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Abstract

Task-oriented dialogue systems that employ ex-
ternal knowledge to generate informative re-
sponses have become an important field of re-
search. This paper outlines our contribution to
Track 5 of the Eleventh Dialog System Tech-
nology Challenge (DSTC11), which focuses
on constructing high-performing, subjective
knowledge-enriched task-oriented dialogue sys-
tems. Specifically, we investigate the comple-
mentarity of various language models to tackle
the diverse knowledge selection task that in-
volves multiple external sources. Based on
this investigation, we propose pre- and post-
generation model ensemble approaches to miti-
gate potential biases inherent in using a single
model for the knowledge selection task. Finally,
we utilize the consensus decoding approach to
combine fine-tuned ensemble models and im-
prove the performance of the generation system.
Our system ranked 1st in human evaluation,
even outperforming human annotation.

1 Introduction

External knowledge is critical for task-oriented di-
alogue (TOD) (Rastogi et al., 2020; Ghazvininejad
et al., 2018) systems to reduce hallucinations when
assisting users with specific tasks. Extensive ef-
fort has been investigated into knowledge-enriched
TOD systems. DSTC9 Track 1 (Kim et al., 2020)
is the first challenge that focuses on generating sys-
tem responses using external knowledge. Previous
works (He et al., 2021a; Han et al., 2022; Thulke
et al., 2023) mainly utilize BERT, RoBERTa, and
ELECTRA (Devlin et al., 2019; Liu et al., 2019;
Clark et al., 2020) to perform knowledge selection,
which achieve satisfactory result.

The DSTC10 Track2 challenge (Kim et al.,
2021) focuses on improving the robustness of
the dialogue system in the presence of automatic
speech recognition (ASR) recognition errors (Weng
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et al., 2020) and speaker disfluencies (Liu et al.,
2021). Existing works (Tian et al., 2021; Tam
and et al., 2022; Yan et al., 2022) combine data
augmentation with pre-trained models like GPT2,
DialoGPT, and PLATO-XL(Radford et al., 2019;
Zhang et al., 2019; Bao et al., 2022) to bridge the
gap between written and spoken conversation.

In contrast to the previous tasks, DSTC11
Track 5 proposed a more practical challenge (Zhao
et al., 2023). In this task, dialogue systems are
expected to provide not only factual information
but also subjective insights from different knowl-
edge domains. Additionally, a single dialogue may
involve multiple knowledge snippets. Neverthe-
less, the presence of multiple external knowledge
sources, each containing different subjective in-
tents, can confuse the dialogue system and make it
difficult to generate an appropriate response. The
recent development of the Large Language Model
(LLM) such as ChatGPT1, LLaMA, and Alpaca
(Touvron et al., 2023; Taori et al., 2023) become
popular in generation tasks. However, the per-
formance of these models on knowledge-enriched
TOD systems is far from being well-studied. In
this paper, we contribute to the challenge from the
following perspectives:

1) We explore the retrieval performance of vari-
ous discriminative models and quantitatively ana-
lyze their complementarity.

2) To mitigate potential biases inherent in using a
single model in the knowledge selection, we design
pre- and post-generation model ensemble methods
to leverage both the capacity and diversity of the
different fine-tuned models.

3) We explore the utilization of the recent pop-
ular LLaMA-7b on this task. Experiments show
that our best single model outperforms LLaMA-7b
finetuned on this task in two out of four metrics.

4) We utilize the consensus decoding (Mi and
et al., 2021) method to combine language model

1https://chat.openai.com/
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ensemble with different initializations to improve
the generalization of the generation. Our final sys-
tem ranks 1st place in the human evaluation, which
performs even better than human annotation.

2 Methodology

We define the dialogue context of the t-th utterance
turn as Wt = {wt−u+1, · · · , wt−1, wt}, where u is
the window size of the truncated dialogue context.
The knowledge snippets in the external knowledge
base are defined as K = {k1, · · · , kM}, where M
is the size of the knowledge base.

2.1 Knowledge-Seeking Turn Detection
The first issue that the dialogue system needs to
handle is whether external knowledge should be
used in the current dialogue turn i.e. whether the
generation of the system utterance wt+1 of current
user turn wt requires external knowledge. This
turn detection task can be formulated as a binary
classification problem, given the dialogue context
Wt as the model input, the training objective is to
minimize the binary cross-entropy loss:

Ldetect = −yt log pθd (yt |Wt)

− (1− yt) log (1− pθd (yt |Wt)) ,
(1)

where θd is the model parameters, the probabil-
ity pθd is determined by the binary classification
model, and yt is the ground truth label indicating
whether user utterance turn wt requires knowledge.

2.2 Knowledge Selection
The dialogue system retrieves relevant knowledge
snippets from the external knowledge base when
decides to use external knowledge to generate a
response, indicated by the current user turn wt.

In this paper, for each dialogue instance that re-
quires external knowledge, we randomly sample
negative candidates from those belonging to the
same entity that is queried in the dialogue context.
To formalize the training process of knowledge se-
lection, we define the set of sampled negative can-
didates as KN = {k̃1, k̃2, . . . , k̃C} and the ground
truth knowledge snippets for the current dialogue
instance as KG = {k̂1, k̂2, . . . , k̂D}, where C is
the number of sampled negative candidates and D
is the number of ground truth knowledge snippets
used in the current dialogue instance. The training
objective is to minimize the following loss:

Lselection = − ∑
j∈KG∪KN

log pθs (lki |Wt) , (2)

where θs is the selection model parameters, pθs is
determined by the selection model, and lki is the
ground truth label of the knowledge candidate ki.
During inference, the selected knowledge snippets
can be written as KS = {k | p(lk | Wt) > τ, k ∈
K}, where τ is the threshold that yields the best
model performance on the validation set.

2.3 Knowledge Grounded Generation
The dialogue model generates a response based on
the dialogue history context and the selected knowl-
edge snippets. Our model uses an auto-regressive
architecture to generate the response, and the train-
ing loss is minimized by reducing the negative log-
likelihood (NLL) loss.

Lgeneration = − log pθg (rg |Wt,KS) , (3)

where θg is the parameters of the dialogue gener-
ation model and rg is the ground truth response.
During training, we use ground truth knowledge
snippets as input. During inference, the knowl-
edge selection model selects relevant knowledge
snippets for the following response generation.

2.4 Model Ensemble
Our final submitted system uses the model ensem-
ble combination for both knowledge selection and
dialogue generation subtasks. This enhances the
robustness and diversity of the whole system.

Knowledge Selection: We propose two different
model ensemble methods, named pre-generation
and post-generation model ensembles, as shown
in Figure 1. The pre-generation ensemble aver-
ages the selection probability output from each
fine-tuned knowledge selection model to obtain the
final selected results. These results are then fed into
each dialogue generation model. However, this en-
sembling method may limit the diversity that can
be provided by each selection-generation model
pair. To address this problem, we also explore
the post-generation ensemble approach, which in-
volves feeding the output of each knowledge selec-
tion model into every generation model instead of
initially combining multiple knowledge selection
results into a single one.

Dialogue Generation: In our system, we use the
consensus decoding algorithm (Mi and et al., 2021)
to combine the ensembles, which generate the final
system response using the following equation:

S∗ = argmax
S′

∑

i

ψi

(
S, S′)wi, (4)
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Figure 1: We employ two different model ensemble techniques in our system: a) pre-generation ensemble, in which
ensemble knowledge selection results before response generation. b) post-generation ensemble, in which model
ensemble is performed only once based on all the final generated responses from various generation models.

where S refers to the set of 1-best system responses
generated from the beam search of each dialogue
generation model, and S′ is a system response from
the response pool that consists of all N-best re-
sponses generated by each generation model. ψi

denotes the i-th similarity function that computes
the similarity scores between S and S′, and wi cor-
responds to the weight of the similarity function.
The similarity function is built using nine different
metrics: BLEU-1/2/3/4, METEOR, ROUGE-1/2/L,
and negative normalized word error rate.

3 Experiments

3.1 Datasets

We use the DSTC11 Track 5 dataset 2 as our train-
ing data. The key difference between DSTC11
and the previous DSTC10 and DSTC9 challenges
is that DSTC11 includes not only factual knowl-
edge but also subjective knowledge in the dialogue.
Therefore, the response generation model needs to
be aware of the sentiment orientation embedded in
the knowledge snippets when generating a system
response. Furthermore, there are multiple ground
truth knowledge snippets to consider, as opposed
to only one in the previous challenge.

3.2 Experimental Setting

The model training setting of each subtask in Sec-
tion 2 is described below, models for each subtask
are trained on a single RTX 3090 GPU.

Knowledge-Seeking Turn Detection: To ad-
dress the binary classification problem, we used a
single large-sized DeBERTaV3 (He et al., 2021b)
as our backbone model, given its outstanding per-
formance in pre-training language models. We set

2https://github.com/alexa/dstc11-track5

the batch size to 16 and employed an AdamW opti-
mizer with a learning rate of 3e-5 and an ϵ of 1e-8.
The training epoch was set to 10. The automated
metrics we used include Precision, Recall, and F1.

Knowledge Selection: To leverage the comple-
mentary capabilities of different pre-trained models
in knowledge selection, we utilize 5 different large-
sized pre-trained language models as our backbone
model, which includes BERT (Devlin et al., 2019),
DeBERTaV3 (He et al., 2021b), RoBERTa (Liu
et al., 2019), ELECTRA (Clark et al., 2020), and
XLNet (Yang et al., 2019). The final selection prob-
ability shown in Eq. 2 is the average value of all
models’ output. The training batch size for each
pre-trained model is 256 and we adopt an AdamW
optimizer with a learning rate of 5e-5 and an ϵ of
1e-8, the total training epoch is set to 6. The evalu-
ation metrics include Precision, Recall, and Exact
Matching Accuracy.

Knowledge-Grounded Generation: To im-
prove the model robustness and diversity, we com-
bine the generation responses from five fine-tuned
large-sized BART (Lewis et al., 2020) ensemble
models initialized with different random seeds as
our final result. The training batch size for each
pre-trained model is 16 and we adopted an AdamW
optimizer with a learning rate of 5e-5 and an ϵ of
1e-8, the epoch is set to 16. The metrics include
BLEU-1/2/3/4, METEOR, and ROUGE-1/2/L.

3.3 Evaluation Results

Details of each submitted entry of our team are
described as follows:

Entry 0 uses the pre-generation ensemble and
the threshold τ is chosen so that the ensembled
knowledge selection probability yields the best per-
formance on the validation set.
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ID Task 1: Turn Detection Task 2: Knowledge Selection Task 3: Response Generation
Team Entry Precision Recall F1 Precision Recall F1 Exact Match BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

Baseline 0.9982 0.9979 0.9980 0.7901 0.7877 0.7889 0.3906 0.1004 0.1748 0.3520 0.1430 0.2753
2 3 0.9940 0.9986 0.9963 0.8093 0.7858 0.7974 0.4156 0.0984 0.1774 0.3658 0.1509 0.2875

6
(ours)

0 0.9968 0.9996 0.9982 0.8039 0.8775 0.8391 0.5547 0.1017 0.1894 0.3629 0.1478 0.2804
1 0.9968 0.9996 0.9982 0.7607 0.9025 0.8256 0.5385 0.1008 0.1889 0.3616 0.1467 0.2782
2 0.9968 0.9996 0.9982 0.8125 0.8768 0.8434 0.5691 0.1005 0.1886 0.3617 0.1464 0.2794
3 0.9968 0.9996 0.9982 0.7712 0.9013 0.8312 0.5538 0.1005 0.1886 0.3617 0.1464 0.2794

8 0 0.9979 0.9982 0.9980 0.8240 0.8141 0.8190 0.5130 0.1029 0.1764 0.3587 0.1479 0.2822
7 4 0.9979 0.9993 0.9986 0.8183 0.8506 0.8342 0.5314 0.1075 0.1744 0.3585 0.1459 0.2794

12 2 0.9986 0.9986 0.9986 0.7538 0.8227 0.7868 0.4291 0.0961 0.1715 0.3572 0.1467 0.2798
13 3 0.9964 0.9982 0.9973 0.8590 0.8449 0.8519 0.6432 0.1081 0.1819 0.3652 0.1528 0.2872
14 0 0.9979 0.9989 0.9984 0.7856 0.8035 0.7944 0.4183 0.1066 0.1748 0.3599 0.1577 0.2899

Table 1: Automatic evaluation results of the inclusion teams for human evaluation, with the highest values highlighted
in bold, while underlining indicates the second highest value. Our best system ranked 1st in Recall (detection) and
METEOR (generation) in Recall (selection).

Entry 1 uses the pre-generation ensemble and
the threshold τ is the average of every single
model’s threshold defined in Subsection 2.2.

Entry 2 uses the post-generation ensemble.
Since the knowledge selection result is required
for system evaluation, we use the same selection
result as Entry 0 for the purpose of final evaluation.

Entry 3 uses the post-generation ensemble. For
the same reason as Entry 2, we use the same selec-
tion result as Entry 1.

The automatic evaluation results of the selected
team for the final human evaluation on the DSTC11
Track 5 test set are summarized in Table 13. Our
top-performing system demonstrates excellent re-
sults across multiple evaluation metrics, ranking
5th place in the overall system performance. Fur-
thermore, our system achieves first place in Recall
for turn detection and knowledge selection, as well
as in METEOR for dialogue generation. In ad-
dition to our first-place achievement, our system
ranks second place in the other four metrics.

Rank Team Entry Accuracy Appropriateness Average

1 6 (ours) 0 2.9095 3.6596 3.2846
Ground Truth 2.9189 3.6422 3.2806

2 8 0 2.9005 3.6535 3.2770
3 13 3 2.9100 3.6321 3.2710
4 2 3 2.8908 3.6487 3.2697
5 7 4 2.9046 3.6348 3.2697

Baseline 2.8715 3.6348 3.2531

Table 2: Human evaluation on the DSTC11 Track 5 test
set. Our system achieved 1st place in human evaluation,
which performs even better than human annotation.

The final ranking is determined by human evalua-
tion. Crowdsourcing workers evaluate each system
response based on two metrics: accuracy and ap-
propriateness. The evaluation scores for each met-
ric range from 1 to 5, with higher scores indicating

better-generated system responses. As shown in Ta-
ble 2 3, our best system ranked 1st place in human
evaluation, outperforming even human annotators.
This outstanding performance illustrates that our
system can generate human-like responses using
external factual and subjective knowledge.

3.4 Ablation On Knowledge Selection

We also investigate the performance of various pre-
trained models on the validation set of the knowl-
edge selection subtask. To avoid the influence of
the turn detection subtask, we use the ground truth
result of turn detection as model input.

Model Precision Recall F1 Exact Match Total

Baseline 0.7482 0.9371 0.8321 0.4423 2.9597
BERT 0.8055 0.9236 0.8605 0.5566 3.1462

DeBERTaV3 0.8119 0.9348 0.8690 0.5965 3.2122
RoBERTa 0.8005 0.9285 0.8598 0.5590 3.1477
ELECTRA 0.8376 0.9277 0.8804 0.5918 3.2375

XLNet 0.7878 0.9343 0.8548 0.5773 3.1541
Ensemble 0.8539 0.9170 0.8843 0.6087 3.2639

Table 3: Different model performances on the knowl-
edge selection. The results after the ensemble shows a
significant improvement compared to the baseline.

As shown in Table 3, five different fine-tuned
pre-trained models generate comparable results on
the validation set. Furthermore, the results of the
ensemble model achieved considerable improve-
ment compared to other methods, which demon-
strated that model ensemble can achieve higher
quality and more robust results by leveraging the
complementarity of various models. In this paper,
we quantitively evaluate the complementarity of
different fine-tuned models in knowledge selection
tasks by calculating the ‘cross EM’ score between

3https://github.com/alexa/dstc11-track5
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each fine-tuned model. The ‘cross EM’ score is
defined as using the output of a particular model as
the ground truth to score the output Exact Matching
accuracy of other models. A lower score indicates
greater inconsistency and stronger complementar-
ity between the two models, while a higher score in-
dicates weaker complementarity. Table 4 shows the
cross EM between each fine-tuned model, which
illustrates the complementarity between models,
and the performing model ensemble is effective.

BERT DeBERTaV3 RoBERTa ELECTRA XLNet
BERT - 0.7389 0.7379 0.7496 0.7573

DeBERTaV3 0.7389 - 0.7707 0.7634 0.7831
RoBERTa 0.7379 0.7707 - 0.7285 0.7526
ELECTRA 0.7496 0.7634 0.7285 - 0.7514

XLNet 0.7573 0.7831 0.7526 0.7514 -

Table 4: Cross EM of each fine-tuned model, which
demonstrates the complementarity between models

The DSTC11 Track 5 challenge features two
distinct domains, namely hotels, and restaurants,
in its knowledge base. This paper also explores
the difficulty of selecting knowledge across these
domains on the validation set. As Table 5 illus-
trates, knowledge selection in the restaurant do-
main proves more challenging than that in the hotel
domain. This may come from the domain imbal-
ance of different domains, which highlights the
significance of the model ensemble in this subtask.

Domian: Hotel Domian: Restaurant
F1 EmAcc Total F1 EmAcc Total

BERT 0.9325 0.6330 1.5655 0.8155 0.4921 1.3067
DeBERTaV3 0.9350 0.6616 1.5966 0.8392 0.5628 1.4020

RoBERTa 0.9276 0.6156 1.5882 0.8238 0.5426 1.3664
ELECTRA 0.9421 0.6602 1.6023 0.8533 0.5541 1.4074

XLNet 0.9333 0.6504 1.5837 0.8090 0.5310 1.3400

Table 5: The performance of the fine-tuned model on
two knowledge domains, the retrieval in the restaurant
domain is more difficult than in the hotel domain.

3.5 Ablation On Dialogue Generation

To investigate the performance of different pre-
trained language models on the dialogue generation
task, we fine-tune encoder-decoder-based and pure
decoder-based models on DSTC11 Track 5 dataset,
which contains comparable parameter quantities
except for LLaMA-7b. We use the ground truth
knowledge snippets as model input and we fine-
tuned LLaMA-7b on eight RTX3090 GPUs with a
learning rate of 5e-7, other training settings follow
the description in Subsection 3.2.

As shown in Table 6, where the notations -B, -L,

and -M represent the model sizes of Base, Large,
and Medium. BART-Large performed the best in
the total score. It should be noted that we ob-
tained the results of LLaMA-7b after the end of the
DSTC11 challenge, and we did not use LLaMA-
7b in our final submitted system. Additionally,
the encoder-decoder-based model outperformed
the decoder-based model. Even with the much
larger language model LLaMA, the performance
of LLaMA-7b could not completely surpass the
fine-tuned BART-L model. This indicates the im-
portance of the encoder in this type of task.

Stucture Model BLEU METEOR ROUGE-2 ROUGE-L

Baseline BART-B 10.55 17.29 15.31 29.01
Encoder
-Decoder

T5-B 11.07 18.01 15.53 29.40
BART-L 10.24 20.19 15.77 29.61

Pure-
Decoder

GPT2-M 9.68 17.28 14.37 28.26
DialogGPT-M 9.85 17.16 14.76 28.58

LLaMA-7b 10.60 18.02 16.22 30.08

Table 6: The performance of different models on dia-
logue generation tasks, with the encoder-decoder-based
model outperforming the decoder-based model.

Finally, we conduct an ablation experiment on
the validation set to determine the best composition
of similarity functions as defined in Eq. 4. where
‘All’ indicates that all nine functions are used for
consensus decoding. As shown in Table 7, the
best performance on the validation set is achieved
when only the ROUGE-L-based similarity function
is used. Thus, we only used a ROUGE-L-based
consensus decoding for ensemble combination in
our final submitted system.

Metric BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

Baseline 10.55 17.29 36.90 15.31 29.01
ALL 10.74 20.18 38.22 16.05 29.89

BLEU 10.73 20.14 38.18 16.05 29.86
METEOR 10.52 20.30 38.10 15.91 29.75
ROUGE-1 10.66 20.23 38.37 16.06 29.95
ROUGE-2 10.71 20.14 38.21 16.07 29.89
ROUGE-L 10.75 20.17 38.27 16.10 30.00

Table 7: Ablation study on similarity functions, the
optimal performance on the validation set was achieved
by only using the ROUGE-L similarity function.

4 Conclusions

In this paper, we present the details of our submis-
sion to the DSTC11 Track 5 challenge, where our
system achieved the top ranking among 14 partici-
pating teams on human evaluation. Our system not
only achieved great results in the final evaluation
conducted by the organizers but also demonstrated
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outstanding performance in the extensive experi-
ments that we conducted. We have also explored
the potential of the recent large language model
on this challenging knowledge-enriched TOD task.
We believe that our findings and methods can con-
tribute to the advancement of TOD dialogue sys-
tems and can inspire future research in this area.
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