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Abstract
With the rise of the metaverse, immersive mul-
timodal conversation has attracted more and
more researchers’ attention. Multimodal con-
texts will become more important for human-
computer interaction in the metaverse, espe-
cially in shopping domain. Unlike traditional
conversation tasks, immersive multimodal con-
versation has challenges such as multimodal
ambiguous candidate identification and mul-
timodal coreference resolution, which makes
it more difficult to dialog state tracking and
response generation, as described in SIMMC
2.1 challenge, a part of DSTC11. In partic-
ular, as the number of objects in the scene
increases, the difficulty will increase dramati-
cally. We proposed PMTLED (Prompt-based
Multi-Task Learning Encoder-Decoder), in
which different subtasks use different prompts
to make the model tend to focus on the cur-
rent subtask. We achieve the winner in am-
biguous candidates indentification and runner-
up in multimodal coreference resolution (MM-
Coref), multimodal dialog state tracking (MM-
DST) and assistant response generation. Our
code and model are made publicly avail-
able at https://github.com/scutcyr/

dstc11-simmc2.1-scut-bds-lab.

1 Introduction

With the rise of the metaverse(Mystakidis, 2022)
and virtual reality (VR), immersive multimodal
conversation has attracted more and more re-
searchers’ attention. Unlike traditional conversa-
tion tasks, immersive multimodal conversation has
challenges such as multimodal ambiguous candi-
date identification and multimodal coreference res-
olution, which makes it difficult to dialog state

∗Work done during an internship at iFLYTEK Research.
†Corresponding author. Email: yali8@iflytek.com

Figure 1: Overview of SIMMC2.1 challenge. The user
ambiguously uses ‘these two trousers’, so that the sys-
tem needs to identify all the ambiguous objects on the
scene to help further disambiguation and coreference
resolution.

tracking and response generation. To this end, Face-
book released multimodal conversational dataset
(SIMMC 2.1) and proposed the SIMMC 2.1 chal-
lenge (Kottur et al., 2021), in which the virtual
assistant shares the same scene with the user.

In the past, the SIMMC 1.0 (Moon et al., 2020)
challenge provided the controllable and sanitized
multimodal contexts, while the SIMMC2.0 (Kot-
tur et al., 2021) challenge provied the cluttered
and closer-to-real-world multimodal contexts, in
which there is no clear correspondence between
textual context and objects in the scene. On the
basis of the SIMMC 1.0 and SIMMC 2.0, SIMMC
2.1 proposed a new subtask (ambiguous candidate
identification) in order to attract more attention
on the key challenge of fine-grained visual disam-
biguation, as shown in Figure 1. Different from the
SIMMC 2.0, SIMMC 2.1 has been annotated with
additional labels (i.e. identification of all possible
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referent candidates given ambiguous mentions). In
particular, the number of objects in a scene ranges
from 6 to 141. Each object is different due to its
visual or non-visual attributes. There are multiple
objects with one same attribute in the scene, but the
number of user-mentioned objects is less than the
count in the scene, which makes the virtual assis-
tant unable to identify the specific object that the
user refers to, thus causing ambiguity.

The SIMMC2.1 challenge has four different
subtasks, which are ambiguous candidates inden-
tification (ACI), multimodal coreference resolu-
tion (MM-Coref), multimodal dialog state tracking
(MM-DST) and assistant response generation. Due
to the introduction of ACI, the other three subtasks
are affected accordingly. In addition, ambiguous
candidates and multimodal coreferential objects do
not appear at the same time based on statistical
analysis of the dataset.

The state-of-the-art method in the previous
SIMMC challenge (Lee et al., 2022a,b) adopt
BART and joint-learning approach on all subtasks.
However, the performance of the original frame-
work will be limited after adding the ambiguous
candidates indentification task. In addition, The
model also ignores the ground truth APIs in terms
of response generation performance. Modeling
MM-DST tasks as sequential prediction tasks is
also easy to cause instability in prediction. For ex-
ample, the model may forget to generate "<EOB>"
tokens or ")" in some test samples. In order to
consider both the performance and robustness of
the model, we propose a prompt-based multi-task
learning Transformer framework to address the
above problems. In particular, ACI, MM-Coref
and MM-DST share the same prompt, while the as-
sistant response generation task uses another set of
prompts alone, which will make full use of ground-
truth APIs when generating responses.

Our model was declared as the winner of the
subtask 1 (ambiguous candidates indentification)
with 70.50% ambiguous object identification F1.
Moreover, our model was declared as the runner-
up in the official evaluation on all other subtasks, in
which we achieved 80.28% coreference F1, 92.66%
slot F1, 97.75% intent F1 (rank #1) and 0.3650
BLEU-4.

2 Related Work

2.1 Multi-task Learning for Task-oriented
Dialog System

Task-oriented dialog systems have explicit goals
(e.g. request to compare, request to get, etc.), mak-
ing dialog understanding important before gener-
ating response. When using multi-task learning,
the subtasks related to dialogue understanding and
dialogue generation in task-oriented dialog system
can be modeled into one model. In the Encoder-
Decoder (e.g. Transformer (Vaswani et al., 2017))
or UniLM (Dong et al., 2019) framework, the clas-
sification tasks can be further modeled based on the
output of Encoder, and the generation tasks can be
further modeled based on Decoder. In recent years,
there has been an increasing amount of literature on
multi-task learning for task-oriented dialog system
(Zhao et al., 2022; Su et al., 2022). Recently, a uni-
fied dialog model named SPACE-3 (He et al., 2022)
has verified that the performance of various tasks
can be significantly improved by conducting multi-
task joint pretraining on large-scale task-oriented
dialog corpus, in which the authors proposed 5
tasks, including span masked language modeling,
understanding semantic modeling, semantic region
modeling, policy semantic modeling and response
generation modeling. In the SIMMC 2.1 challenge
of DSTC-10, multi-task learning has been verified
to be effective for task-oriented dialog system (Lee
et al., 2022a; Nguyen et al., 2022).

2.2 Prompt Learning

With the rise of large-scale pre-trained language
models (Devlin et al., 2019; Han et al., 2021),
prompt learning has recently been widely studied
by the NLP community, e.g. AutoPrompt (Shin
et al., 2020), Prefix-Tuning (Li and Liang, 2021)
and etc. Both discrete and continuous prompts are
widely used to solve downstream tasks with pre-
trained models. Some prompt-based works are pro-
posed for task-oriented dialog system, such as Uni-
TranSeR (Ma et al., 2022), Cins (Mi et al., 2022),
SPACE-3 (He et al., 2022) and etc. SPACE-3 em-
ployed two kinds of prompts to extract semantics
with three subtasks for helping pass the task-flow in
a task-oriented dialog system. We use prompts to
model MM-DST task as several different prompt-
based classification tasks and used the ground-truth
APIs to design the prompts for response generation.
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Total # dialogs 11,244
Total # utterances 117,236
Total # scenes 3,133
Avg # words per user turns 12
Avg # words per assistant turns 13.7
Avg # utterances per dialog 10.4
Avg # objects mentioned per dialog 4.7
Avg # objects in scene per dialog 19.7
Avg # candidates per ambiguous turn 5.6

Table 1: Summary of SIMMC 2.1 dataset statistics.

Figure 2: An example of the scene.

3 SIMMC2.1 Dataset

SIMMC 2.11 is a dataset for studying immersive
multimodal conversations in the form of a co-
observed image or virtual reality (VR) environ-
ment(Kottur et al., 2021) in two shopping domain:
furniture (4k dialogs) and fashion (7.2k dialogs).
Different from other task-oriented dialog datasets.
SIMMC 2.1 is highly structured with abundant an-
notation information, including dialog act, slot val-
ues, coreference objects, ambiguous candidate ob-
jects, scene images, metadata of all objects, bound-
ing boxes and etc. The statistics of SIMMC 2.1 is
shown in Table 1. For the SIMMC 2.1 challenge,
the dataset is split into 4 sets: train, dev, devtest
and teststd according to the ratio of 6.4:0.5:1.5:1.5.
Each turn of dialog has a corresponding scene im-
age (e.g., Figure 2), the objects in which have cor-
responding canonical ID(s) for subtasks ACI or
MM-Coref. In particular, all the subtasks are pro-
hibited from using visual metadata of the objects,
but non-visual metadata is allowed to use. Both
subtask ACI and MM-Coref formally look for sub-
sets from a set of objects and return them as predic-
tion results. The number of ambiguous candidates
ranges from 2 to count of all objects in a scene
image, while the number of coreference objects is
commonly less than 4.

1https://github.com/facebookresearch/
simmc2

4 Method

In this section, we demonstrate the implementation
of the proposed PMTLED for solving each subtask.
The architecture for subtasks 1, 2 and 3 is shown
in Figure 3 (a), and the architecture for subtask 4 is
shown in Figure 3 (b). We first introduce the input
of the model and the model architecture. Then
we elaborate on objectives of each subtask and
auxiliary tasks.

4.1 Model Architecture
Similar to (Lee et al., 2022a), We choose
BART (Lewis et al., 2020) as our backbone model
for both dialog understanding tasks and dialog gen-
eration task. BART contains a Transformer En-
coder and a Transformer Decoder, which is par-
ticularly effective when fine tuned for both dia-
log understanding and response generation. Let D
denotes a dialog with Lturn turns in SIMMC2.1
dataset. D can be defined as:

D := {(Ui, Ai,Mi, B
u
i , B

a
i , Si)}Lturn

i=1 (1)

where Ui and Ai are the user and system utterances
at turn i, Mi is the multimodal context that consists
of a set of object indices mentioned by the system,
Bu

i and Ba
i are the user and system belief states, Si

is the scene context including both the scene image
and all objects in it.

4.2 Input Representation
As shown in Figure 3, the input is concatenated
as in Equation 2. We adopt the same sepa-
rator tokens and other special tokens described
in (Lee et al., 2022a), including "<DISAM>",
"<NOCOREF>", "<SOM>", "<EOM>", "<SOO>",
"<EOO>", "<OBJ>", "<PREVIOBJ>" and etc.
The objects in the scene is represented by their
canonical object ID tokens with the form of
“<obj_scene_index>" (e.g. “<1>") and their unique
meta ID with the form of “<obj_meta_id>" (e.g.
“<@1001>"). In addition, in order to obtain the
better representation of scene context Si, the em-
bedding of the objects is added with the repre-
sentation of the bounding box information and
all the embedding of non-visual attributes (cus-
tomerReview, brand, price, size, materials). We
follow the object box embedding method used
in (Lee et al., 2022a) to obtain representation
of the bounding box through the encoding pro-
cess (x1/w−0.5, y1/h−0.5, x2/w−0.5, y2/h−
0.5, (x2 − x1)(y2 − y1)/(h · w)) and then pass it
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<s> ...<DIS
AM> User : Do you have ... ? System : There are ... <SOM> <37>, ... <EOM> <SOO> <NOC

OREF> <PREVIOBJ> <0> <@1001> <OBJ> <15> <@1237>... ... <EOO> Prompt </s> 

Prompt 1:

<s> 

</s> 

<act> <req_slots> <type> <price> <customerReview> <brand> <size> <pattern> <color> <sleeveLength> <availableSizes> <materials> <customerRating> => Belief State :

Transformer Encoder

Transformer 
Decoder

... ... ...

Disamb 
Classifier

No Coref 
Classifier

Coreference 
Resolution

Ambiguous Candidate 
Identification

Object Attributes 
Classifier

Prompt-Based
Classifier

Response

Auxiliary Tasks ResponseSubtask 1 Subtask 2 Subtask 3

Auxiliary Tasks

(a) PMTLEDPf : The architecture for subtask 1, 2 and 3, of which the inputs successively includes textual context, multimodal
context and a fixed prompt Pf . Prompt-Based Classifier is used for predicting intent and slot values. Each prompt token
corresponds to a classifier, e.g. the last hidden state of <act> is for intent recognition. Three task objectives and several auxiliary
objectives are carried out to optimize the model jointly in a multi-task paradigm.

<s> ...<DIS
AM> User : Do you have ... ? System : There are ... <SOM> <37>, ... <EOM> <SOO> <NOC

OREF> <PREVIOBJ> <0> <@1001> <OBJ> <15> <@1237>... ... <EOO> Prompt </s> 

INFORM:GET [  ] ( customerReview ) <49> customerReview = 2.9 => Belief State :Prompt 2:

<s> 

</s> 

Transformer Encoder

Transformer 
Decoder

... ... ...

Disamb 
Classifier

No Coref 
Classifier

Coreference 
Resolution

Ambiguous Candidate 
Identification

Object Attributes 
Classifier

Response

Auxiliary Tasks Response

Subtask 4

(b) PMTLEDPd : the architecture for subtask 4, of which the inputs successively includes textual context, multimodal context
and a dynamic prompt Pd. For the system response generation task, the system’s belief state is designed as prompt. Three task
objectives and several auxiliary objectives are carried out to optimize the model jointly in a multi-task paradigm.

Figure 3: Overview of multi-task jointly fine-tuning and prompt-tuning for each subtask.

to a fully-connected layer followed by LayerNorm
by its upper-left vertex (x1, y1), lower-right vertex
(x2, y2), height h and width w.

inputi = [(U,A,M)i−ℓ:i, Ui, Si, Pi] (2)

where (U,A,M)i−ℓ:i are the previous user utter-
ances, system utterances and multimodal context
with dialog history up to ℓ turns to limit the length
of input. Pi is the prompt designed at turn i.

In this work, we designed the fixed prompt Pf

for MM-DST and the dynamic prompt Pd for re-
sponse generation.

4.3 Fixed Prompt for MM-DST
In SIMMC 2.0, the MM-DST is universally con-
sidered as an auto-regressive language modeling

task (Lee et al., 2022a; Nguyen et al., 2022), which
makes the model unstable in the inference process.
Therefore, we adopt a fixed prompt Pf= “<act>
<req_slots> <type> <price> <customerReview>
<brand> <size> <pattern> <color> <sleeveLength>
<availableSizes> <materials> <customerRating>",
the output of which are used for classification for
MM-DST. For example, the last hidden state of
the prompt token "<act>" is passed into a classi-
fier for intent recognition. All the prompt-based
classification tasks can be expressed as:

Cpt = Wpth
ℓ
pt

+ bpt , pt ∈ Pf (3)

where hℓpt denotes the last hidden state of the
prompt token pt, Wpt ∈ Rn×d and bpt ∈ Rn

are the trainable parameters. n is the number of
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categories for the classification task on the prompt
token pt. d is the dimension of the hidden states.

We denote the prompt-based MM-DST classifi-
cation loss Ldst for all prompt token in Pf by

Ldst = −
∑

pt∈Pf

∑

c∈Cpt

L{c = ypt}logP (c) (4)

where Cpt is the set of all classes on the classifica-
tion task of prompt token pt, ypt the label, and L is
an indicator function.

4.4 Dynamic Prompt for Response Generation
Since the annotation information sys-
tem_transcript_annotated of current turn is
allow to use in subtask response generation, we
use act, slot_values and request_slots to design
the dynamic prompt Pd in both the training
and testing phases. Key-value pairs similar to
"Object ID: 36": {"customerReview": 4.3} will be
characterized as "<36> customerReview = 4.3",
which makes the representation of the objects
consistent with that of scene context Si. In the
end, the process of response generation is split into
two phases: (i) dynamic prompt generation driven
by system_transcript_annotated and (ii) response
generation driven by both the multimodal context
and dynamic prompt. Then the cross-entropy loss
is employed to calculate the subtask loss:

Llm = −
L∑

i=1

logP (ti|t1, t2, · · · , ti−1) (5)

where ti is the i-th target token and L the total
length of the response.

4.5 Classification for ACI and MM-Coref
Both subtsk 1 and subtask 2 can be formulateed as
a binary classification on all objects in the scene im-
age. For the obji in the scene, the last hidden states
of the canonical object ID token and its unique
meta ID token is concatenated to obtain the joint
representation hobji as follows:

hobji = concat(hℓ
posi

,hℓ
posi+1) (6)

where posi is the position of the canonical object
ID token in the input sequence, hℓposi the last hidden
state of the canonical object ID token, hℓposi+1 the
last hidden state of the unique meta ID.

Then, the joint representation hobji is passed to
a ACI classifier (see Equation 7) and MM-Coref
classifier (see Equation 8) to predict true or false.

Both the ACI classifier and MM-Coref classifier
are fully-connected layers. Then, the ACI loss Laci

and MM-Coref loss Lcoref can be calculated by
using cross-entropy loss.

CACI = WACIhobji + bACI (7)

Ccoref = Wcorefhobji + bcoref (8)

where WACI ∈ R2×2d, bACI ∈ R2, Wcoref ∈
R2×2d and bcoref ∈ R2 are the trainable parame-
ters.

4.6 Auxiliary tasks
Similar to (Lee et al., 2022a), we adopt three same
auxiliary tasks for both the model of subtask 1 to 3
and the model of subtask 4: (i) Binary prediction
for disambiguation with task objective Ldisamb, (ii)
Binary prediction for empty coreference set with
task objective Lnocoref and (iii) Prediction for ob-
ject attributes with task objective Lattr as shown in
Equation 9.

Lattr = −
∑

j∈Os

N∑

n=1

∑

c∈Cn
L{c = yjn}logP (c)

(9)
where Os is the set of objects in the scene history,
N the number of attributes, Cn the set of all classes
of the n-th attribute, yjn the label of the n-th at-
tribute of the j-th object, and L is an indicator
function.

The auxiliary objective can be calculated by

Laux = λattrLattr + λdisambLdisamb

+ λnocorefLnocoref

(10)

where λattr, λdisamb and λnocoref are the hyperpa-
rameters.

4.7 Training Objective
As shown in Figure 3, the model for subtask 1 to 3
and the model for subtask 4 has different multi-task
join objective. To sum up, the overall training ob-
jective of the model for subtask 1 to 3 Lsubtask123

can be defined as follows:

Lsubtask123 = λaciLaci + λcorefLcoref

+ λdstLdst + λlmLlm + Laux
(11)

where λaci, λcoref , λdst and λlm are the hyper-
parameters.

Toward the model for subtask 4, the overall train-
ing objective is defined as:

Lsubtask4 = λaciLaci + λcorefLcoref

+ λlmLlm + Laux
(12)
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Team ID Models Subtask #1 Subtask #2 Subtask #3 Subtask #4
Object F1 Object f1 Slot F1 Act. F1 BLEU-4

0(baseline)

GPT2 18.00% 26.50% 73.50% 93.00% 0.192
GPT-2(MM) 43.20% - - - -
BERT(MM) 43.90% - - - -

MTN - - 75.00% 94.30% 0.210

1

Longformer 67.26%† - - - -
Longformer - 94.29% - - -
Longformer - - 94.24% 95.98% -

OFA - - - - 0.4093
2 CoCondenser 65.17% - - - -

3
ALBEF 63.84% 75.85% - - -
BART - - 90.48% 96.77% 0.3029

4 COMBINER - - - - 0.2519

5(ours)
PMTLEDPf

70.50% 80.28%† 92.66%† 97.30% -
PMTLEDPd

- - - - 0.3650†

Table 2: The official leaderboard of DSTC11 SIMMC 2.1 Challenge on the teststd set. The subtask winners are
bold-faced and runner-ups are marked with †. “-” means that the model did not participate in that subtask.

5 Experiments

5.1 Settings and Hyperparameters

The BART-large2 (Lewis et al., 2020) model is
used as the backbone. The whole implementation
was based on the Huggingface Transformers (Wolf
et al., 2020)3. The maximum length of dialog turns
Lturn is set to 6 and the max sequence length is
1,024. The model is finetuned for 30 epochs with
an initial learning rate 5e-5 and a batch size of 16
per GPU with AdamW optimizer (Loshchilov and
Hutter, 2018). Besides, the linear warmup schedule
with warmup ratio of 0.1 and clip gradient norms
of 1.0 are equipped. The weight decay and dropout
rate are set to 0.1. The value of λaci, λcoref , λdst

and λlm are set to 1.0, while the value of λattr,
λdisamb and λnocoref are set to 0.1 based on the
performance in validation set. We finetuned all
models on a Linux server with Centos and 4 GPU
of NVIDIA Tesla A100.

5.2 Results and Analysis

The results on the teststd set is shown in Table
2. The proposed model mt-bart-dstcla was de-
clared as the winner of the subtask 1 with 70.50%
ambiguous object identification F1, and was de-
clared as the runner-up of the subtask 2 and 3 with
80.28% coreference F1 in MM-Coref, 92.66% slot

2https://huggingface.co/facebook/
bart-large

3https://github.com/huggingface/
transformers

F1 and 97.30% Act. F1 in MM-DST. The proposed
dynamic prompt-based multi-task model mt-bart-
sys-ensemble was declared as the runner-up with
0.3650 BLEU-4 in response generation. For com-
parison, the Entry #1 used separate models Long-
former (Beltagy et al., 2020) for subtask 1, 2 and 3
and adopted the mode of jointly multi-task training
of current task and auxiliary tasks. In particular,
for Task 3, Entry #1 adopted a fixed prompt for
MM-DST task, similar to our approach. Different
from us, Entry #1 has designed two different fixed
prompts and adopted different classifiers for two
different domain: furniture and fashion. This has
resulted in higher Act. F1 (1.32%↑) for our pro-
posed model and higher Slot F1 (1.58%↑) for the
model of Entry #1. Torward subtask 4, both Entry
#1 and us bsed the system_transcript_annotated to
design the dynamic prompt for response generation.
However, we do not use the mentioned objects of
the current turn, while Entry #1 use the mentioned
objects and their non-visual attributes, which is one
of the core factors that they get a higher BLEU-4
(0.0443↑). As for subtask 1, Entry #1 only use the
samples with disambiguation_label=1 to finetuned
the ACI classifier, in which other subtasks do not
participate in joint fine-tuning process. Therefore,
we finally achieved the higher ambiguous object
identification F1 (3.24%↑).
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Models Subtask #1 Subtask #2 Subtask #3 Subtask #4
Object F1 Object f1 Slot F1 Act. F1 BLEU-4

baseline (Lee et al., 2022a) - 75.9% 90.% 97.4% 0.3193
PMTLEDPf

68.5% 78.4% 92.0% 97.5% -
w/o Pf 65.7% 77.3% 88.4% 96.6% -

PMTLEDPd
- - - - 0.3874

w/o Pd - - - - 0.3433

Table 3: Results on the devtest set. Pf : fixed prompt. Pd: dynamic prompt.

5.3 Ablation Study
We conduct ablation experiments to answer the
questions: (i) Wherther the fixed prompt and dy-
namic prompt are useful? Table 3 provides detailed
results on the devtest for our ablation study. The
second row of results is obtained according to the
hyperparameters setting of (Lee et al., 2022a). As
shown in the row 3 and 4, the performance of the
model without Pf degrades largely on subtask 1,
2 and 3, demonstrating the effectiveness of using
the fixed prompt. According to the row 5 and 6,
BLEU-4 significantly deteriorates if we discard
the dynamic prompt Pd, suggesting that dynamic
prompt generated by system_transcript_annotated
is crucial component for the response generation
task.

6 Conclusion and Future Work

In this paper, we proposed a prompt-based multi-
task learning method for multimodal dialog state
tracking and immersive multimodal conversation.
The proposed model used fixed prompt for multi-
modal dialog state tracking and dynamic prompt
for immersive multimodal conversation based on
Transformer framework. Experiments demon-
strated that the proposed fixed prompt and dy-
namic prompt are effective on jointly fine-tuning
the model for the SIMMC 2.1 Challenge. In the
future, we will continue exploring the design of
the prompt, promoting the model to apply more
knowledge as much as possible, e.g. the men-
tioned objects of current turn of the assistant, the
scene image and etc. In addition, the current ver-
sion of the model depends on domain information,
which makes it difficult to apply to other scenar-
ios. Further research needs to solve the domain
dependency.
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