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Abstract

This paper describes our submission to the fifth
track of the 11th Dialog System Technology
Challenge (DSTC11), which focuses on "Task-
oriented Conversational Modeling with Subjec-
tive Knowledge". We focus on response gen-
eration and leverage a ranking strategy to en-
semble individual models of BART, Long-T5,
and a fine-tuned large language model based on
LLaMA. The strategy is supplemented by other
techniques like low rank adaptation to main-
tain efficient utilization of these large models
while still achieving optimal performance. The
experiments show that the ensemble method
outperforms individual models and the base-
line method. Our model was ranked 1st place
in ROUGE_1, 2nd place in ROUGE_L score
and 4th place in human evaluation among a
total of 14 participating teams.

1 Introduction

The task of developing effective and engaging task-
oriented dialogue systems has been a subject of
ongoing research and development in the field of
natural language processing (NLP). Traditional ap-
proaches to task-oriented dialogue systems have
focused on providing information and performing
actions based on predefined rules or accessing back-
end databases or APIs. However, user requests may
sometimes require information outside the scope
of these structured resources, requiring the system
to incorporate additional domain knowledge from
external unstructured sources.

Past challenges such as DSTC9 track 1 (Kim
et al., 2021a) and DSTC10 track 2 (Kim et al.,
2021b) have proposed the use of unstructured
knowledge from FAQs to build a knowledge-
grounded task-oriented dialogue system. The tasks
proposed in DSTC11 track 5 build off past work
by including subjective knowledge from customer
reviews, which also involves addressing the com-
plexity of differentiating multiple aspects within a

single review post, conflicting opinions, and com-
parison requests between entities.

We primarily focus on the third sub-task of
this challenge, which involves response genera-
tion. Our approach combines the utilization of large
foundational language models with a ranking strat-
egy for response prioritization. Additionally, we
employ the method of low rank adaptation (LoRA)
(Hu et al., 2021) to keep resource usage low while
training and using such large models. To enhance
generation performance, we employ an ensemble
technique that combines multiple individual mod-
els, leveraging the capabilities of GPT-4 (OpenAI,
2023) in the process. Our final model achieved
impressive rankings in the evaluation metrics. It
secured the 1st place in ROUGE_1, the 2nd place
in ROUGE_L score, and the 4th place in human
evaluation. This demonstrates the effectiveness and
competitiveness of our approach in the challenge.

2 Related Work

Several methods of improving knowledge-
grounded task-oriented dialogue systems have
been explored by participants in past DSTC
challenges. Thulke et al. (2023) implemented
a noisy channel model to separate the tasks of
generating a response and incorporating knowledge
by reranking multiple candidate responses. He
et al. (2021a) and Tian et al. (2021) both use
large pre-trained language models exceeding 1
billion parameters to generate the final response.
The former focuses on incorporating structured
knowledge from MultiWOZ 2.2 (Zang et al., 2020)
and negative sampling for the knowledge selection
task, while the latter explores several approaches
to generating more synthetic dialogue data.

The scaling up of large language models in re-
cent years has continued to show gains in terms of
performance and abilities (Wei et al., 2022). How-
ever, the prohibitive cost of fine-tuning all the pa-
rameters in these models has led to the exploration
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of parameter efficient fine-tuning strategies, such
as adapter layers (Houlsby et al., 2019), prompt
tuning (Liu et al., 2021; Li and Liang, 2021; Liu
et al., 2022), and LoRA (Hu et al., 2021).

3 Task Description

The aim of this challenge track is to generate a
relevant response given a set of user and agent
turns, and a knowledge base which may contain
information relevant to the user’s query. This is
further divided into 3 sub-tasks:

1. Knowledge Turn Detection: Determining
whether a given query is knowledge-seeking
and should be handled by the following steps

2. Knowledge Selection: Selecting knowledge
snippets consisting of user reviews and FAQs
relevant to the query

3. Response Generation: Generating a response
to the query based on knowledge snippets
selected in the previous step

The training data provided for this challenge
includes 28,431 dialogues, of which 14,768 are
knowledge-seeking turns which will be processed
by the knowledge selection and response genera-
tion steps. A knowledge base containing subjec-
tive knowledge in the form of user reviews and
objective knowledge in the form of FAQs is also
provided. The dialogues are augmented from Mul-
tiWoz 2.1 to include additional knowledge-seeking
turns which require information from the knowl-
edge base. All dialogues and knowledge snippets
belong to either the hotel or restaurant domain. Ta-
ble 1 shows the quantities of dialogue data and
knowledge for these two domains. Additionally,
each knowledge snippet is labeled with the name
of the entity (hotel or restaurant) it refers to, the re-
viewer profile for user reviews (solo, couple, family,
friends, colleagues), and the food and drink items
mentioned in restaurant reviews. On average, each
knowledge seeking turn in the train set has 3.80
relevant knowledge snippets, while the validation
set has 4.07 relevant knowledge snippets.

4 Methodology

Figure 1 depicts the overall architecture of our
methods.

Type Hotel Rest.
Dialogues (Train) 7859 6909
Dialogues (Valid) 1436 693
Entities 33 110
Reviews 330 1100
FAQs 1219 1650

Table 1: Quantity of data by domain.

4.1 Knowledge Seeking Detection (KTD)

In sub-task 1, which focuses on knowledge-seeking
turn detection, we employ the baseline method
which utilizes a DeBERTa (He et al., 2021b) model
to encode the concatenated input of the dialogue
context C = [U1, S1...Ut, St], including user utter-
ance Ui and system response Si at each step of the
conversation. To classify whether the current user
utterance contains a knowledge-seeking request,
we utilize a binary classifier, which leverages the
encoded representation of the dialogue context pro-
duced by the DeBERTa model to make predictions.

h = DeBERTa(C)

P (C) = softmax(Dense(h))

4.2 Knowledge Entity Matching

The goal of knowledge entity matching process is
to select entities E = {e1, ..., em} which are rele-
vant to the user utterance given dialogue context
C and a list of knowledge snippets. We follow
the baseline which uses a word-matching method
based on Jin et al. (2021) for entity extraction.
Specifically, the method first applies a list of heuris-
tic rules which are used to normalize entity names,
then uses n-gram fuzzy matching between the nor-
malized entity names and all dialogue turn utter-
ances. The longest contiguous matching subse-
quence (LCS) algorithm is used to calculate the
similarity between a entity name and a user utter-
ance, and a threshold of 0.95 is used to determine
whether an entity is considered a match. Finally,
the method selects the entities from the last dia-
logue turn in which entities are detected.

4.3 Knowledge Selection

The knowledge selection task aims to select knowl-
edge snippets which are relevant to the current
user utterance at each turn given dialogue con-
text C and a list of candidate knowledge snippets
KE = {kE1 , ..., kEn } where each element of the
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Figure 1: The overall architecture of our methods

knowledge snippets belongs to the selected entities
E during the entity matching process.

We consider the knowledge selection process as
a sequence classification task. Formally, for each
turn, the method first concatenates the dialogue
history with each candidate knowledge snippet kEi
from the matched knowledge entities E. A De-
BERTa encoder is used to encode the concatenated
input to obtain hidden representation hi and then a
classification head followed by a softmax function
is used to obtain the relevance probability of the
candidate knowledge snippet.

UE
i = [C,KE

i ]

hEi = Deberta(UE
i )

SE
i = Softmax(Dense(hEi ))

During training, a sampling approach is used to
reduce the number of negative candidate snippets
from the large candidate space in the knowledge
base. Following the baseline, we only sample neg-
ative candidates from entities which are relevant to
the dialogue. A binary cross-entropy loss is used
to optimize the model. As the number of knowl-
edge snippets required for each dialogue varies, a
threshold P is applied to the relevance probabili-
ties to select candidate snippets during inference.
P is estimated based on the validation set. As the
optimal P for the test set may be different, we dy-
namically vary the threshold during inference by
lowering it if no knowledge candidates meet the
original threshold. We repeat this process until at
least one knowledge snippet is selected.

4.4 Response Generation
The response generation task aims to generate a
proper system response for user requests for knowl-

edge given dialogue context C and selected knowl-
edge snippets KE

s . We first adapt the follow-
ing transformer based models including encoder-
decoder models and decoder-only models to gener-
ate a system response based on the concatenated in-
put of dialogue context C and concatenated knowl-
edge snippets KE

s as a single string:

1. BART model (Lewis et al., 2020): the same
model used in the baseline, we increase the
maximum input knowledge token size from
256 to 512 to avoid knowledge cutoff for some
turns.

2. Long-T5 model (Guo et al., 2022): Long-
T5 model purposes local attention and tran-
sient global attention methods which show im-
proved performance for long sentence genera-
tion tasks such as summarization. We hypoth-
esize that a model with strong summarization
capabilities will be beneficial for combining
information across multiple user reviews, thus
improving the quality of the response.

3. LLaMA model (Touvron et al., 2023): The
LLaMA model is a foundation decoder-only
model which is pre-trained on more than 1
trillion tokens. Recent research like Peng et al.
(2023) also show that the LLaMA model is
capable of GPT-4 like performance after in-
struction tuning. In this challenge, we ex-
plore directly fine-tuning the original LLaMA
model.

We first train all 3 models including BART,
Long-T5 and LLaMA model individually with all
3 models using the same input from the knowledge-
seeking detection and knowledge selection task.
For BART and T5 model, we reuse the baseline
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approach to train the model while only changing
the tokenizer and encoder-decoder model. For
LLaMA model, we use the parameter efficient tun-
ing method LoRA for model fine-tuning which can
avoid memory issues using limited GPU resources.
We train the model to maximize next token proba-
bility via aligned language modeling.

4.5 Response ranking
To encourage diversity of the system response and
utilize strong points from different models, we pro-
pose an ensemble method for generating the final
response via ranking of the three models by a rank-
ing model.

The goal of the ranking model is to give scores
Sj for the quality of the response given the concate-
nated input of dialogue context C, concatenated
knowledge snippets KE

s and output of each gen-
eration model oj , j ∈ {1, 2, 3}. We designed a
customized prompt pc for the independent model
in order to perform zero-shot evaluation on the re-
sponse generation by different models. We make
use of a large language model GPT-4 and use their
API for the evaluation.

Sj = GPT4([pc, C,K
E
s , oj ]), j ∈ {1, 2, 3}

Then we ensemble the model outputs using two
methods: 1) select the model output with the high-
est score for each turn. 2) select the model output
with the highest score only if the output of the
best reference model scores below or equal to a
threshold St, otherwise we select the output of the
best reference model instead. We consider the best
reference model using human evaluation on the
dev-set with a likert scale of 1 to 5 by sampling N
utterances as our best reference model.

5 Experiments

5.1 Sub-task 1: Knowledge-Seeking Turn
Detection (KTD)

For the knowledge turn detection task, we use the
baseline implementation of a DeBERTa v3 model
with a binary classifier.

Data: For training, we use all 28431 dialogue
samples in the provided dataset. For validation, we
use all 4173 dialogue samples in the dataset.

Metrics: The evaluation metrics for KTD are
precision, recall, and F1.

Hyperparameters: We use the baseline hyper-
parameters of learning rate α = 3 ∗ 10−5, number
of epochs E = 10, maximum history token size

of 510, and Adam optimizer with ϵ = 10−8 and
β1 = 0.9, β2 = 0.999.

5.2 Sub-task 2: Knowledge Selection (KS)
For the knowledge selection task, we also use the
DeBERTa model as a cross encoder followed by a
classifier as implemented in the baseline. During
inference, we begin by filtering knowledge snippets
by the probability estimated by the model using the
threshold P , and repeatedly lower it by 0.5 if none
of the candidates meet the threshold.

Data: For training, we use 14768 dialogue sam-
ples which require knowledge access. The valida-
tion set consists of 2129 dialogue samples.

Metrics: The evaluation metrics for KS are pre-
cision, recall, and F1 on the snippet level, where
the metrics are calculated across all <C, KS> pairs.

Hyperparameters: We use the baseline hyper-
parameters of learning rate α = 3 ∗ 10−5, number
of epochs E = 3, maximum history and knowl-
edge token size of 256 each, and Adam optimizer
with ϵ = 10−8 and β1 = 0.9, β2 = 0.999.

5.3 Sub-task 3: Response Generation (RG)
For RG, our initial experimentation involves gen-
erating responses independently from individual
models, including BART, Long-T5, and LLaMA.
To further enhance the quality and effectiveness of
the responses, we employ an ensemble approach.
We utilize GPT-4 to score the responses generated
by the individual models for each dialogue turn.
The scores assigned by GPT-4 are used to deter-
mine the most suitable response from the ensemble
of models, which allows us to leverage the strengths
of each individual model while mitigating their
weaknesses.

Data: Similar to the KS task, we use 14768 train-
ing samples and 2129 validation samples which
have knowledge and system response labels.

Metrics: The automatic evaluation metrics for
RG task include BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee and
Lavie, 2005). Apart from the official human evalu-
ation, we also internally assess the results of differ-
ent models for aspect accuracy.

Hyperparameters: For the Bart and Long-T5
model, we chose the same hyperparameters of
learning rate α = 5 ∗ 10−5, number of epochs
E = 3, maximum history and knowledge token
size of 512, and we use the Adam optimizer with
ϵ = 10−8 and β1 = 0.9, β2 = 0.999. We se-
lect transient-global attention for Long-T5 model.
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For the LLaMA model we select the pretrained
LLaMA model with 7 billion parameters, and we
chose LoRA rank r = 8 which applies to Wq,Wv

for this experiment. For the ensembled model, we
set the reference model as LLaMA model because
it scores highest based on our human evaluation on
the dev-set. We chose ensembling score threshold
St = 3 with a scoring likert scale of 1 to 5.

6 Results and Analysis

We present our experimental results and analyses
in this section.

6.1 Sub-task 1: Knowledge-Seeking Turn
Detection (KTD)

Data Split P R F1
Validation 99.92 99.95 99.93
Test 99.86 99.79 99.82

Table 2: Evaluation results for Task 1 on validation and
test set.

Data Metrics
Train Val P R F1

H
H 99.86 99.86 99.86
R 99.33 86.00 92.19

R
H 99.91 79.46 88.52
R 99.86 100.0 99.93

All
H 100.0 99.86 99.93
R 99.86 99.86 99.86

Table 3: Analysis of domain masking for Task 1 on the
validation set. H and R represent hotel and restaurant
domains respectively

The performance of the baseline model for sub-
task 1 is presented in Table 2. Although the model
demonstrates near-perfect performance on both the
validation and test sets, we conducted an examina-
tion of its generalization capability through domain
masking in this work. Table 3 shows the perfor-
mance of the model in the cross-domain evaluation
setting. The results reveal a substantial decline in
performance when validating on the masked do-
mains, especially in terms of recall, suggesting that
the model’s effectiveness diminishes when con-
fronted with unseen domains. This drop in perfor-
mance underscores the challenge of domain adapta-
tion in KTD, as in most NLP tasks. These findings
also emphasize the need to carefully consider do-
main adaptation during test set construction and

further explore this aspect in future research en-
deavors.

6.2 Sub-task 2: Knowledge Selection (KS)

Model P R F1 EM
Fixed P 77.11 82.01 79.48 42.39
Dynamic P 77.03 82.17 79.52 42.47

Table 4: Evaluation results for Task 2 on test set.

Data Metrics
Train Val P R F1 EM

H
H 72.94 92.99 81.75 32.34
R 33.59 83.79 47.96 18.59

R
H 72.21 80.56 76.15 28.44
R 73.22 78.90 75.96 35.73

All
H 81.64 94.39 99.93 43.32
R 68.59 80.70 74.15 36.46

Table 5: Analysis of domain masking for Task 2 on the
validation set. H and R represent hotel and restaurant
domains respectively

We analyze the effect of dynamically adjusting
the threshold, P for KS. Using a fixed P obtained
from tuning on the validation set, we find that no
knowledge snippets are retrieved for 31 out of 2796
samples filtered by the KTD step. We observe a
small uplift in recall, F1, and exact match metrics
in the test set after using a dynamic P value, as
shown in Table 4.

As with the KTD task, we also evaluated the KS
model by domain masking, presented in Table 5.
We observe that masking domains in this case also
negatively impacts the performance of unmasked
domains, which may be due to the limited amount
of training data used. We also note that perfor-
mance on the restaurant domain is comparatively
weaker, which may be due to the larger number of
knowledge snippets (as shown in Table 1) and the
additional aspect of food types compared to the ho-
tel domain. Hence, further improvement to the KS
task may be obtained by focusing on improving the
quality or availability of restaurant domain data.

6.3 Sub-task 3: Response Generation (RG)

Table 7 provides a summary of the automatic eval-
uation results for various models on the task 3 test
set. Notably, each individual model exhibits its
own strengths: Long T5 achieves the highest BLEU
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U: Is there any restaurants located in the north side of town?
S: There is one. It is da vinci pizzeria. Shall I book it?
U: Does Da Vinci Pizzeria serve portions that are plentiful?
BART: Yes, Da Vinci Pizzeria does serve portions that are plentiful. Past guests have said that the portions are plentiful.
Would you like to know more about them?
Long-T5: The Da Vinci Pizzeria serves plentiful portions, but some customers have said that the portions are too small.
LLaMA: Yes, Da Vinci Pizzeria does serve portion sizes that are plentiful. Would you like to know more about them?
E2.: The Da Vinci Pizzeria serves plentiful portions, but some customers have said that the portions are too small.
GPT-4 (standalone): Some customers feel that Da Vinci Pizzeria serves portions that are plentiful and satisfying, while
others think the portions are relatively small. It can vary depending on personal preferences and appetites. If you enjoy
hearty portions, you might want to explore other options or consider ordering extra items to ensure you’re fully satisfied.
Reference: Some past customers do feel that the portions are plentiful, but there are others who felt that they are too small.

Table 6: Sampled output of our different models. For GPT-4 (standalone), we directly instruct prompting the GPT-4
using input of dialogue context C and selected knowledge KE

s for answer generation.

Model BLEU MT R-1 R-2 R-L
Baseline 10.04 17.48 35.20 14.30 27.53
Long T5 10.50 16.91 34.72 14.66 27.93
BART 10.20 17.50 35.28 14.34 27.60
LLaMA 9.44 17.47 36.52 14.94 28.75
E1. 9.84 17.74 36.58 15.09 28.75
E2. (St = 3) 10.24 17.76 36.33 15.08 28.65

Table 7: Automatic evaluation results on test-set for
Task 3. Evaluation metrics including BLEU-4 (BLEU),
ROUGE (R-1, R-2, R-L), METEOR (MT). E1. stands
for our first ensemble method, and E2. stands for the
second ensemble method with threshold St = 3.

score, BART excels in METEOR, and LLaMA per-
forms best in terms of ROUGE score. Furthermore,
we observe that the performance of E1. closely
approaches that of the reference model LLaMA,
suggesting that a naive ranking method may not
outperform the strongest individual model. The
method E2. with St = 3 yields the best overall per-
formance and we use Table 6 to showcase sampled
outputs from different models. It is evident that
the results generated by BART and LLaMA lack
some negative opinions, while Long T5 effectively
summarizes the reviews in this case. The ensem-
ble model successfully selects Long T5 as the final
output, thereby maintaining the appropriateness of
the response compared to the standalone zero-shot
response generation by GPT-4.

Table 8 illustrates the results obtained from both
human assessors and GPT-4 for our models on the
test set for RG. For human evaluation, we enlist the
expertise of four NLP experts who employ a Likert
scale, ranging from 1 to 5, to rate the responses.
The experts are provided with the dialogue context,
oracle knowledge snippets, and predicted response
for each model. To ensure consistency and reliabil-
ity, we randomly sample a total of 120 instances

Model Score PCCHuman GPT-4
BART 3.64 4.12 0.3626
Long T5 3.36 4.07 0.2856
LLaMA 3.88 4.28 0.2884
E1. 3.90 4.52 0.1785
E2. (St = 3) 3.82 4.73 0.3026

Table 8: Comparison between the average scores of our
internal human evaluation and GPT4 evaluation for Task
3, and Pearson correlation coefficients (PCC).

and divide them into four groups. Among these
groups, each pair has a 30% overlap, enabling us
to assess the consistency of scores. The scores as-
signed by the experts aim to evaluate the aspect
accuracy of the response. To determine the level of
agreement among the experts, we calculate the av-
erage score difference. This amounts to 0.3, which
indicates a mutual agreement regarding the scor-
ing of the response, ensuring a reliable evaluation
process.

From Table 8, we first see the two ensemble
methods outperform individual models in terms of
both human and GPT-4 ratings, suggesting that the
responses generated by the ensemble approach are
better. We can also observe that GPT-4’s scores
generally align with the scores given by the human
evaluators for the different models, which indicates
that GPT-4 possesses a reasonable ability to as-
sess Task 3, though not completely consistent with
human judgments. We also calculate Pearson cor-
relation coefficients using the equation:

ρX,Y =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2

, where n is the number of samples in the test
set, X is human evaluators’ score and Y is GPT-
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4’s score, for each of the models and ensemble
methods, which shows that GPT-4’s and the hu-
man evaluators’ judgement is weakly correlated.
Further investigation of individual samples with
negative correlation reveals cases where both the
human raters and GPT-4 assigned scores inconsis-
tent with judging criteria. For future evaluations,
well-defined judging criteria and experimenting
with different prompts may improve the accuracy
and consistency of scores.

GPT-4’s scoring is based on its training data and
may excel in assessing certain aspects such as gram-
mar or syntax but might struggle with understand-
ing context-dependent nuances that human evalua-
tors are typically adept at capturing. The alignment
between the scores assigned by GPT-4, human eval-
uations, and the ROUGE scores obtained through
automatic evaluation in Table 7 highlights an in-
triguing consistency. This suggests that ROUGE
can offer valuable insights into the correctness of
text generation. Nevertheless, for a comprehensive
assessment, it is crucial to consider multiple eval-
uation criteria and perspectives when evaluating
response generation models.

Model Approp. Asp-Acc Average
Baseline 3.6348 2.8715 3.2531
Best Team 3.6596 2.9095 3.2846
E2. (St = 3) 3.6487 2.8908 3.2697

Table 9: Official human evaluation results for Task 3.

The official human evaluation results for this
challenge are presented in Table 9, assessing the ap-
propriateness of the response and aspect accuracy
as evaluation metrics. Our submission of the en-
semble method with St = 3 achieved the 4th place
in the official human evaluation. However, the
top-performing model only exhibited a marginal
improvement of 0.0149 in terms of average score
compared to our method. We attribute our perfor-
mance gap relative to the best model primarily to
our weaker performance in task 2, where the best
model demonstrated a significant 4.2% absolute
improvement over our submission in terms of F1
score for knowledge snippet selection. The incor-
rect selection of knowledge snippets can adversely
impact the performance of both individual models
and the ranking model.

7 Conclusion

In this work, we demonstrated an ensemble method
that utilizes a ranking strategy to combine outputs
from various large models for response generation.
Our submission to the DSTC11 Track 5 challenge
achieved the highest Rouge_1 score and secured
the 2nd place for Rouge_L score in sub-task 3,
despite relatively weaker performance in sub-task
1 and 2. Furthermore, we conducted an analysis
on domain masking for sub-task 1 and 2 to assess
performance in handling requests from unseen do-
mains. Our findings highlight the need for further
exploration to improve performance when the sys-
tem encounters domains that significantly differ
from the training data.

8 Limitations

Currently, our method uses GPT-4 for ranking in-
dividual models, but this introduces a dependency
on an external service that may not always be avail-
able. In our future work, we intend to explore the
utilization of an easily accessible ranking model to
mitigate this dependency.

Additionally, our method requires a list of dif-
ferent models for result ensembling which further
adds to inference cost. We plan to investigate the
usage of a single open-source large language model
for both answer generation and self evaluation in
future work.

As with most large language models currently
published, we are unable to guarantee the safety
and freedom from bias of its output as it was trained
on clean data, and further work in ensuring safety
is recommended before the system is used as part
of a large scale operation.
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