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Abstract

Open-domain automatic dialogue evaluation
plays an important role in dialogue systems.
While recent efforts are being put into mak-
ing learning-based evaluation metrics corre-
late better with human evaluation, robust met-
rics for parallel corpora and multiple domains
remain unexplored. Parallel corpora refer to
corpora that express the same idea in dif-
ferent ways (e.g., translation, paraphrasing
and back-translation). In this paper, we pro-
pose Parallel Corpora Alignment Framework
(PCAF), which improves the consistency and
robustness of model evaluation on parallel cor-
pora. Firstly, parallel corpora are aligned in se-
mantic space through parallel-corpora-aligned
contrastive learning. Then, parallel-corpora-
aligned distillation on multiple datasets is ap-
plied to further improve model’s generalization
ability across multiple data domains. Our ap-
proach ranks second on the final test data of
DSTC11 track4 sub-task1 ("Multilingual Auto-
matic Evaluation Metrics", turn-level) and third
on the sub-task2 ("Robust Automatic Evalu-
ation Metrics", turn-level), which proves the
strong generalization ability and robustness of
our proposed approach.

1 Introduction

Open-domain automatic dialogue evaluation,
which aims to evaluate dialogues efficiently and
accurately, plays an important role in dialogue sys-
tems. On the one hand, it provides a basis for cross-
model comparison, on the other hand, it points
out the direction for model improvement. While
recent efforts are being put into making learning-
based evaluation metrics correlate better with hu-
man evaluation, robust metrics for parallel corpora
and multiple domains remain unexplored. Paral-
lel corpora refer to corpora express the same idea
in different ways (e.g., translation, paraphrasing
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or back-translation). In Dialogue System Technol-
ogy Challenge 11 (DSTC11)1, the track4 "Robust
and Multilingual Automatic Evaluation Metrics for
Open-Domain Dialogue Systems" proposes such
a challenge, which consists of two sub-tasks. In
sub-task1 ("Metrics for multilingual data"), all par-
ticipants need to develop effective automatic open-
ended and multilingual (i.e., English, Spanish and
Chinese) dialogue evaluation metrics that perform
similarly when evaluated over all the languages.
In sub-task2 ("Robust metrics"), all participants
need to develop effective automatic open-ended
dialogue evaluation metrics that perform robustly
when evaluated over back-translated/paraphrased
sentences in English. For both tasks, the developed
metrics should be correlated to human judgements
well and explainable.

Current automatic dialogue evaluation metrics
include word overlap-based metrics, embedding-
based metrics and learning-based metrics. Word
overlap-based metrics (e.g., BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005)) evaluate candidate response
through its overlapping words with reference re-
sponse. Embedding-based metrics (e.g., Greedy
Matching (Rus and Lintean, 2012) and Vector Ex-
trema (Forgues et al., 2014)) firstly obtain sen-
tence representation through word embedding (e.g.,
word vector (Mikolov et al., 2013)), then, the se-
mantic similarity between candidate response and
reference response is calculated by their represen-
tation for dialogue evaluation. However, due to
the one-to-many nature of open-domain dialogue
(Zhao et al., 2017), the two referenced based met-
rics above have been shown to be poorly corre-
lated with human evaluation (Liu et al., 2017).
Learning-based metrics aim to predict the score
of certain quality of candidate response and have
shown great correlation with human evaluation
(Tao et al., 2018). Previous study of learning-based

1https://dstc11.dstc.community/home
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metrics have explored topic transition dynamics in
dialogue (Huang et al., 2020), composition of fine-
grained qualities (Mehri and Eskenazi, 2020b; Phy
et al., 2020; Zhang et al., 2022) and quantifiable
dialogue coherence evaluation (Ye et al., 2021).
However, all of the current metrics are tested on a
monolingual setup, and fail to consider the robust-
ness of metrics in noisy settings.

To address the above issues, we propose Parallel
Corpora Alignment Framework (PCAF), which
improves the consistency and robustness of model
evaluation on parallel corpora. Parallel corpora
refer to corpora that express the same idea in
different manners (e.g., translation, paraphrasing
or back-translation). Firstly, parallel corpora are
aligned in semantic space through parallel-corpora-
aligned contrastive learning. Then, parallel-
corpora-aligned knowledge distillation (Hinton
et al., 2015) on multiple datasets is applied to im-
prove model’s evaluation capability across multiple
data domains. Our approach ranks second on the
final test data of DSTC11 track4 sub-task1 ("Multi-
lingual Automatic Evaluation Metrics", turn-level)
with an average Spearman correlation score of
36.57% and third on the sub-task2 ("Robust Au-
tomatic Evaluation Metrics", turn-level) with an
average Spearman correlation score of 38.30%.

Our contributions are summarized as follows:

• We propose a novel framework PCAF which
improves the consistency and robustness of
model evaluation on parallel corpora.

• Our approach ranks second on the final test
data of DSTC11 track4 sub-task1 ("Multi-
lingual Automatic Evaluation Metrics", turn-
level) and third on the sub-task2 ("Robust
Automatic Evaluation Metrics", turn-level),
which proves the strong generalization ability
and robustness of our proposed approach.

2 Related Work

Automatic dialogue evaluation is of great impor-
tance to dialogue systems. It can be divided into
dialogue-level and turn-level, while dialogue-level
pays attention to the overall evaluation of dialogue
system, turn-level mainly evaluate the quality of
candidate response according to the provided di-
alogue history. This paper mainly focus on turn-
level automatic dialogue evaluation.

Word overlap-based metrics and embedding-
based metrics are standard automatic evaluation

metrics (Zhang et al., 2022). However, these met-
rics which assess dialogue based on reference re-
sponse have been shown to be inaccurate for dia-
logue evaluation (Liu et al., 2017). Learning-based
metrics was then proposed, which adopts deep
learning models and aims to predict human-like
scores to input responses (Lowe et al., 2017).

Learning-based metrics can be divided into su-
pervised and self-supervised. Supervised met-
rics (Lowe et al., 2017) highly depend on human-
annotated training data, which are not widely
studied due to the lack of such data. Self-
supervised metrics utilize human response as posi-
tive responses, and negative responses are obtained
through negative sampling, thus, positive-negative
responses pairs are constructed for model train-
ing. As human conversations are readily avail-
able (e.g., DailyDialogue (Li et al., 2017)), var-
ious self-supervised metrics have been proposed.
Grade (Huang et al., 2020) applies graph reason-
ing to model topic transition dynamics in dialogue.
Maude (Sinha et al., 2020) distinguishes the posi-
tive and negative responses using NCE loss (Gut-
mann and Hyvärinen, 2010). USR (Mehri and Es-
kenazi, 2020b) trains one language model and two
dialogue retrieval models to measure five qualities
respectively and regresses them to an overall score.
MME-CRS (Zhang et al., 2022) trains five sub-
models to evaluate five qualities respectively and
weighted them to an overall judgement.

However, all of the current metrics are tested on
a monolingual setup, and fail to consider metrics’
robustness to changes in domain and expression.
PCAF can effectively alleviate these problems and
shows great generalization ability and robustness.

3 Methodology

Figure 1 illustrates the pipeline of our proposed
PCAF, a two-stage training framework which
aligns parallel corpora in semantic space and im-
proves model’s generalization ability. In this sec-
tion, we will introduce parallel-corpora-aligned pre-
training and parallel-corpora-aligned knowledge
distillation for generalization in detail.

3.1 Model Architecture

The metric model consists of a encoder for fea-
ture extraction and a predictor for score prediction.
Specifically, we adopt XLM-RoBERTa (Conneau
et al., 2020) and RoBERTa (Liu et al., 2019) as the
encoder network for sub-task1 and sub-task2 re-
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Figure 1: The overall pipeline of our PCAF, including parallel-corpora-aligned pre-training and knowledge
distillation on multi-dataset. The solid blue one-way arrows show the process of parallel-corpora-aligned pre-training
stage. During pre-training stage, parallel corpora are aligned in semantic space through contrastive learning, and
model’s prediction capability is optimized by MSE loss. The solid black one-way arrows and dotted blue one-way
arrows illustrate the KD stage, where the student model is initialized with the teacher model and optimized by
GEN_KD loss to improve model’s generalization ability.

spectively, and a three-layer multi-layer perceptron
(MLP) is used as the predictor network.

Given the context c = {u1, u2, ..., u|c|} and re-
sponse r = {ur} where ui is utterance of context
or response, the representation of response is firstly
obtained by the pooled output feature of XLM-
RoBERTa:

vr = Pooler(Encoder(c, r)) (1)

Then, the quality score of response is predicted by:

s = MLP (vr) (2)

3.2 Parallel-Corpora-Aligned Pre-training
Parallel corpora refers to corpora that express the
same idea in different ways. Common parallel cor-
pora are utterances written in different languages or
their paraphrased, back-translated versions. Align-
ing parallel corpora in semantic space can not only
improve model’s evaluation capability in multi-
lingual settings, but also make model robust to
changes in form of the utterances. Besides, train-
ing an aligned model on one language can improve
model’s performance on another language as well.

Parallel corpora is aligned in semantic space
through contrastive learning. Formally, given a
training dataset Dpc = {Pi}, Pi = {(cij , rij , rij)}
where cij and rij are a ground-truth context-
response pair and rij is a negative response sam-
pled by negative sampling strategy. Each dialogue
in Pi except the negative responses expresses the
same idea but in different manners , while dia-
logues in Pi express different ideas with dialogues
in Pj (i ̸= j). Let vij , vij be the representation of
rij , rij , the similarity between all responses is:

Sall =

|Dpc|−1∑

i=1

|Pi|∑

j=1

|Dpc|∑

m=i+1

|Pm|∑

n=1

exp(cos_sim(vij , vmn)/τ)

+

|Dpc|−1∑

i=1

|Pi|∑

j=1

|Dpc|∑

m=i+1

|Pm|∑

n=1

exp(cos_sim(vij , vmn)/τ)

+

|Dpc|−1∑

i=1

|Pi|∑

j=1

|Dpc|∑

m=i+1

|Pm|∑

n=1

exp(cos_sim(vij , vmn)/τ)

(3)

the similarity between responses in Pi is:

125



Dataset Spanish
Translation

Chinese
Translation Paraphrases English

Back-translation
DBDC (Higashinaka et al., 2016) ✓ - ✓ ✓
CMU_DoG (Zhou et al., 2018) ✓ - ✓ ✓
Cornell Movie-Dialogs (Danescu-Niculescu-Mizil and Lee, 2011) - ✓ ✓ ✓
DailyDialog (Li et al., 2017) ✓ ✓ ✓ ✓
DECODE (Nie et al., 2021) ✓ - ✓ ✓
EmotionLines (Hsu et al., 2018) ✓ - ✓ ✓
EmpathicDialogues (Rashkin et al., 2019) ✓ ✓ ✓ ✓
Holl-E (Moghe et al., 2018) ✓ - ✓ ✓
MEENA (Adiwardana et al., 2020) ✓ - ✓ ✓
MELD (Poria et al., 2019) ✓ - ✓ ✓
MetalWOz (Lee et al., 2019) ✓ - ✓ ✓
Movie-DiC (Banchs, 2012) ✓ - ✓ ✓
PersonaChat (Zhang et al., 2018) ✓ ✓ ✓ ✓
SentimentLIAR (Upadhayay and Behzadan, 2020) ✓ - ✓ ✓
Switchboard Coherence (Cervone and Riccardi, 2020) - ✓ ✓ ✓
Topical-Chat (Gopalakrishnan et al., 2019) ✓ ✓ ✓ ✓
Wizard of Wikipedia (Dinan et al., 2019) ✓ ✓ ✓ ✓
WOCHAT (D’Haro et al., 2016) ✓ - ✓ ✓

Table 1: Training sets provided by DSTC11 Track4 organizers. The source language of these datasets is English,
and all of them are provided with English back-translation and paraphrases.

SPi =

|Pi|−1∑

j=1

|Pi|∑

k=j+1

exp(cos_sim(vij , vik)/τ) (4)

and the alignment loss is:

lalign = −
|Dpc|∑

i=1

log
SPi

Sall
(5)

together with the MSE loss:

lmse =

Dpc∑

i=1

Pi∑

j=1

((1− sij)
2 + s2ij) (6)

the final loss of parallel-corpora-align pre-training
is:

LPCA = lalign + lmse (7)

3.3 Knowledge Distillation on Multiple
Datasets

After parallel-corpora-aligned pre-training, the
model M is further trained by parallel-corpora-
aligned knowledge distillation on multiple datasets
to attain a better generalization ability.

Given parallel corpora P = (ci, ri, ri) where ri
and ri are positive-negative response pair, Mt is the
teacher model, and Ms is the student model which
is initialized with the teacher model. Let the teacher
model and student model predict the score of the
response pair respectively, and get sti, sti, ssi, ssi.

The student model is firstly optimized by MSE
loss:

lkd_mse
i = (1− ssi)

2 + s2si (8)

Then, we utilize the teacher model’s predictions as
soft targets. Besides, considering the parallel cor-
pora all express the same idea, we take the average
of teacher model’s predictions of positive responses
as the label for the entire parallel corpora’s positive
responses, and the KD loss is formulated as:

lkdi = (sti − ssi)
2 +(sti − ssi)

2 +(

∑|P|
k=1 sti

|P| − ssi)
2 (9)

The overall loss in KD stage is the weighted sum
of lkd_mse

i and lkdi :

LGEN_KD =
1

|P|

|P|∑

i=1

(α∗lkd_mse
i +(1−alpha)∗lkdi ) (10)

where α is the hyperparameter.

4 Experiments

4.1 Datasets
As shown in Table 1, the organizers of DSTC11
Track4 provide 18 human-human dialogue datasets
as training set. Table 2 shows the result of our pre-
liminary experiment of datasets comparison. For
each dataset, we randomly sampled 3k data to train
a BERT + MLP model which is further tested on
the provided development sets respectively. As
the model trained on DailyDialog(Li et al., 2017)
shows the highest Spearman correlation among the
18 human-human dialogue datasets, we select Dai-
lyDialog as the pre-training dataset. Besides, Sen-
timentLIAR and Switchboard Coherence are ex-
cluded as they encountered training collapse in our
preliminary experiment.
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Dataset Spearman(%) rank
DBDC 21.41 15
CMU_DoG 24.31 13
Cornell Movie-Dialogs 27.26 9
DailyDialog 31.48 1
DECODE 27.43 7
EmotionLines 30.25 2
EmpatheticDialog 28.37 6
Holl-E 24.00 14
MEENA 24.44 12
MELD 27.37 8
MetalWOz 25.28 11
Movie-DiC 28.81 5
PersonaChat 25.55 10
SentimentLIAR - -
Switchboard Coherence - -
Topical-Chat 29.98 3
Wizard of Wikipedia 29.11 4
WOCHAT 29.11 16

Table 2: Result of preliminary experiment of datasets
comparison. We test the BERT + MLP model trained
with 3k English data from each dataset respectively on
provided development sets. The Spearman correlation
is the average result of all development sets.

As for the development set, the organizers pro-
vide the following 14 turn-level datasets which
have been automatically translated to Spanish and
Chinese, and back-translated to English:

• CONVAI2-GRADE (CG) (Huang et al., 2020)

• DAILYDIALOG-GRADE (DH) (Huang et al.,
2020)

• DAILYDIALOG-GUPTA (DG) (Gupta et al.,
2019)

• DAILYDIALOG-ZHAO (DZ) (Zhao et al., 2020)

• DSTC7 (D7) (Galley et al., 2019)

• EMPATHETIC-GRADE (EG) (Huang et al.,
2020)

• FED-TURN (FT) (Mehri and Eskenazi, 2020a)

• HUMOD (HM) (Merdivan et al., 2020)

• PERSONA-USR (PU) (Mehri and Eskenazi,
2020b)

• PERSONA-ZHAO (PZ) (Zhao et al., 2020)

• TOPICAL-USR (TU) (Mehri and Eskenazi,
2020b)

Team EN ZH ES Multilingual
AVG

Deep AM-FM 29.40 7.53 18.26 18.40
TOP 1 48.18 39.36 58.90 48.81
TOP 2 (ours) 22.14 31.12 56.44 36.57
TOP 3 37.02 7.01 19.83 21.29
TOP 4 14.69 10.54 8.08 11.10

Table 3: The Spearman correlation (%) of baseline Deep
AM-FM and top 4 teams on the test datasets of sub-task1
(turn-level). Only the best result of each team is shown
in the table.

Team Robust AVG
Deep AM-FM 0.3387
TOP 1 0.4890
TOP 2 0.4190
TOP 3 (ours) 0.3833
TOP 4 0.2697

Table 4: The Spearman correlation (%) of baseline Deep
AM-FM and top 4 teams on the test datasets of sub-task2
(turn-level). Only the best result of each team is shown
in the table.

• JSALT (JS) (Zhang et al., 2021)

• CHATEVAL (CS) (Sedoc et al., 2019)

• DSTC10 (D10) (Zhang et al., 2021)

Considering the multilingual setting of sub-
task1, model M1 is only trained on DailyDialog,
EmpatheticDialog, PersonaChat, Topical-Chat and
Wizard of Wikipia, which are translated into both
Chinese and Spanish. While DailyDialog is used
as the pre-training dataset, all of the 5 datasets
above take part in the knowledge distillation stage
of PCAF.

For sub-task2, all of the training sets except for
SentimentLIAR and Switchboard Coherence are
used to train model M2. Still, DailyDialog is used
as the pre-training dataset and all of these datasets
above take part in the knowledge distillation stage
of PCAF.

4.2 Implementation Details

In sub-task1, we adopt XLM-RoBERTa-Large as
the encoder, and the parallel corpora is English-
Chinese-Spanish corpora.

In sub-task2, we adopt RoBERTa-Large as
the encoder, and the parallel corpora is English-
Paraphrases corpora.

For both of the two tasks, we adopt Adam
(Kingma and Ba, 2017) as the optimizer and set
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Model Language Appropriateness Content
Richness

Grammatical
Correctness Relevance Average

Deep AM-FM EN 34.32 31.03 19.37 32.90 29.40
Deep AM-FM ZH 12.32 14.18 3.61 0.02 7.53
Deep AM-FM EZ 0.94 2.36 32.97 36.79 18.26
PCAF EN 15.53 57.28 2.52 17.22 23.14
PCAF ZH 23.18 49.56 7.43 46.35 31.63
PCAF ES 53.48 77.86 36.87 57.57 56.44

Table 5: Fine-grained result of Deep AM-FM and our best submission on the test datasets of sub-task1 (turn-level).

Model Coherence Engageness Informativeness Overall Average
Deep AM-FM 29.37 37.91 30.66 37.54 33.87
PCAF 39.66 42.45 28.34 42.87 38.33

Table 6: Fine-grained result of Deep AM-FM and our best submission on the test datasets of sub-task2 (turn-level).

batchsize as 32, learning rate as 5e-6, τ as 0.05, α
as 0.2, and the model is trained on one single RTX
3090. Besides, epochs of the pre-training stage and
KD stage are both set as 10.

4.3 Comparison Result
According to DSTC11 Track4, the turn-level met-
rics are evaluated by the following dimensions in
both sub-task1 and sub-task2:

• Appropriateness - The response is appropriate given the
preceding dialogue.

• Content Richness - The response is informative, with long
sentences including multiple entities and conceptual or emo-
tional words.

• Grammatical Correctness - Responses are free of gram-
matical and semantic errors.

• Relevance - Responses are on-topic with the immediate
dialogue history.

For each submission, Spearman correlation at
dimension-level will be calculated separately for
each task. Then, the Spearman correlation scores
obtained will be averaged. Finally, the Spearman
correlation scores will be ranked.

We compare our approach with Deep AM-FM
(Zhang et al., 2020) and the top 4 teams in sub-task1
and sub-task2 in Table 3 and Table 4 respectively,
and the fine-grained results are reported in Table 5
and Table 6. PCAF ranks second and third in sub-
task1 and sub-task2 in the comparison with Deep
AM-FM and other teams’ approaches, showing the
effectiveness of our approach.

4.4 Ablation Studies
To verify the contribution of parallel-corpora-
aligned pre-training and parallel-corpora-aligned

(a) aligned

(b) unaligned

Figure 2: PCA results of metric model M trained with
(top) and without (bottom) alignment loss on DailyDia-
log dataset
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Metric EN ZH ES Multilingual AVG
PCAF 42.26 ± 0.001 40.49 ± 0.001 39.75 ± 0.002 40.83 ± 0.001

kd on DailyDialog 40.94 ± 0.001 38.76 ± 0.001 38.80 ± 0.001 39.50 ± 0.001
w/o kd 39.42 ± 0.009 37.86 ± 0.007 37.13 ± 0.007 38.13 ± 0.007
w/o kd & align 37.70 ± 0.030 37.35 ± 0.007 33.39 ± 0.054 36.15 ± 0.029

Table 7: The Spearman correlation (%) of PCAF ablation study. KD on DailyDialog means the knowledge
distillation is only apply to DailyDialog training set. W/o align means the alignment loss is not involved in
pre-training stage. Standard deviations are presented in gray color.

Corpora Original Paraphrase English Back-translation
ori 36.67 ± 0.018 27.80 ± 0.018 32.96 ± 0.022
para 37.30 ± 0.011 31.63 ± 0.005 36.91 ± 0.006
bt 32.84 ± 0.016 27.07 ± 0.011 30.64 ± 0.014
ori + para 39.44 ± 0.001 32.34 ± 0.003 37.25 ± 0.011
ori + bt 34.62 ± 0.022 25.53 ± 0.018 26.57 ± 0.022
ori + para + bt 38.85 ± 0.007 32.55 ± 0.007 35.86 ± 0.021
ori + para + kd 42.33 ± 0.001 34.05 ± 0.001 39.47 ± 0.002

Table 8: Ablation study of different corpora combination, where ori, para, bt, kd stands for original utterances,
paraphrases, back-translation and knowledge distillation respectively. Models are tested on the original, paraphrases
and English back-translation corpora of development sets by Spearman correlation (%) respectively. Standard
deviations are presented in gray color.

knowledge distillation on multiple datasets, we fur-
ther conduct ablation studies on the provided de-
velopment sets.

Table 7 shows the results of ablation study
on sub-methods of PCAF. According to the re-
sults, both parallel-corpora-aligned pre-training
and parallel-corpora-aligned knowledge distilla-
tion make contribution to the improvement of the
model’s performance. The alignment loss not only
improves the evaluation ability of the model, but
also improves the stability of the model training
according to the standard deviation of model’s val-
idation results. We further visualize the encoded
features on DailyDialog through Principal Compo-
nent Analysis (PCA). As shown in Figure 2, com-
pared to models trained without alignment loss,
model trained with alignment loss has a more com-
pact feature distribution on parallel corpora for the
same sequence, showing that alignment loss ef-
fectively aligns model’s representation of parallel
corpora. We suppose that, as the representation
of parallel corpora is pre-aligned in multilingual
language model, the absence of alignment loss
during pre-training may disturb model’s original
multilingual-aligned knowledge, which is shown in
Figure 2(b). Besides, knowledge distillation is an
important stage of PCAF, and the comparison be-
tween kd single DailyDialog and kd on five datasets

shows that kd on multiple datasets do improves the
generalization ability of model.

Training data of different parallel corpora combi-
nation of sub-task2 is also explored, Table 8 shows
the result of this experiment. The combination
of ori + para achieves the highest performance of
the provided development sets, while the English
back-translation corpora always degrades the per-
formance of the model. The reason of such phe-
nomena is unclear at present, and we leave it to our
future work.

5 Conclusion

In this paper, we propose PCAF, a parallel-corpora-
aligned training framework for training multilin-
gual and robust turn-level automatic dialogue eval-
uation metrics. PCAF treats corpora express the
same idea in different ways as parallel-corpora,
which is aligned during both PCAF pre-training
stage and PCAF knowledge distillation stage. Ex-
periment results show that PCAF achieves a great
performance, which demonstrates the effectiveness
of PCAF. The effectiveness of each sub-method of
PCAF is also proved through ablation study.

6 Limitations

DSTC11 Task4 requires the proposed metrics to
evaluate the dialogues on multiple fine-grained
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qualities. However, we only train the metric model
to evaluate the appropriateness of dialogues, whose
results are further used as the evaluation results of
other qualities. As PCAF can be integrated into
the training process under any parallel-corpora set-
ting, we can further try to train the model to eval-
uate other fine-grained qualities of dialogues with
PCAF.

Besides, despite the DSTC11 Task4 organizers
allow the participants to fine-tune their system
over a subset of the development data, our sub-
mitted model is not fine-tuned with those human-
annotated datasets. While we train our metric
model under self-supervised learning framework,
fine-tuning it on supervised datasets may improve
models evaluation performance, which will be ex-
plored in our future work.
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