or executable policies. The methodol-
ogy presented in Voyager relies on using a
Black-Box LLM (GPT-4) and skips any need
to train or finetune the model. The method-
ology is comprised of three components: An
automatic curriculum which is based on the
goal of "discovering as many diverse things as
possible". A skill library to store and retrieve
code generated by the LLM based on embed-
dings of the generated function descriptions.
An iterative prompting mechanism that gen-
erates code for various tasks. Finally, there
is also a self-evaluation component where the
LLM acts as a critic to evaluate the generated
function. Though the voyager agent performs
well when compared with other similar agents,
it, however, has its own downsides like signif-
icant cost incurred through GPT-4 API, Hal-
lucinations, and inaccuracies in generating a
new skill. Most of the drawbacks can be im-
proved by employing a multimodal LLM that
can benefit from both text and visual data
or finetuning an LLM with knowledge about
various aspects of the environment to reduce
inaccuracies and hallucinations. We still re-
quire advancements in research in the domain
to tackle other problems like the high infer-
ence time of LLMs and computational costs of
finetuning.

Existing literature did not explore the possi-
bility of using multiple languages to guide Re-
inforcement learning agents, and there has not
been a comparative study on various reinforce-
ment learning algorithms for natural language-
guided learning. The present work aims to
tackle these research gaps by presenting a
methodology to train Reinforcement learning
agents through text guidance in various lan-
guages including Dravidian languages and also
perform a comparative study on the employa-
bility of various state-of-the-art Reinforcement
learning algorithms for text guidance.



35

Figure 1: Modified Lunar Lander Environment

3 Environment

The environment used in this study is a modi-
fied version of the Lunar Lander environment
which is a part of the Box2D environments
from the open-source Python library “Gymna-
sium”. The environment is a typical rocket
trajectory optimization problem and the goal
of the environment is to land the lander on the
landing pad. The environment supports both
continuous state configuration and discrete
state configuration. The continuous state ver-
sion of the original environment is considered
in this study which contains eight observations:
the coordinates of the lander in x & y, its lin-
ear velocities in x & y, its angle, its angular
velocity, two booleans that represent whether
each leg is in contact with the ground or not
and the action space consists of two continuous
actions: The first coordinate of an action de-
termines the throttle of the main engine, while
the second coordinate specifies the throttle of
the lateral boosters.

The original environment is partitioned into
9 regions as shown in Figure 1 to construct the
modified environment. The new goal of the en-
vironment is to trace the lander along the path
that is given (An example path can be: Top
center, Top right, Middle Right, and Bottom
center) and finally land on the landing pad.
A random path from the preconfigured list of
paths is automatically assigned by the envi-
ronment every time the environment is reset.
The path given to the environment can contain
locations of the environment in the following
languages: English, Telugu, Tamil, and Malay-
alam. Refer to Appendix A for a detailed list
of the paths that can be generated.

A newly shaped reward function is defined
through which the lander receives a reward of

Figure 2: High-level overview of methodology

0 if it moves closer to the target location along
the path, -1 if it moves away or deviates from
the path, a negative reward based on the an-
gle tilted if its more than 45 degrees, 100 for
each leg in contact with the landing pad, and
-20 if it tries to land without going along the
path. This will effectively punish the agent
if it is not following the trajectory given and
will reward the agent if it follows along the
trajectory and successfully lands. With the
mentioned changes, the modified environment
still has 8 observations and 2 actions but there
is an added feature to generate to path and a
new shaped reward function that we employ.

4 Methodology
A high-level overview of the methodology is
presented in Figure 2. The 8 sensor observa-
tions from the lander along with image em-
bedding of the current state and text embed-
ding of the current target location will go in
as input to the Reinforcement learning Agent
which gives an action to be taken. The text in-
struction to the RNN can be in the following
languages: English, Telugu, Tamil, and Malay-
alam. The training of these networks can be
split into two stages, in the first stage the em-
bedding networks CNN and RNN are trained
together (Kumar et al., 2015) using a cosine
similarity loss, and then in the second stage,
the RL agent is trained.



36

Figure 3: Left: Architecture of CNN network
Right: Architecture of RNN network

4.1 Bimodal Embedding networks

To capture the current state of the environ-
ment a CNN-based network is used and to
capture the text instruction an RNN-based
network is used. Both of these networks are
trained together based on cosine embedding
loss. Each of the networks outputs an embed-
ding of length 10. The architecture of the two
networks is presented in Figure 3.

4.1.1 Dataset
The dataset used to train the embedding
network consists of image and text pairs.

Figure 4: True class of embeddings dataset

Figure 5: False class of embeddings dataset

The game was played manually and at each
timestep, a snapshot of the game state was
saved. The snapshots were then manually as-
signed a text description based on the 9 regions
in the modified environment. The dataset con-
sists of two classes: The true class (y = 1) is
shown in Figure 4 and represents image, text
pairs where text is an accurate description of
the image. The false class (y = -1 ) shown in
Figure 5 represents the image, text pairs where
text is a false description of the image.

There are 876 image and text pairs for a
language and in total, across four languages
there are a total of 3,504 pairs. The images are
200px in height, 300px in width and have RGB
channels. The text description consists of two
words representing the position of the rover in
the image according to the regions presented
in Figure 1.

4.2 Reinforcement Learning

The Reinforcement Learning (RL) agent is re-
sponsible for determining the best action pos-
sible given the current environment state. For
Guided reinforcement learning, along with the
sensor information, the two embedding vec-
tors are also taken in by the algorithm as in-
put. There is a wide spectrum of algorithms
(Sreedevi and Rao, 2019) that have the capac-
ity to learn in continuous observation space,
among them Deep Deterministic Policy Gradi-
ents (DDPG), Proximal Policy Optimization
(PPO) and Soft Actor-Critic (SAC) have been
considered in this study. The implementations
of the algorithms are taken from the open
source python library “StableBaselines3” pre-
sented by Raffin et al. (2021).



37

4.2.1 PPO
The authors in Schulman et al. (2017), have
presented a new family of policy gradient
methods that optimize a “surrogate” by per-
forming a stochastic gradient ascent. In con-
trast to the standard policy gradient when an
update happens per data sample, a novel ob-
jective function is proposed that can perform
minibatch updates. It has its roots in TRPO
but is much simpler to implement. The au-
thors show that this new algorithm strikes a
balance between sample complexity, simplicity,
and wall time.

4.2.2 DDPG
The authors, Lillicrap et al. (2019), have
adapted the technique based on Deep Q-
Learning technique for the continuous action
space domain. DDPG is a model-free algo-
rithm that can solve more than 20 simulated
physics tasks using the same neural network
architecture and hyperparameters. To solve
the exploration problem in continuous action
spaces, the authors have used noise generated
using the Ornstein-Uhlenbeck process. The
same was adapted for our environment.

4.2.3 SAC
Standard model-free RL algorithms suffer
from high sample complexity and brittle con-
vergence properties which requires careful hy-
perparameter tuning. In Haarnoja et al.
(2018), the authors propose an off-policy actor-
critic algorithm that maximizes the expected
reward while also maximizing entropy. It tries
to achieve the goal while also being as random
as possible. This feature of the SAC algorithm
enables the agent to find out optimal solutions
even when the environment is changing or even
when there is an obstacle in the standard op-
timal path, the agent will learn to maneuver
around it.

4.3 Training
The embedding networks were trained on a
standard Google Colab instance with a T4
GPU. The networks were trained using a batch
size of 64 for 600 epochs using Adam optimizer
with a learning rate 1e-4. The training loss is
presented in Figure 6.

The Reinforcement learning agents were
put to training on a lambda labs instance

Figure 6: Embeddings networks loss

Algorithm Telugu Multi
Language Language

DDPG 30 Million 30 Million
PPO 40 Million 40 Million
SAC 30 Million 50 Million

Table 1: Training steps for RL algorithms

equipped with an Nvidia A10 GPU, which has
a compute capability of 8.6, 30vCPUs, 200GiB
RAM, and 1.4 TiB SSD. Default Stable base-
lines 3 parameters were used to train the mod-
els as they have been already tuned to work
with diverse sets of environments.

Two experiments were run using RL algo-
rithms, In the first experiment the agent re-
ceived instructions only in the Telugu lan-
guage, and in the second experiment, the agent
received instructions in all 4 languages (En-
glish, Telugu, Tamil, and Malayalam). Table
1 describes various training step lengths that
were used to train.

The training results of the Multi-Language
SAC agent which was trained for 50 Million
steps are presented in Figure 7. The agent is
able to achieve a score close to 200 with an
episode length close to 500 after training.

5 Results and discussion
Figure 8 shows a visualization of the input text
embeddings plotted using UMAP McInnes
et al. (2020). The plot depicts similar in-
structions being plotted together in the low
dimensional space indicating that our embed-
ding network has learned to build connections
among the vocabulary used for training it. Ta-
ble 2 shows the top 5 cosine similarity val-
ues computed between the embedding of ఎగువ



38

Figure 7: Episode length and reward for Multi Lan-
guage SAC

Figure 8: UMAP visualization of input instruc-
tions

Instruction Cosine Similarity to
ఎగువ ఎడమ (top left)

మధయ్ ఎడమ 0.98
(middle left)
ఎగువ కుడి 0.06
(top right)
దిగువ ఎడమ 0.05
(bottom left)
ఎగువ కేందం 0.02
(top center)
మధయ్ కుడి -0.08
(middle right)

Table 2: Cosine similarity of text embeddings

ఎడమ which means "top left" to other Telugu
text instructions. The similarity values further
strengthen the claim about the model under-
standing the underlying patterns in the input
text.

As discussed before, 9 unique paths were
used for training and a total of 36 paths are
made from the 9 paths by translating them
to various Dravidian languages. Appendix A
provides an overview of the paths used in train-
ing. For the first experiment, only 9 paths in
the Telugu language were considered and 3 RL
agents were trained. The SAC agent obtained
an average reward of 192.94, the PPO agent
obtained an average reward of -184.53 and the
DDPG agent obtained an average reward of
-344.46.

In order to test the ability of RL agents
to generalize to unseen paths, a few experi-
ments are conducted as presented in Table 3.
The paths included transitions that the agent
never got to see during training. The unseen
paths included transitions like going from mid-
dle center to middle right which tests the agent
on its capability to fly the lander in the oppo-
site direction and also transitions like going
from middle left to top left which tests the
agent’s capability to fly up in the opposite di-
rection. It should be noted that the agent was
never instructed to fly in the opposite direction
during training.

The results in Table 3 demonstrate the ca-
pability of SAC to generalize well to unseen
instructions. Across all the experiments it has
maintained a positive reward while the PPO
and DDPG agents struggled to perform well.



39

SAC PPO DDPG
S.No Path Average Average Average

Reward Reward Reward
1 ఎగువ కేందం, మధయ్ కుడి, ఎగువ కుడి,

మధయ్ కేందం, దిగువ కేందం 181 -418.5 -180.5
(top center, middle right, top right
middle center, bottom center)

2 ఎగువ కేందం, మధయ్ కుడి,
మధయ్ కేందం, దిగువ కేందం 187 -95.4 -453.7
(top center, middle right,
middle center, bottom center)

3 ఎగువ కేందం, ఎగువ కుడి, ఎగువ కేందం,
ఎగువ ఎడమ, మధయ్ కేందం, దిగువ కేందం 182 -299.7 -668.2
(top center, top right, top center,
top left, middle center, bottom center)

4 ఎగువ కేందం, ఎగువ ఎడమ, ఎగువ కేందం,
ఎగువ కుడి, మధయ్ కుడి, మధయ్ కేందం, దిగువ కేందం 185 -265.7 -441.9
(top center, top left, top center, top right,
middle right, middle center, bottom center)

5 ఎగువ కేందం, మధయ్ కుడి, మధయ్ కేందం,
మధయ్ ఎడమ, దిగువ కేందం 181 -87.9 -558.2

(top center, middle right, middle center,
middle left, bottom center)

Table 3: Rewards of the unseen paths tested on RL agents trained on Telugu language instructions.

The second set of experiments consisted of
training the RL agents using instructions from
all 4 languages: English, Telugu, Tamil, and
Malayalam. The total number of instructions
considered is 36 (9 from each language). The
trained SAC agent obtained an average reward
of 187.19, the PPO agent obtained -262.8, and
the DDPG agent obtained a -419.37 reward.
We can observe that the performance of the
Agent trained on multi-language instructions
is lower compared with the agent trained on
a single language. Though the SAC agent re-
ceived 20M additional training steps for multi-
ple languages, it obtained less average reward
than a single language agent. PPO and DDPG
showed similar performance to single language
agents, failing to converge.

For the agents trained on instructions from
multiple languages first a test was performed
to evaluate the agents on using combinations
of languages. Presented in Table 4, for multi-
language combination paths, the SAC agent
obtained an average score of 186.9 while PPO
and DDPG obtained -312 and -326.8 respec-
tively. These results indicate that the SAC

agent is not confusing among languages and is
able to reach the goal state successfully even
if the input consisted of instructions from mul-
tiple languages.

The final set of tests as presented in Table 5
consisted of evaluating the RL agent train on
multi-language instructions on unseen paths.
These paths again consisted of transitions that
were never seen during training and this time
the paths included instructions from multiple
languages. The results again show that SAC
is able to generalize well to the unseen paths
compared to PPO and DDPG. These tests can
be viewed by accessing https://www.youtube.
com/watch?v=oxADf4oV74w

6 Conclusion and Future Works

We have successfully demonstrated a method-
ology to guide the reinforcement learning
agents through text instructions in multiple
Dravidian languages. PPO, DDPG, and SAC
algorithms were put to use for the task and
results showed that SAC generalized well even
for unseen paths. When unseen instructions
from a mix of Dravidian Languages were given

https://www.youtube.com/watch?v=oxADf4oV74w
https://www.youtube.com/watch?v=oxADf4oV74w


40

SAC PPO DDPG
S.No Path Average Average Average

Reward Reward Reward
1 top center, మధయ్ కేందం,

கீழ்ைமயம் 190.6 -185.6 -453.1
(top center, middle center, bottom center)

2 മുകളിൽ മധ്യം, நடுைமயம்,
దిగువ కేందం 195.1 -263.5 -159.1
(top center, middle center, bottom center)

3 ேமல்ைமயம், മുകളിൽ വലത്
middle right, దిగువ కేందం 181.5 -423.6 -218.8
(top center, top right,
middle right, bottom center)

4 ఎగువ కేందం, top left
நடுஇடது, താെഴ മധ്യം 180.7 -375.4 -476.4
(top center, top left,
middle left, bottom center)

Table 4: Evaluating Agents on paths constructed from multiple languages

SAC PPO DDPG
S.No Path Average Average Average

Reward Reward Reward
top center, మధయ్ ఎడమ, ேமல் இடது,
മുകളിൽ മധ്യം, top right,

1 നടുക്ക് മധ്യം, താെഴ മധ്യം 180 -710.4 -230.2
(top center, middle left, top left,
top center, top right,
middle center, bottom center)
മുകളിൽ മധ്യം, நடுஇடது, ఎగువ ఎడమ

2 top center, நடுைமயம், దిగువ కేందం 165 -617.4 -252.9
(top center, middle left, top left,
top center, middle center, bottom center)
ఎగువ కేందం, middle left, ேமல் இடது,

3 മുകളിൽ മധ്യം, நடுைமயம், దిగువ కేందం 148 -564.5 -198.1
(top center, middle left, top left,
top center, middle center, bottom center)
ேமல்ைமயம், ఎగువ ఎడమ,

4 മുകളിൽ മധ്യം, top right, നടുക്ക് വലത് -69 -366.7 -382.3
మధయ్ కేందం, bottom center
(top center, top left, top center,
top right, middle right,
middle center, bottom center)
ఎగువ కేందం, നടുക്ക് വലത,്

5 நடுைமயம், நடுஇடது, bottom center 175.3 -188.6 -278.3
(top center, middle right,
middle center, middle left, bottom center)

Table 5: Rewards of the unseen paths tested on RL agents trained on Multi-language instructions.



41

to the SAC agent, it obtained an average re-
ward of 119.8 while an SAC agent trained on
Telugu language instructions alone obtained
an average reward of 183.2 for unseen Telugu
instructions. The correctness of the embed-
dings was also verified through the UMAP plot
and cosine similarity.

The work presented in this paper can be
extended by using various architectures for
embedding networks and making them more
efficient. Another direction that can be ex-
plored is the use of MultiModal Multilanguage
Large Language Models which are capable of
understanding images and text in multiple
languages, providing access to good computa-
tional infrastructure one can try training these
LLMs to understand Dravidian languages and
also act as Reinforcement Learning agents.

References
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel,

and Sergey Levine. 2018. Soft actor-critic: Off-
policy maximum entropy deep reinforcement
learning with a stochastic actor.

Peter Jansen. 2022. A systematic survey of text
worlds as embodied natural language environ-
ments. In Proceedings of the 3rd Wordplay:
When Language Meets Games Workshop (Word-
play 2022), pages 1–15, Seattle, United States.
Association for Computational Linguistics.

Sreelakshmi K, Premjith B, and Soman Kp. 2021.
Amrita_CEN_NLP@DravidianLangTech-
EACL2021: Deep learning-based offensive
language identification in Malayalam, Tamil
and Kannada. In Proceedings of the First
Workshop on Speech and Language Technologies
for Dravidian Languages, pages 249–254, Kyiv.
Association for Computational Linguistics.

Russell Kaplan, Christopher Sauer, and Alexander
Sosa. 2017. Beating atari with natural language
guided reinforcement learning.

S. Sachin Kumar, B. Premjith, M. Anand Ku-
mar, and K. P. Soman. 2015. Amrita_cen-
nlp@sail2015: Sentiment analysis in indian lan-
guage using regularized least square approach
with randomized feature learning. In Mining
Intelligence and Knowledge Exploration, pages
671–683, Cham. Springer International Publish-
ing.

Xin Li, Yu Zhang, Junren Luo, and Yifeng Liu.
2022. Pre-trained bert for natural language
guided reinforcement learning in atari game. In
2022 34th Chinese Control and Decision Confer-
ence (CCDC), pages 5119–5124.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. 2019. Contin-
uous control with deep reinforcement learning.

Daniel J Mankowitz, Andrea Michi, Anton Zher-
nov, Marco Gelmi, Marco Selvi, Cosmin Padu-
raru, Edouard Leurent, Shariq Iqbal, Jean-
Baptiste Lespiau, Alex Ahern, et al. 2023.
Faster sorting algorithms discovered using deep
reinforcement learning. Nature, 618(7964):257–
263.

Leland McInnes, John Healy, and James Melville.
2020. Umap: Uniform manifold approximation
and projection for dimension reduction.

L. S. Nagasai, V. J. Sriprasath, V. V. SajithVariyar,
V. Sowmya, K. Aniketh, T. V. Sarath, and K. P.
Soman. 2021. Electric vehicle steering design
and automated control using cnn and reinforce-
ment learning. In Soft Computing and Signal
Processing, pages 513–523, Singapore. Springer
Singapore.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi
Kanervisto, Maximilian Ernestus, and Noah
Dormann. 2021. Stable-baselines3: Reliable re-
inforcement learning implementations. Journal
of Machine Learning Research, 22(268):1–8.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms.

Andrew W Senior, Richard Evans, John Jumper,
James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žídek, Alexander WR
Nelson, Alex Bridgland, et al. 2020. Improved
protein structure prediction using potentials
from deep learning. Nature, 577(7792):706–710.

David Silver, Aja Huang, Chris J Maddison,
Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. 2016. Mastering the game of go with
deep neural networks and tree search. nature,
529(7587):484–489.

A. G. Sreedevi and Thipparaju Rama Rao. 2019.
Reinforcement learning algorithm for 5g indoor
devicetodevice communications. Transactions
on Emerging Telecommunications Technologies,
30.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-
ended embodied agent with large language mod-
els.

http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://doi.org/10.18653/v1/2022.wordplay-1.1
https://aclanthology.org/2021.dravidianlangtech-1.34
https://aclanthology.org/2021.dravidianlangtech-1.34
https://aclanthology.org/2021.dravidianlangtech-1.34
https://aclanthology.org/2021.dravidianlangtech-1.34
http://arxiv.org/abs/1704.05539
http://arxiv.org/abs/1704.05539
https://doi.org/10.1109/CCDC55256.2022.10033434
https://doi.org/10.1109/CCDC55256.2022.10033434
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://api.semanticscholar.org/CorpusID:196174783
https://api.semanticscholar.org/CorpusID:196174783
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.16291


42

Appendix

A Preconfigured Paths

The modified environment has a set of 36 pre-
configured paths from which one is randomly
assigned every time the environment is reset.
There are a total of 9 unique paths to go from
the start location to the landing pad which is
listed in Table 6.

S.no English Instruction
1 top center, middle center,

bottom center
2 top center, top right, middle right,

middle center, bottom center
3 top center, top right, middle center,

bottom center
4 top center, top left, middle left,

middle center, bottom center
5 top center, middle left, bottom

center
6 top center, middle right, bottom

center
7 top center, top left, middle left,

bottom center
8 top center, top left, middle center

bottom center
9 top center, top right, middle right

bottom center

Table 6: Instructions used for training

All the other paths are translations of these
9 paths in Dravidian languages: Telugu, Tamil,
and Malayalam. The help of google translate
has been taken to get the translations in vari-
ous Dravidian languages. Table 7 lists out the
translations of locations in the languages con-
sidered.

S.no English Translation
1 top center Telugu: ఎగువ కేందం

Tamil: ேமல்ைமயம்
Malayalam: മുകളിൽ മധ്യം

2 top left Telugu: ఎగువ ఎడమ
Tamil: ேமல் இடது
Malayalam: മുകളിൽ ഇടത്

3 top right Telugu: ఎగువ కుడి
Tamil: ேமல்வலது
Malayalam: മുകളിൽ വലത്

4 middle center Telugu: మధయ్ కేందం
Tamil: நடுைமயம்
Malayalam: നടുക്ക് മധ്യം

5 middle left Telugu: మధయ్ ఎడమ
Tamil: நடுஇடது
Malayalam: നടുക്ക് ഇടത്

6 middle right Telugu: మధయ్ కుడి
Tamil: நடுவலது
Malayalam: നടുക്ക് വലത്

7 bottom center Telugu: దిగువ కేందం
Tamil: கீழ்ைமயம்
Malayalam: താെഴ മധ്യം

8 bottom left Telugu: దిగువ ఎడమ
Tamil: கீழ் இடது
Malayalam: താെഴ ഇടത്

9 bottom right Telugu: దిగువ కుడి
Tamil: கீழ்வலது
Malayalam: താെഴ വലത്

Table 7: Translation of locations


