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Abstract

In a real-world environment, Dialogue State
Tracking (DST) should use speech recogni-
tion results to perform tasks. However, most
existing DST research has been conducted in
text-based environments. This study aims to
build a model that efficiently performs Auto-
matic Speech Recognition-based DST. To oper-
ate robustly against speech noise, we proposed
CopyT5, which adopts a copy mechanism, and
trained the model using augmented data in-
cluding speech noise. Furthermore, CopyT5
performed post-training using the masked lan-
guage modeling method with the MultiWOZ
dataset in T5 in order to learn the dialogue
context better. The copy mechanism also miti-
gated named entity errors that may occur dur-
ing DST generation. Experiments confirmed
that data augmentation, post-training, and the
copy mechanism effectively improve DST per-
formance.

1 Introduction

Task-oriented dialogue systems are used in vari-
ous fields and are intimately connected to our daily
lives. They can help users perform tasks that are fre-
quently encountered in daily life, such as restaurant
reservations and train ticket reservations. However,
as most of these dialogue systems are implemented
using a text-based dialogue corpus, they are very
weak when implemented in actual speech interface-
based dialogue systems.

In actual human speech, Automatic Speech
Recognition (ASR) data contains errors generated
because of similar words, inaccurate pronuncia-
tion, and noise in the environment being consid-
ered, making it difficult to use it directly for learn-
ing conversation system models. Various attempts
have been proposed to implement a robust speech
interface-based dialogue system, such as Fazel-
Zarandi et al. (2019) and Liu et al. (2021).

∗Equal Contribution.

In Track 3 of the DSTC11 summer track, we
aim to secure a dialogue system in consideration
of speech recognition environments that include
speech noise and paraphrasing. Accordingly, we
propose a dialogue system based on voice audio
and evaluate our model based on a given dataset.

We adopt simpleTOD (Hosseini-Asl et al., 2020)
in an end-to-end manner, which is robust in noisy-
labeled annotation among task-oriented dialogue
systems. To secure a dialogue corpus of various
expressions, CoCo (Li et al., 2021) and LAUG (Liu
et al., 2021) toolkit were applied to augment the
text corpus, and post-training (Han et al., 2022)
was performed to better understand the secured
text data. Furthermore, in order to improve the gen-
eration error occurring in the normal DST model,
we propose a dialogue system that applies an effec-
tive copy mechanism (See et al., 2017) to out-of-
vocabulary resolution and applies certain efficient
post-processing techniques.

2 Related Work

2.1 SimpleTOD

A typical task-oriented dialogue system comprises
three tasks: Natural Language Understanding
(NLU), Dialog State Tracker (DST), and Natural
Language Generation (NLG), and suggests an ap-
propriate dialogue system for each sub-task. How-
ever, simpleTOD (Hosseini-Asl et al., 2020) pro-
poses a casual language model that can encompass
all sub-tasks. Through a simple approach to re-
cast to a single sequence prediction problem, it
achieved state-of-the-art performance in the DST
task domain and confirmed that the performance
impact was low even in noisy-labeled annotations.
We adopted the simpleTOD model in an end-to-
end manner to secure a robust dialogue system
against noise errors, which is the goal of Track 3
of DSTC11 summer track.

DST aims to predict the previous dialogue con-
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text and current dialogue states. In general, the next
dialogue is predicted from the first utterance of the
dialogue to the previous utterance at every dialogue
turn. However, an issue arises in that it reacts sen-
sitively to the length of dialogue in predicting the
current dialogue state. As the dialogue length in-
creases, the initial dialogue acts as noise, whereas
for short dialogue lengths, there is insufficient in-
formation for prediction in the previous dialogue.
Yang et al. (2021) tested the effect of context infor-
mation of varying granularity on DST. Accordingly,
we set the maximum value of dialogue history so
that consistent and universal dialogue tracking can
be conducted.

2.2 Copy Mechanism

Copy mechanism is a useful method for maintain-
ing the context of the input sentence and solving
the out-of-vocabulary problem. It improves perfor-
mance by mitigating the out-of-vocabulary prob-
lem by outputting the words of the input sentences
that appear less frequently in tasks from the de-
coder, such as machine translations (Zhang et al.,
2021) and summarization (See et al., 2017). In
DST, the copy mechanism is effective in inferring
the dialogue state from the long-distance dialogue
history (Wu et al., 2020). Based on previous re-
search, in this study, a copy mechanism was ap-
plied to T5 to solve out-of-vocabulary problems
such as entity name and to maintain the context of
the input dialogue.

2.3 Data Augmentation

Data augmentation refers to generating or trans-
forming data in order to supplement the training
data. Liu et al. (2021) states that a dialogue system
trained on text-based data is not robust in an audio-
based data environment containing noise. CoCo
(Li et al., 2021) is a method of generating a new
dialogue turn by generating user utterances from
system utterances and dialogues states. CoCo im-
proved the performance of the DST model by creat-
ing a domain slot combination with a low frequency
of appearance among the dialogue states of the Mul-
tiWOZ data. CopyT5 was trained LAUG and CoCo
data to operate robustly on data containing speech
noise and paraphrased data.

Figure 1: Overview of DST inference system.

3 Method

3.1 Overview
Figure 1 show the inference flow of our system. In
the training stage, we used the training dataset pro-
vided by DSTC11 Track 3 and augmented dataset.
However, in the test phase, the provided Raw Au-
dio Data was recognized as Google ASR API1 to
reduce the noise of conversation data. Google ASR
API recognizes time expression and entity name
expression better, and errors in transcription are
relatively low.

3.2 Post-Training
To better understand the MultiWOZ dataset,
CopyT5 used post-training. Post-training means
that a model is trained on dataset from the same
domain before the fine-tuning stage. We train the
T5 model on MultiWOZ using Masked Language
Modeling (MLM) loss(LMLM ).

LMLM = −
∑

j∈C
logP (yj |x; θ) (1)

To learn the dialogue context better, the masked
part of the dialogue history (of up to three turns)
was generated. In Equation 1, j denotes the po-
sition of the masked word, C denotes the set of
masked words, and yj is the masked word. x is the
input sequence, and θ is the model’s parameter.

3.3 Granularity
In DST, granularity refers to the maximum number
of turns to consider as current dialogue history. Di-
alogue has a co-reference in which the utterance of
previous turns is related to the current turn. How-
ever, if all previous turns are input to the model,
the input sequence becomes long and can become
noise in the DST model. In contrast, if only the
utterance of the current turn is used as the input

1https://cloud.google.com/speech-to-text
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sequence to reduce the noise, the co-reference of
the previous utterances cannot be identified.

Therefore, in this study, up to three turns of di-
alogue are considered as dialogue history, and the
previous turns are replaced with the dialogue state.

3.4 Post-Processing

The generative DST model may give an error while
generating dialogue states. Therefore, if the model
generated a domain-slot that does not exist in the
MultiWOZ dataset, it was removed, and some in-
correct domain-slots were revised or deleted as per
rules.

Most domain-slot information such as ‘time’,
‘day’, and ‘area’ slots appears in the current turn
utterance. Especially in the case of ‘day’ and ‘area’
slot, the values are categorical, so we extract and
reflect them in the results via a rule-based method.

ASR results may not be accurate for named en-
tities such as restaurant names, hotel names, and
station names. Consequently, we built an ontology
using MultiWOZ and the named entities collected
from the web. We calculated the similarity between
the name-related domain-slot values inferred by the
model and named entities in the ontology. If the
similarity was 0.9 or higher, the value was substi-
tuted with the named entity in the ontology.

3.5 Model Architecture

In the generative DST model, an error may occur
in the process of generating the named entity in the
dialogue. To reduce this error, CopyT5 adopts a
copy mechanism. The copy mechanism increases
the generation probability of the named entity in
the input, so it helps the model to output the named
entity as it is in the input. Figure 2 illustrates the
architecture of CopyT5.

h = T5Encoder(x; θ) (2)

s = T5Decoder(h, y; θ) (3)

e = vT gelu(Whh+Wss) (4)

a = softmax(e) (5)

Attention a is calculated as given in Equation (5).
x is the dialogue history, i.e., input sequence of the
encoder, and y is the gold dialogue state, i.e., input
sequence of the decoder. h is the output state of the

Figure 2: Overview of CopyT5.

encoder, and s is the output state of the decoder. v
and Wh,Ws are learnable parameters.

h∗ =
∑

a ∗ h (6)

The context vector h∗ is calculated by using the
attention score as given in Equation (6).

pvocab = softmax(Vss+ Vhh
∗) (7)

pvocab is the probability of the entire vocabulary
that the decoder can generate. pvocab is calculated
as in Equation (7), and Vs, Vh is the learnable pa-
rameter.

pgen = σ(whh
∗ +Wss+ wxx) (8)

pgen is a value that adjusts the probability of
words in the input sequence and the words gener-
ated by the decoder. In Equation (8), x denotes the
previous state of the decoder. As the transformer
calculates the decoder state in parallel during the
training process, x is the same as the value shifted
to the right of the decoder output. wh, ws, wx is
the trainable parameter.

P (w) = pgenpvocab(w) + (1− pgen)a (9)

The final output of CopyT5 is as shown in Equa-
tion (9). CopyT5 determines copy probability and
generation probability according to the value of
pgen. P (w) is probability of predicted word w.

4 Experiments and Results

4.1 Dataset
To train our models, we used several datasets in-
cluding the DSTC11 training dataset. We also used
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Model
Training Datasets

MultiWOZ 2.1
CoCo LAUG

Cleaned text DSTC11 transcription Huggingface speech2text
CopyT5 (Base) 56,778 56,778 56,778 22,471 -
CopyT5 (Large) 56,778 56,778 56,778 22,471 36,000

Table 1: The number of turns in training datasets for each model

System TTS
Verbatim

Human
Verbatim

Human
Paraphrased

F-p 44.0 39.5 37.9
F-s 40.4 36.1 34.3
C-p 40.2 31.9 31.8
A-s 37.7 30.1 30.7
C-s 33.1 28.6 28.1
D-s 30.3 23.5 23.2
B-p 27.3 23.9 22.6
D-p 28.6 21.8 21.4
A-p 21.9 21.2 20.0
B-s 22.4 19.2 18.3
E-p 21.3 20.0 18.2

Table 2: Overall JGA results of DSTC11 Track 3.

our own augmented data. To make our models ro-
bust to various ASR errors and familiar with the
ASR data, we augmented the training dataset with
HuggingFace speech2text transcript and LAUG.
We also used CoCo to augment the training data to
help our models better predict proper noun values.
Table 1 summarizes the number of turns of training
data to train our models.

4.2 Training Details
We used two T5 models (Raffel et al., 2020) with
different sizes (base, large). We also conducted
post-training in the MultiWOZ domain using MLM
loss. The model is trained over five epochs in the
post-training stage. At the fine-tuning stage, we
trained the model for up to 30 epochs and used early
stopping when the performance on the dev dataset
was the best. We used two GPUs with 16 batch
sizes for training the base model, and four GPUs
with four batch sizes for training the large model.
For the other hyper-parameters, we used the default
hyper-parameters setting of the HuggingFace T5
model2.

4.3 Evaluation Metrics
We used two metrics to evaluate our models. Joint
Goal Accuracy (JGA) is used as the main metric.

2https://huggingface.co/models

System TTS
Verbatim

Human
Verbatim

Human
Paraphrased

F-p 17.1 20.0 20.4
F-s 19.2 21.9 22.4
A-s 20.3 26.9 26.2
C-p 20.9 28.1 27.2
C-s 25.0 28.7 29.5
B-p 26.2 30.0 30.6
B-s 28.7 32.2 32.6
A-p 32.8 33.5 33.8
D-s 26.6 36.5 35.1
E-p 35.1 35.5 35.3
D-p 28.0 36.7 36.0

Table 3: Overall SER results of DSTC11 Track 3.

JGA is widely used to evaluate DST models. At
each turn, JGA is 1 only if all domain-slot and
value pairs are predicted correctly; otherwise it
is 0. This is quite strict and the model gets the
worst JGA when it is wrong at the earlier turns in
the dialogue. Slot Error Rate (SER) is used as a
secondary metric. SER is the ratio of total number
of slot errors (substitutions + deletions + insertions)
and total number of slots in reference across all the
dialogues.

4.4 Results

The base-sized T5 model is additionally post-
trained in the MultiWOZ domain using MLM loss.
However, it is not effective in the large-sized T5
model, so we used the the open-source T5 large
model as it is. Tables 2 and 3 present the JGA and
SER results of submissions for Track 3 of DSTC11
respectively. D-s is the base-sized CopyT5 model
that conducted post-training in the MultiWOZ do-
main using MLM. D-p is the large-sized CopyT5
model for which post-training is ineffective, so we
only conducted fine-tuning to D-p.

In terms of Slot Error Rate, our systems ranked
low. However, the JGA score was ranked relatively
high compare with Slot Error Rate score of our
system. The CopyT5 model over-generated the
‘restaurant-name’, ‘hotel-name’, and ‘attraction-
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System TTS
Verbatim

Human
Verbatim

Human
Paraphrased

Base (a) 24.43 19.94 19.54
Base (b) 27.06 20.74 21.03
Base (c) 27.34 21.08 20.97

Base (d)* 30.3 23.5 23.2
Large (a) 26.33 21.50 21.32
Large (b) 23.71 18.82 18.67

Large (c)** 28.6 21.8 21.4
Large (d) 27.33 21.84 20.79

Table 4: Overall JGA results of ablation study.

name’ domain-slots. We believe that the CopyT5
based DST model was trained to over-extract val-
ues for name-related named entities in dialogue
history. In contrast, time-related domain-slots such
as ‘train-leaveat’ and ‘train-arriveby’ were gener-
ated less often because the ASR results contained
considerable noise in time-related expressions.

To prove the effectiveness of our approach, we
conducted an ablation study. The list of ablation
studies is as follows:

(a) simpleTOD DST model using T5 without data
augmentation

(b) CopyT5 without data augmentation

(c) CopyT5 with data augmentation

(d) CopyT5 with data augmentation, post-training

Tables 4 and 5 summarize the performance of
various models (* is D-s, ** is D-p). First, in the
case of the base-sized model, when comparing (a)
and (b), we can observe up to 2.63% increase in
JGA by using the copy mechanism. Furthermore,
comparing (b) and (c), JGA increased by up to
0.34% using copy mechanism and data augmen-
tation together. The base-sized CopyT5 with data
augmentation and post-processing gives the best
performance. Compared to (c), (d) showed sig-
nificant improvement in JGA by up to 2.96%. In
contrast, in the case of the large-sized model, when
the copy mechanism was used without data aug-
mentation (comparing (a) and (b)), the performance
deteriorated. If the copy mechanism is used, the
number of learning parameters of the model in-
creases. Thus, in the large-size model, we believe
that the data is not enough to train the model suf-
ficiently. Comparing (b) and (c), we can observe
significant improvements in JGA up to 4.89% when
we used CopyT5 with data augmentation. We also

System TTS
Verbatim

Human
Verbatim

Human
Paraphrased

Base (a) 31.83 39.72 39.29
Base (b) 28.86 38.76 36.92
Base (c) 30.97 42.47 40.76

Base (d)* 26.6 36.5 35.1
Large (a) 30.32 38.42 37.48
Large (b) 33.84 42.49 41.39

Large (c)** 28.0 36.7 36.0
Large (d) 30.59 37.94 38.24

Table 5: Overall SER results of ablation study.

observe that post-training was not effective in the
large-sized CopyT5 by comparing (c) and (d).

5 Conclusion

In this study, DST was performed using the
CopyT5 model to which the copy mechanism was
applied. The copy mechanism contributed to per-
formance improvement by suitably extracting ob-
ject names that appeared in the conversation. In
addition, post-training helped CopyT5 improve
performance in the DST fine-tuning step by pre-
learning conversational domain data. However, in
the large-sized CopyT5 model, the copy mecha-
nism and post-training were not effective, but the
performance improved as a result of applying data
augmentation together.

Limitations

The Copy Mechanism helped improve the perfor-
mance of JGA, but suffers from excessive extrac-
tion of domain-slot values. In addition, by applying
the copy mechanism, the number of learning pa-
rameters increased, and the DST performance de-
creased despite learning the same training dataset
in a large-sized model.

In the future, we will experiment with methods
such as data augmentation and prompt learning to
efficiently learn the increased learning parameters
by applying additional mechanisms in large-scale
language models.
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