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Abstract

With increasing demand for and adoption of
virtual assistants, recent work has investigated
ways to accelerate bot schema design through
the automatic induction of intents or the in-
duction of slots and dialogue states. However,
a lack of dedicated benchmarks and standard-
ized evaluation has made progress difficult to
track and comparisons between systems diffi-
cult to make. This challenge track1, held as part
of the Eleventh Dialog Systems Technology
Challenge, introduces a benchmark that aims
to evaluate methods for the automatic induc-
tion of customer intents in a realistic setting of
customer service interactions between human
agents and customers. We propose two sub-
tasks for progressively tackling the automatic
induction of intents and corresponding evalu-
ation methodologies. We then present three
datasets suitable for evaluating the tasks and
propose simple baselines. Finally, we summa-
rize the submissions and results of the chal-
lenge track, for which we received submissions
from 34 teams.

1 Introduction

Task-oriented dialogue systems used for handling
high-volume customer service requests have seen
growing adoption in recent years. While numerous
platforms for building such dialogue systems exist,
they still typically require significant time and ex-
pert knowledge to achieve good results. In particu-
lar, the process of creating non-overlapping intents
and corresponding example utterances typically re-
quires domain expertise and/or laborious analysis
of a large volume of conversation transcripts. In-
tent induction, automatically deriving intents and
corresponding utterances from conversation tran-
scripts or customer queries, has the potential to
significantly reduce the time and effort required

1https://github.com/amazon-science/
dstc11-track2-intent-induction

to build a task-oriented dialogue system from the
ground up.

Recent work in intent mining has often cast
intent induction as a problem similar to that of
short text clustering, in which unlabeled customer
queries and requests are assigned labels and the ef-
fectiveness of a system is evaluated by comparing
cluster assignments to labels from a ground truth in-
tent schema (Hakkani-Tür et al., 2015; Haponchyk
et al., 2018; Perkins and Yang, 2019; Chatterjee
and Sengupta, 2020). Due to the lack of real world
datasets capturing human-human customer support
conversations, researchers have repurposed exist-
ing intent classification datasets or labeled small
subsets of publicly available customer service in-
teractions to evaluate their systems.

Despite a growing body of work, there is a lack
of common evaluative settings and standardized,
dedicated benchmarks for intent induction, making
progress difficult to track. Existing intent classi-
fication datasets do not capture the complexity of
mining intents from real customer service inter-
actions, which typically have highly skewed dis-
tributions of intents that are embedded in noisy
conversations. While dedicated, representative
benchmarks have been instrumental in driving and
measuring progress in natural language processing
tasks (Wang et al., 2019; Ruder, 2021), there is a
clear gap in this regard for intent induction.

To encourage further research and to provide a
shared benchmark in the realistic setting of spoken
customer service interactions, this challenge track
introduces a dataset containing conversations span-
ning three domains: insurance, personal banking,
and finance. The track explores an alternative fram-
ing of the intent induction task through the use of
two related subtasks: Task 1) intent clustering and
Task 2) open intent induction. For the intent cluster-
ing task, we use classic clustering metrics for eval-
uation. For open intent induction, which seeks to
provide a more realistic and noisy setting in which
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intents are embedded in conversations, we eval-
uate systems by examining the predictions of an
intent classifier trained on induced intent schemas.
This setting aims to bring us closer to assessing
the impact of automatic induced intents on a final
dialogue system.

A total of 34 teams participated in the track, with
19 teams also participating in Task 2. In this paper,
we describe the tasks, evaluation methods, datasets,
and baselines. We then describe the submissions
from the participating teams and summarize the
results and findings from the track.

2 Related Work

The majority of existing work in mining intents
has focused on clustering-based methods. Perkins
and Yang (2019) proposes a multi-view clustering
approach for learning clustering representations
by predicting cluster assignments of an alternative
view of each input, such as prompts. Chatterjee
and Sengupta (2020) investigates variants of DB-
SCAN and propose an approach that iteratively
breaks down the “noise” cluster from DBSCAN to
address varying densities. Others have leveraged
intermediate structured prediction tasks (such as
dependency parsing or abstract meaning represen-
tations) to aid in the induction of intents (Hakkani-
Tür et al., 2015; Vedula et al., 2020; Zeng et al.,
2021; Liu et al., 2021).

Prior work in intent mining has largely
evaluated systems by re-purposing existing
datasets commonly used for evaluating intent
classification systems. Such datasets, in-
cluding BANK77 (Casanueva et al., 2020),
CLINC150 (Larson et al., 2019), SNIPS (Coucke
et al., 2018), ATIS (Hemphill et al., 1990), or
StackOverflow (Hamner et al., 2012; Xu et al.,
2015), do not include full dialogues. Task-oriented
dialogue datasets like MultiWOZ (Budzianowski
et al., 2018), MultiDoGO (Peskov et al., 2019a) and
SGD (Rastogi et al., 2020) span multiple domains,
but individual domains contain few user intents,
and conversations are not designed to be represen-
tative of real human-to-human customer service
interactions. Perkins and Yang (2019) re-purpose
two-turn customer support exchanges from Twitter,
but only annotate a small subset of dialogues across
14 intents with broad semantics.

Hakkani-Tür et al. (2015) evaluate the classifi-
cation performance of induced intents after under-
going manual mappings to reference intents. More

recent work has used clustering metrics commonly
used for evaluation of short text clustering in which
the number of clusters is provided, such as clus-
tering ACC, NMI, and ARI (Peskov et al., 2019a;
Zhang et al., 2021c; Chatterjee and Sengupta, 2020;
Kumar et al., 2022). Recent work has also inves-
tigated the intent discovery problem in which sys-
tems must discover novel intents based on a set of
pre-existing intents (Lin et al., 2020; Zhang et al.,
2021b,c; Shen et al., 2021; Kumar et al., 2022). In
contrast to this work, this benchmark focuses on the
fully unsupervised setting in which no pre-existing
intents are defined and the number of reference
intents are not provided in advance.

3 Tasks and Evaluation

The track consists of two subtasks providing alter-
native ways of framing and evaluating intent in-
duction. This section describes the motivation for
these tasks and metrics used for evaluating them.

3.1 Task 1 - Intent Clustering

Task 1 is a conversational intent clustering task. In
this task, a set of conversation transcripts are pro-
vided as inputs, with each turn pre-labeled with a
speaker role (i.e. agent or customer). Turns within
these transcripts that contain intents are tagged for
use in the task. Participants must assign each of
these intentful turns to a cluster. Submissions are
evaluated by comparing the resulting cluster as-
signment with intent labels from a reference intent
schema. The number of reference intents is not pro-
vided for the task, though lower and upper limits
are given (5 and 50 respectively).

3.2 Task 2 - Open Intent Induction

The clustering evaluation in Task 1 has several
shortcomings. In a real world setting, the exact
turns in transcripts containing intents are unknown.
The goal of intent induction is to extract a set of
distinctly meaningful intents, rather than assigning
each turn a cluster label. The quality of a set of
induced intents is likely to be judged based on the
coverage and accuracy of a resulting intent clas-
sifier rather than coverage on input turns. From
the perspective of chat bot development, a smaller
but cleaner training set can thus be preferable to a
larger but noisier and less manageable set of utter-
ances.

To account for this, the goal of Task 2 is to in-
stead generate a training set for an intent classifier
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Task 1 - Intent Clustering Task 2 - Open Intent Induction

Goal Assign cluster labels to a list of turns Induce intents and training examples for an intent
classifier from conversations

Input (1) Conversation transcripts, (2) clustering turns (1) Conversation transcripts, (2) Automatic In-
formIntent turn predictions

Output Intent cluster labels assigned to each clustering turn Example utterances labeled with induced intents

Table 1: Summary of the benchmark tasks proposed as part of the DSTC 11 challenge on intent induction from
conversations: Intent Clustering and Open Intent Induction.

given a set of unlabeled conversations. The training
set consists of utterances derived from the conversa-
tions along with corresponding intent labels2. Note
that no explicit correspondence between utterances
in the training set and the original conversations
is required, so techniques such as data augmenta-
tion or paraphrasing are allowed. Unlike Task 1,
to better reflect challenges of noisy data in a real
world setting, we do not explicitly provide labels
to tell whether a turn is intentful. However, to sim-
plify system development for the task, automatic
dialogue act classifier predictions for InformIntent
are provided to participants.

Evaluation for the task is conducted using the
predictions of an intent classifier trained with the
induced intents. After training the classifier, predic-
tions are made on a separate test set of utterances
labeled with a reference intent schema. Finally,
similarly to Task 1, the quality of the induced set
of intents is evaluated by comparing the predicted
assignment of labels with the reference intent as-
signment. In contrast to Hakkani-Tür et al. (2015),
this evaluation approach is fully automatic and does
not require manual intent mappings.

3.3 Metrics

In a realistic setting, the number of unique intents
that are present in a dataset will not be known in
advance. Inducing an excess of fine-grained intents
may result in purer, more coherent predictions, but
will then require additional manual effort and hu-
man expertise to merge intents that are duplicates
of one another (semantically equivalent). On the
other hand, predicting intents with too broad or
coarse-grained semantics is also undesirable. We
therefore select metrics that balance this trade-off
and encourage approaches capable of matching the
granularity of the reference intent schema in the
test data.

2In this track, the intent labels are treated as unique IDs
and are not evaluated for linguistic meaning.

Metrics for both Task 1 and Task 2 are computed
by comparing the assignment of induced intents,
C, with assignments to a single reference intent
schema, L. For Task 1, cluster assignments are
compared on turns in input conversations. For Task
2, predicted induced intents are compared on a
set of test utterances collected independently from
input conversations.

Clustering accuracy (ACC) is a commonly used
metric for short text clustering that penalizes so-
lutions for producing either too many or too few
clusters (Huang et al., 2014). ACC is defined as

ACC =

∑N
i=1 δ(map(ŷi) = yi)

N
,

where δ(·) is an indicator function that outputs 1
when the argument is true or 0 when false, ŷi ∈ C
and yi ∈ L are the predicted and ground truth la-
bels for the ith input respectively, and N is the
total number of turns/inputs. The map(·) func-
tion assigns the cluster label to the optimal label
yi as computed by the Hungarian algorithm (Kuhn,
1955). If too few intents are predicted, some refer-
ence intents will not receive assignments, whereas
an excess of induced intents will lead to unassigned
induced intents.

Clustering F1 (Artiles et al., 2007; Haponchyk
et al., 2018) also captures this trade-off by com-
bining clustering precision (purity) and clustering
recall (inverse purity, in which each reference in-
tent is assigned to the most frequently co-occurring
induced intent):

precision (P) =

∑|C|
k=1 max|L|j=1|lj ∩ ck|

N
,

recall (R) =

∑|L|
k=1 max|C|

j=1|lk ∩ cj |
N

,

where |lk ∩ cj | indicates the size of the set con-
taining inputs assigned to both reference cluster lk
and predicted cluster cj . Clustering F1 is then com-
puted as the harmonic mean of the two measures.
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Solutions with too few intents, or broad intents that
are split between multiple different reference in-
tents, will have lower precision/purity. Solutions
with an excess of granular intents mapping to the
same reference intent will have lower recall, as
each reference intent can only be assigned to a
single induced intent.

Finally, we also report NMI (normalized mu-
tual information) and ARI (Adjusted Rand In-
dex) (Rand, 1971), two commonly used measures
for clustering evaluation. ACC is used as the pri-
mary metric for ranking systems for both tasks.

Intent Classifier Evaluation of Task 2 requires
training an intent classifier using the induced
schema. Following previous work demonstrat-
ing the effectiveness of training a simple classifier
given fixed embeddings from a pre-trained sentence
encoder in few-shot setting (Zhang et al., 2021d;
Casanueva et al., 2020), we train a logistic regres-
sion classifier on top of off-the-shelf, static ALL-
MPNET-BASE-V2 sentence embeddings from the
SENTENCETRANSFORMERS library (Reimers and
Gurevych, 2019; Song et al., 2020).

4 Data

Publicly available dialogue datasets have primarily
focused on development and evaluation of task-
oriented dialogue systems where conversations
are representative of written human-to-bot (H2B)
conversations adhering to restricted domains and
schemas (Budzianowski et al., 2018; Rastogi et al.,
2020). Such datasets are not designed to be re-
flective of the characteristics of human-to-human
(H2H) conversations, and thus are unlikely to serve
as a realistic test bed for evaluating systems de-
signed to learn from natural conversations. How-
ever, realistic live conversations are difficult to sim-
ulate due to the training required to convincingly
play the role of an expert customer support agent
in non-trival domains (Chen et al., 2021) and the
additional costs associated with collecting and an-
notating free-form synchronous conversations.

To address this gap, we introduce a benchmark
dataset designed to emulate natural call center con-
versations between customers and customer sup-
port agents. Each conversation emulates a two-
party spoken-form customer support scenario corre-
sponding to a generated scenario based on a combi-
nation of intents, slots, and complex conversational
phenomena to encourage diversity and naturalness.
To naturally collect a wide variety of intents, partic-

Figure 1: Intent counts and utterance length distribution
across domains (logarithmic scales).

ipants were encouraged to depart from the original
intents with additional requests related to each sce-
nario. The process of annotating conversations with
reference intents was decoupled from the collec-
tion of conversations in order to mimic the manual
process of designing an intent schema based on
conversations. Annotators shared an open intent
label set that was periodically reviewed throughout
the process to merge duplicate intents.

We provide three domains as part of the chal-
lenge track: Insurance (used as development data),
Personal Banking and Finance (used as evaluation
data). For evaluating Task 2, each domain also in-
cludes a H2B-style balanced test set containing ut-
terances labeled with intents from a reference intent
schema. These test sets are collected independently
from the H2H-style conversations. Conversations
are also labeled with automatic InformIntent di-
alogue act predictions indicating potentially rel-
evant turns for use in Task 2, though these are
non-exhaustive and include utterances that are not
relevant.

We present high-level statistics for each of
the domains in comparison with pre-existing di-
alogue datasets in Table 2. The resulting conversa-
tions include considerably more turns on average
than previous task-oriented dialogue conversational
datasets, suggesting a higher level of conversational
complexity and diversity of flows, despite being
restricted to single domains. The conversations
also contain a greater variety of intents per domain,
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Dataset # conv. # turns per conv. # words per turn # intents per domain

MultiDoGO (Peskov et al., 2019b) 10,829 16.7 11.4 6.7
MWOZ (Budzianowski et al., 2018) 10,437 13.7 15.4 *
SGD (Rastogi et al., 2020) 22,825 20.3 11.7 2.3

DSTC11-Insurance 948 70.5 12.3 22
DSTC11-Banking 1,000 59.2 17.4 29
DSTC11-Finance 2,000 65.1 15.7 39

Table 2: Summary statistics of DSTC 11 Track 2 datasets and comparison with previous task-oriented dialogue
datasets. *User intents are not explicitly annotated in MultiWOZ, but are instead implicit to each domain.

ensuring the tasks are not trivial to distinguish be-
tween a small number of intents. Finally, as shown
in Figure 1, the distribution of counts for these
intents is highly skewed, similar to real intent dis-
tributions with long tails of infrequent intents and a
few intents comprising a large volume of requests.
Fine-grained counts of intents for conversations
and test sets and further analysis of intents are pro-
vided in Sections A.1 and A.2.

5 Baselines

Task 1 Baseline The baseline system for Task 1
casts the problem as turn-level unsupervised clus-
tering, adopting k-means (MacQueen et al., 1967)
as the clustering algorithm. Utterances are en-
coded using a sentence embedding model from the
SENTENCETRANSFORMERS library (Reimers and
Gurevych, 2019), ALL-MPNET-BASE-V2, which
fine-tunes MPNet (Song et al., 2020) with a con-
trastive objective on a dataset consisting of 1 billion
sentence pairs derived from a number of datasets.

Because the number of reference intents is not
provided for the task, the baseline system iden-
tifies the number of intents automatically by se-
lecting the value for k that results in the highest
intrinsic measure of clustering performance. Sil-
houette values (Rousseeuw, 1987; Kaufman and
Rousseeuw, 2009) indicate the appropriateness of a
cluster assignment for a point based on the similar-
ity to points in its assigned cluster and dissimilarity
to points in other clusters. An overall silhouette
score can be computed by averaging the silhou-
ettes for all points in a clustering. The k value
that leads to the highest silhouette score is selected
as the final result. To accelerate the search for
optimal clustering based on Silhouette scores, we
employ sequential model-based global optimiza-
tion following the tree-structured Parzen estimator
(TPE) approach, implemented in the HYPEROPT

library (Bergstra et al., 2013).

Task 2 Baseline The baseline system for Task
2 adopts the same clustering approach as Task 1.
Since clustering turns are not provided in this task,
the baseline system uses the provided InformIntent
dialogue act classifier predictions to identify turns
containing intents.

6 Submissions

We received submissions from 34 teams for Task 1
and 19 teams for Task 2 encompassing a wide range
of techniques. All teams that participated in Task 2
also participated in Task 1. To preserve anonymity,
teams are identified with IDs T0 through T37 (sev-
eral team IDs were later removed after confirming
duplicate submissions from different members of
the same team). This section provides a high-level
summary of the submissions using self-reported
descriptions and survey results of the participants.
A detailed overview of submissions is provided in
appendix Table 11.

Clustering Approach For both tasks, all sub-
missions reported using clustering-based solutions.
Many submissions used clustering approaches that
jointly learn input representations and cluster as-
signments. For example, at least ten submissions
(T00, T02, T05, T07, T16, T17, T24, T30, T34,
and T36) reported used SCCL (Zhang et al., 2021a),
a clustering approach that incorporates contrastive
loss with Deep Embedded Clustering (DEC) (Xie
et al., 2016). Other approaches (e.g. T06 and T37)
separated representation learning from clustering,
pre-training encoders with contrastive learning fol-
lowed by K-Means clustering. T06 used K-Means
with representations from DSSCC (Kumar et al.,
2022).

Several submissions used HDBSCAN for clus-
tering (T11, T13, T22, and T35), a density-based
clustering algorithm that extends DBSCAN by al-
lowing for clusters of varying density (Campello
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et al., 2013). Like DBSCAN (Ester et al., 1996),
it automatically categorizes outliers in low-density
regions as noise, an appealing property for a
task in which many noisy, outlying input utter-
ances are expected to be present, though only
one of these teams participated in Task 2 (T13).
Two teams (T13 and 35) performed dimension-
ality reduction on pre-trained embeddings using
UMAP (McInnes et al., 2018) prior to clustering,
following BERTopic (Grootendorst, 2022). Three
other teams (T22, T27, and T31) also reported us-
ing some form of dimensionality reduction as part
of their submissions.

Pre-trained Models Almost all submissions re-
ported using specific pre-trained models, many
of which were encoders tailored for comput-
ing utterance embeddings such as ALL-MPNET-
BASE-V2 (Reimers and Gurevych, 2019), DSE-
BERT-BASE, DSE-ROBERTA-LARGE (Zhou et al.,
2022), and SUP-SIMCSE-ROBERTA (Gao et al.,
2021). Teams T00, T15, T23 and T34 used DSE-
pretrained encoders Zhou et al. (2022), which learn
sentence representations tailored for dialogues us-
ing contrastive learning with consecutive utterances
in dialogues. The majority of submissions also re-
ported further fine-tuning encoders to tailor them
to the task of intent induction (such as through
SCCL, DEC, or supervised contrastive learning).
T11 reported using two pre-trained NLI models
to pre-compute a distance matrix between inputs
for HDBSCAN-based clustering, further finetuning
one of these models on the task development data.

Use of External Data Roughly half of sub-
missions reported using external public data
for training their models. These datasets
included BANK77 (Casanueva et al., 2020),
CLINC150 (Larson et al., 2019), ATIS (Hemphill
et al., 1990), ACID (Acharya and Fung, 2020),
HWU64 (Liu et al., 2019a), StackOverflow (Ham-
ner et al., 2012; Xu et al., 2015), SGD (Rastogi
et al., 2020) and MultiWOZ (Budzianowski et al.,
2018) and SNIPS (Coucke et al., 2018). A number
of teams reported using supervised pre-training
(T06, T19, T23, T25, T30, T37) with labeled
data, while others used semi-supervised approaches
based on data augmentation to generate contrastive
examples. In addition to team T23 reported using
automatic English machine translations of Chinese
domain-specific insurance and financial data for
pre-training.

Cluster Selection Because the number of intents
was not provided, submissions using parameteric
clustering approaches had to devise approaches for
cluster selection. Many submissions (12) explicitly
reported using Silhouette scores. Two submissions
(T05 and T34) used HDBSCAN (Campello et al.,
2013) to determine the number of clusters prior
to using SCCL. T15 reported using an iterative
merging technique to determine the final number
of clusters, perhaps similar to the strategy used
in Chatterjee and Sengupta (2020). T00 reported
using a combination of the Elbow method (Hardy,
1994) and Silhouette scores.

Use of Conversational Information Because
complete conversations were provided as inputs
to both tasks, participants had the option to make
use of additional contextual signals for improving
clustering. However, few teams reporting using
conversational information beyond input turns (ei-
ther given in Task 1, or predicted in Task 2) for
clustering. Some teams, such as T21 and T29,
reported using input dialogues for continued pre-
training of their models. Team T28 identified the
most relevant turn in the dialogue corresponding
to each input turn using similarity scores from sen-
tence embeddings, concatenating embeddings for
the two turns as clustering inputs.

Task 2 Modifications The majority of teams
that participated in Task 2 primarily used their
Task 1 approaches, applying them to predicted In-
formIntent turns instead of the provided cluster-
ing turns. Although Task 2 provides InformIntent
predictions as suggested relevant turns, several
teams reported developing their own models or ap-
proaches for identifying turns in Task 2. Multiple
teams (T02, T17, and T24) reported developing a
custom classifier trained on public data to detect rel-
evant turns or sentences containing intents. Team
T34 used a rule-based system to identify sentences
for clustering, and further augmented the input data
prior to applying SCCL for clustering.

7 Results

In this section, we summarize the results for Task 1
and Task 2. To aggregate results across datasets, we
use simple averages. As an alternative aggregate
score, we compute the average mean reciprocal
rank for ACC, F1, and NMI, averaged over both
datasets (MRRavg). This approach is intended to
be less sensitive to scores of the individual datasets
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Team Task 1 Task 2
ACC MRRavg ACC MRRavg

T23 69.8 (1) 38.2 (4) 76.3 (1) 56.2 (2)
T07 69.6 (2) 41.0 (2) - -
T35 69.3 (3) 39.2 (3) - -
T05 69.1 (4) 58.9 (1) 74.5 (5) 31.7 (5)
T02 68.8 (5) 32.5 (5) 75.3 (2) 33.9 (4)
T17 67.1 (6) 12.8 (10) 73.8 (6) 61.0 (1)
T36 66.3 (7) 13.1 (8) 74.9 (3) 25.6 (6)
T24 66.2 (8) 19.9 (6) 74.7 (4) 36.1 (3)
T00 64.9 (9) 13.1 (9) 59.7 (17) 9.8 (12)
T34 63.7 (10) 10.7 (11) 59.3 (19) 5.9 (18)
T25 62.6 (11) 9.3 (12) - -
T10 62.5 (12) 6.0 (16) - -
T14 61.5 (13) 6.0 (17) 69.6 (7) 11.8 (8)
T30 61.1 (14) 6.7 (14) 60.9 (16) 7.0 (16)
T19 59.2 (15) 5.9 (18) 67.5 (10) 10.1 (11)
T37 58.7 (16) 5.8 (19) - -
T29 58.1 (17) 5.6 (21) - -
T26 58.0 (18) 4.8 (24) 63.6 (12) 7.4 (14)
T06 57.6 (19) 4.4 (27) - -
T01 57.4 (20) 7.5 (13) - -
T20 56.8 (21) 5.6 (20) 64.4 (11) 10.9 (9)
T28 56.6 (22) 6.5 (15) - -
T03 55.6 (23) 4.6 (26) 62.4 (15) 7.7 (13)
T13* 55.3 (24) 5.4 (22) 69.4 (8) 10.2 (10)
T33 54.8 (25) 14.7 (7) - -
T18 54.8 (26) 4.8 (23) - -
T21 53.8 (27) 3.9 (28) - -
T16 52.9 (28) 3.6 (29) - -
T04 50.1 (29) 4.8 (25) 63.6 (12) 7.4 (14)
T15 48.9 (30) 3.3 (32) 63.4 (14) 7.0 (17)
T27 48.9 (31) 3.5 (30) 68.7 (9) 12.6 (7)
T22 46.7 (32) 3.4 (31) - -
T11* 44.2 (33) 3.2 (33) - -
T31 35.1 (34) 3.0 (34) 59.5 (18) 5.7 (19)

Baseline 55.8 (23) 4.2 (28) 63.6 (12) 7.4 (14)

Table 3: Summary of results for both tasks. The ranking
of the submission for each metric is given in parentheses.
ACC (↑) is clustering accuracy and MRRavg (↑) is the
average mean reciprocal rank across datasets. *Did not
assign labels to all inputs (see Table 4).

or biases of particular metrics. Table 3 summarizes
the aggregate results and team rankings for Task
1 and Task 2. Detailed results for each dataset are
provided in Section A.2

7.1 Task 1 Results

Team T23 was the overall winner for Task 1, with
an honorable mention to Team T05 for having the
highest MRRavg.

• Team T23 had the highest overall ACC, the

highest ACC on Finance, and the highest Pre-
cision (P) on Banking, and the fourth highest
MRRavg.

• Team T07 had the highest overall F1 score,
the 2nd highest overall ACC, and the highest
F1 on Finance.

• Team T05 had the top MRRavg, the highest
NMI and ARI and fourth highest overall ACC,
with the highest ACC, F1, NMI and ARI on
Banking.

7.2 Task 2 Results

Team T23 was also the overall winner for Task 2,
with an honorable mention for T17 for having the
highest MRRavg.

• Team T23 had the highest overall ACC, Re-
call and ARI, and the second highest MRRavg,
with the highest ACC, P, F1, NMI, and ARI
on Banking.

• T02 had the second highest overall ACC, the
second highest ACC on Banking and the 4th
highest ACC on Finance.

• Team T17 had the top MRRavg, the highest
overall P, F1, and NMI, the highest ACC, P,
F1, NMI and ARI on Finance, and the 6th
highest overall ACC.

7.3 Analysis

Approaches for Top Teams SCCL (Zhang et al.,
2021a), or more generally, deep embedded clus-
tering (DEC) (Xie et al., 2016), were highly pop-
ular approaches among the top submissions for
both tasks. In fact, only one of the top ten submis-
sions, T35 (ranked third overall by both ACC and
MRRavg), instead used HDBSCAN for clustering.
Silhouette scores were also a popular choice for
cluster selection among the top-performing submis-
sions, though T05 (top overall MRRavg for Task 1)
and T34 were notable exceptions that used HDB-
SCAN to identify the number of clusters prior to
using SCCL.

Among the top-performing teams, several used
DSE-ROBERTA-LARGE (Zhou et al., 2022), while
many others used ALL-MPNET-BASE-V2 (Reimers
and Gurevych, 2019) as the base encoder mod-
els. Many top systems also used a variety of pub-
lic datasets to further adapt their models prior to
clustering, either through supervised pre-training
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Team LP ACC (Rank) MRRavg (Rank)

T11
44.2 (33) 3.2 (33)

✓ 65.8 (9) 16.9 (7)

T13
55.3 (24) 5.4 (22)

✓ 57.2 (22) 6.0 (16)

Table 4: Impact of label propagation (LP) for on sub-
missions that used HDBSCAN, but left noise instances
unassigned. For T11, the ranking changes from 33rd to
7th based on MRRavg .

(multi-task with intent classification loss, or super-
vised contrastive learning (Gao et al., 2021)), self-
supervised pre-training (e.g. via masked-language
modeling (Devlin et al., 2019) or contrastive learn-
ing (Zhou et al., 2022)), or a combination of
approaches. Among the top teams using DSE-
ROBERTA-LARGE, compared to T00 and T34, team
T23 (the overall top submission by ACC) reported
further supervised and self-supervised pre-training
on multiple public datasets.

Label Propagation for Noise Cluster (Task 1)
We noticed that two submissions using HDBSCAN
did not assign cluster labels to a number of in-
stances in Task 1, instead leaving a large portion
unassigned as automatically-detected noise (T11
and T13). Task 1 evaluation penalizes this, since
clustering evaluation assumes a label should be
assigned to every input. To validate this, we prop-
agated non-noise cluster labels for these teams
to the unlabeled instances by training the clas-
sifier described for Task 2 on labeled instances,
and applying the resulting model to the remain-
ing noise instances. As shown in Table 4, we ob-
served improvements for both submissions, with a
drastic improvement for team T11, with the ACC
and MRRavg-based rankings improving from 33rd
to 9th and 7th respectively, indicating a poten-
tial shortcoming of clustering-based evaluation for
comparing intent induction methods.

Sensitivity to Classifier (Task 2) Because Task 2
evaluation is dependent on the selection of a classi-
fier, we also analyze the impact of the classifier on
evaluation results. To understand this impact, we
compute Task 2 evaluation results for 9 different en-
coders (including SimCSE, DSE, and SENTENCE-
TRANSFORMERS variants, see Section A.5). Ta-
ble 5 aggregates these results. When using the
best-performing (highest ACC) classifier for each
system, we observe the rankings for the top ten sys-

Team ACC Best Model
Avg. (Rank) Max (Rank)

T23 74.9±1.5 (1.0±0.0) 76.6 (1) all-roberta-l
T02 73.7±1.7 (2.2±0.4) 75.9 (2) multiqa-mpnet-b
T36 72.3±2.3 (4.0±0.9) 75.3 (3) all-roberta-l
T24 72.2±1.8 (4.3±1.2) 74.7 (4) all-mpnet-b
T05 70.9±2.5 (5.6±0.7) 74.5 (5) all-mpnet-b
T17 72.6±1.4 (3.9±1.4) 73.9 (6) dse-roberta-b
T14 68.7±1.7 (7.1±0.3) 71.7 (7) all-roberta-l
T13 66.3±3.5 (9.2±1.8) 70.7 (8) all-roberta-l
T27 66.6±2.7 (9.0±0.5) 70.5 (9) all-roberta-l
T19 66.4±1.2 (9.0±1.0) 67.5 (10) all-mpnet-b
T20 63.0±1.4 (12.6±1.3) 64.8 (13) multiqa-mpnet-b
T15 58.0±4.4 (16.0±1.2) 63.4 (15) all-mpnet-b
T03 62.6±0.6 (13.1±1.5) 63.4 (14) all-minilml12
T30 60.1±1.0 (15.4±0.5) 61.4 (16) all-roberta-l
T00 54.4±4.7 (18.0±0.7) 60.6 (17) all-roberta-l
T31 53.9±5.1 (18.6±0.5) 60.2 (18) all-roberta-l
T34 58.0±1.3 (16.9±1.3) 59.3 (19) all-mpnet-b

Table 5: Task 2 average and maximum ACC with
corresponding rankings (in parentheses) computed for
nine classifier models using different utterance encoders.
Teams are ordered corresponding to their original rank
based on ACC with ALL-MPNET-BASE-V2.

tems do not change (though ranks 11-15 fluctuate).
Examining the average ACC across all classifiers,
we observe that while the top system typically does
not change, the standard deviation of the rankings
for other systems falls between 0.3 and 1.8, indicat-
ing some degree of fluctuation. This indicates that
prediction-based evaluation may introduce some
noise into the process, and using high-quality clas-
sifiers or a variety of models may make evaluation
results more robust.

8 Conclusions

We presented task definitions, evaluation methods,
datasets, and baselines for the DSTC 11 track on in-
tent induction from conversations for task-oriented
dialogue. The track saw a variety of submissions
from 34 teams, with 19 teams submitting entries
for both tasks. We summarized these track sub-
missions and provided analysis of the trends and
overall results.

The aim of the track is to provide a benchmark
facilitating evaluation of methods for automatic
induction of customer intents in the realistic setting
of customer service interactions. We hope that the
benchmark and datasets will encourage new lines
of research related to the analysis of human-to-
human conversations.
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madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Ricardo JGB Campello, Davoud Moulavi, and Jörg
Sander. 2013. Density-based clustering based on
hierarchical density estimates. In Pacific-Asia confer-
ence on knowledge discovery and data mining, pages
160–172. Springer.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
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A Appendix

A.1 Intent Counts

To provide a benchmark that reflects a realistic
setting of customer support conversations, we col-
lected conversations from three domains (Insur-
ance, Banking, and Finance), introduced in Sec-
tion 4. The Insurance domain was used solely as
development data for the challenge, while Banking
and Finance were used for evaluating systems. In
this section, we report further details on the charac-
teristics of these datasets.

Tables 6, 7, and 8 show the counts of each in-
tent appearing in conversations and Task 2 test data
from Insurance, Banking, and Finance respectively.
Intents with fewer than 4 corresponding annotated
utterances were excluded from each dataset. Com-
paring intents in Banking and Finance domains,
while there is overlap between the domains, it is
clear that Banking focuses more on personal bank-
ing requests (such as checking account balances,
transferring funds, or disputing charges. In contrast,
Finance focuses more on loans and investing.

As is evident from these counts, the distribution
of intents is highly skewed, while the test set counts
are more evenly distributed. The decoupling of con-
versation annotations from test utterances provides
a practical benefit for the external prediction-based
evaluation of Task 2. Collecting examples from a
fixed set of intents as test data is easier than annotat-
ing input conversations directly. In natural datasets,
intents typically do not have balanced distributions.
Identifying long tail intents may be just as impor-
tant (or more so) than identifying common intents.
Finally, annotating many conversations may still
result in only a few examples of low-frequency in-
tents, whereas collecting them directly ensures they
are properly represented in the test data.
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Intent Count Test Count

GetQuote 150 181
EnrollInPlan 132 32
ResetPassword 82 29
ChangeAddress 81 31
CancelPlan 74 29
ChangePlan 64 29
PayBill 63 34
ReportBillingIssue 51 32
FileClaim 51 124
AddDependent 51 33
CreateAccount 48 30
RequestProofOfInsurance 42 31
CancelAutomaticBilling 40 31
UpdatePaymentPreference 38 31
CheckAccountBalance 34 29
RemoveDependent 28 31
UpdateBillingFrequency 24 29
CheckPaymentStatus 24 31
ChangeSecurityQuestion 24 29
GetPolicyNumber 19 30
FindAgent 18 29
ReportAutomobileAccident 15 28

Table 6: Insurance domain counts for 22 intents in con-
versations and Task 2 test data.

A.2 Semantic Diversity

To be useful as an intent induction benchmark, ut-
terances for intents should have a high degree of
variation rather than rigidly follow the same struc-
ture in every conversation. To measure this, we
investigate the semantic diversity of intent turns
following Casanueva et al. (2022). To compute se-
mantic diversity for a single intent, we (1) compute
intent centroids as the average of embeddings for
the turns labeled with the intent using the Sentence-
BERT (Reimers and Gurevych, 2019) library with
the pre-trained model ALL-MPNET-BASE-V2, then
(2) find the average cosine distance between each
individual turn and the resulting centroid. Finally,
(3) overall semantic diversity scores are computed
as a frequency-weighted average over intent-level
scores.

The semantic diversity scores for each domain as
compared to CLINC150 (Larson et al., 2019) and
BANK77 (Casanueva et al., 2020), along with high
level statistics are provided in Table 9. We observe
that the semantic diversity for Insurance, Banking
and Finance is higher than that of CLINC150 and

Intent Count Test Count

CheckAccountBalance 251 30
InternalFundsTransfer 139 26
ExternalWireTransfer 124 26
FindBranch 120 21
DisputeCharge 108 32
OpenBankingAccount 92 21
FindATM 92 26
ReportLostStolenCard 77 21
GetBranchHours 73 21
CloseBankAccount 65 32
UpdateStreetAddress 60 20
UpdateEmail 35 20
CheckTransactionHistory 25 20
AskAboutTransferTime 24 21
UpdatePhoneNumber 23 20
SetUpOnlineBanking 23 20
ReportNotice 23 0
GetBranchInfo 22 0
GetWithdrawalLimit 21 20
RequestNewCard 15 0
AskAboutCashDeposits 15 10
GetAccountInfo 14 0
CheckAccountInterestRate 11 0
AskAboutTransferFees 11 0
OrderChecks 10 0
AskAboutCardArrival 10 0
OpenCreditCard 8 0
AskAboutATMFees 8 0
AskAboutCreditScore 4 0

Table 7: Banking domain counts for 29 intents in con-
versations and Task 2 test data.

Bank77, indicating greater potential modeling chal-
lenges. We also compare the semantic of diversity
of NATCS with other datasets for specific aligned
intents across datasets in Table 10.

A.3 Submission Overview
Table 11 provides a detailed overview of the track
submissions. Note that because there was no open
source requirement for this challenge, all details
are self-reported through a survey given to partic-
ipants. Thus some information may be missing
or inaccurate (such as due to misinterpretations of
descriptions).

A.4 Detailed Results
Table 13 provides a dataset-level detailed summary
of results for Task 1 including the number of in-
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duced intents for each system. Table 14 provides a
dataset-level detailed summary of results for Task
2 including the number of induced intents and aver-
age number of sample utterances for each induced
intent.

A.5 Sentence Encoders used for Classifiers
In this section, we enumerate the classifiers used
in Section 7 to examine sensitivity of Task 2 classi-
fier sensitivity. We used the following 9 sentence
embeddings as static (not fine-tuned) features to
logistic regression classifiers:

• sentence-transformers (Reimers and
Gurevych, 2019)

– all-mpnet-base-v2
– multi-qa-mpnet-base-cos-v1
– all-roberta-large-v1
– all-MiniLM-L12-v2

• DSE (Zhou et al., 2022)

– aws-ai/dse-roberta-large
– aws-ai/dse-roberta-base
– aws-ai/dse-bert-base

• SimCSE (Gao et al., 2021)

– princeton-nlp/sup-simcse-roberta-large
– princeton-nlp/sup-simcse-roberta-base

Intent Count Test Count

ApplyLoan 222 106
CheckAccountBalance 183 30
GetLoanInfo 111 20
MakeTransfer 77 42
OnlineBankingInfo 73 20
GetCreditCardInfo 55 20
ScheduleAppointment 46 86
UpdatePhoneNumber 43 21
OpenAccount 43 37
GetExchangeRate 43 23
UpdateStreetAddress 41 20
ChangeStatementDelivery 41 25
CheckLoanBalance 40 22
UpdateEmail 39 26
ApplyCreditCard 39 75
ChangePin 36 20
RequestEmail 35 10
SetAutoPayment 33 62
MakeCreditCardPayment 33 28
CancelCheck 32 22
GetDebtIncomeRatio 31 22
AddUserToAccount 31 23
AskConsumerPriceIndex 29 36
CloseAccount 28 23
GetBranchHours 25 20
NetIncome 24 20
OrderCheck 23 25
AskLiquidityRatio 21 22
FindBranch 19 10
RequestNewCard 17 10
GetBankStatement 17 48
PayLoan 16 22
GetTransactions 12 0
GetPaymentDueDate 8 0
GetStockQuote 7 20
GetInvestmentReport 7 24
GetTreasuryBondYield 6 23
GetCreditReport 6 25
PurchaseStocks 5 22

Table 8: Finance domain counts for 39 intents in con-
versations and Task 2 test data.
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Dataset Utts./Intent Words/Utt. Intents/Domain Avg. Diversity

CLINC150 (Larson et al., 2019) 157.0 8.5 15 27.4
BANK77 (Casanueva et al., 2020) 169.9 13.4 77 23.2

Insurance 52.4 20.1 22 33.3
Banking 51.8 26.9 29 30.1
Finance 40.9 31.3 39 32.4

Table 9: Comparison of intent utterances between track datasets and public intent classification datasets. Avg.
Diversity corresponds to semantic diversity described in Section A.2.

Intent DSTC11 MultiDoGO CLINC150 BANK77 SGD

CheckBalance 31.9 17.9 27.8 23.1
MakeTransfer 34.3 24.2 29.5 25.9
ReportLostStolenCard 29.0 18.6 16.2 18.4
DisputeCharge 35.3 23.7 26.1
OrderChecks 31.8 21.5 19.0
CloseBankAccount 26.4 17.6 20.1
UpdateStreetAddress 31.4 17.5 28.6
ChangePin 27.4 20.3 19.7

Table 10: Comparing semantic diversity for aligned intents across MultiDoGO (Peskov et al., 2019a),
CLINC150 (Larson et al., 2019), BANK77 (Casanueva et al., 2020), and SGD (Rastogi et al., 2020).
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Team Clustering Techniques Selection Base Model(s) Datasets Rankings
SupPT SSPT Ens. Task 1 Task 2

T23 DEC ✓ ✓ sil. dse-roberta-l BK CC DI SO 01 / 04 01 / 02
T07 SCCL ✓ sil. • OD 02 / 02 •
T35 hdbscan sil. SBERT • 03 / 03 •
T05 SCCL hdb4k all-mpnet-b AD AS BK SO 04 / 01 05 / 05
T02 SCCL ✓ ✓ • all-mpnet-b AS BK SO 05 / 05 02 / 04
T17 SCCL • all-mpnet-b AD BK 06 / 10 06 / 01
T36 SCCL ✓ • all-mpnet-b AD BK CC 07 / 08 03 / 06
T24 SCCL • all-mpnet-b AD BK CC 08 / 06 04 / 03
T00 SCCL elbow sil. dse-roberta-l N/A 09 / 09 17 / 12
T34 DEC SCCL hdb4k dse-roberta-l • 10 / 11 19 / 18
T25 k-means ✓ sil. all-mpnet-b BK CC SGD 11 / 12 •
T10 centroid • • • 12 / 16 •
T14 centroid sil. roberta-b OD N/A 13 / 17 07 / 08
T30 SCCL ✓ sil. all-mpnet-b BK CC HU 14 / 14 16 / 16

T19 DEC k-means ✓ sil. all-mpnet-b
AS BK CC OD

HU MD SS
15 / 18 10 / 11

T37 k-means ✓ sil. SBERT MW 16 / 19 •
T29 centroid ✓ ✓ sil. • • 17 / 21 •
T26 centroid sil. • N/A 18 / 24 12 / 14

T06
DSSCC
k-means

✓ ✓ sil. • BK CC DI 19 / 27 •

T01 k-means ✓ ✓ • • • 20 / 13 •
T20 • • sentence-t5-l N/A 21 / 20 11 / 09
T28 k-means • SBERT • 22 / 15 •

T03 centroid sil.
sup-simcse-

roberta
roberta-b

BK 23 / 26 15 / 13

Base • • • • 23 / 28 12 / 14
T13 hdbscan • all-minilm-l6 N/A 24 / 22 08 / 10
T33 k-means ✓ ✓ • • • 25 / 07 •
T18 k-means ✓ ✓ • • • 26 / 23 •
T21 centroid ✓ ✓ • all-mpnet-b CC DI 27 / 28 •
T16 SCCL • • • 28 / 29 •

T04 centroid ✓ •
multi-minilm
all-mpnet-b

• 29 / 25 12 / 14

T15 centroid ✓ merge
dse-bert-b

bart-b
BK CC MW 30 / 32 14 / 17

T27
DP-means
hdbscan

✓ •
all-mpnet-b pp-

multilingual-
mpnet-b

N/A 31 / 30 09 / 07

T22
hdbscan
k-means

• • • 32 / 31 •

T11 hdbscan ✓ • • • 33 / 33 •
T31 DEC UVWB sil. • N/A 34 / 34 18 / 19

Table 11: Summary of submissions with corresponding rankings for Task 1 and Task 2 (ACC rank / MRRavg rank).
System descriptions are self-reported, as there was no open-source requirement for this challenge. See Table 12 for
abbreviation definitions.
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Abbreviation Definition

N/A No Extra Data
AD ACID (Acharya and Fung, 2020)
AS ATIS (Hemphill et al., 1990)
BK BANK77 (Casanueva et al., 2020)
CC CLINC150 (Larson et al., 2019)
DI Development Data (Insurance)
HU HWU64 (Liu et al., 2019a)
MD MCID (Arora et al., 2020)
MW MultiWOZ (Budzianowski et al., 2018)
SG SGD (Rastogi et al., 2020)
SS SNIPS (Coucke et al., 2018)
SO StackOverflow (Hamner et al., 2012; Xu et al., 2015)

multi-minilm TingChenChang/hpvqa-lcqmc-ocnli-cnsd-multi-MiniLM-v2
dse-bert-b aws-ai/dse-bert-base (Zhou et al., 2022)

dse-roberta-l aws-ai/dse-roberta-large (Zhou et al., 2022)
bart-b facebook/bart-base (Lewis et al., 2020)

sup-simcse-roberta princeton-nlp/sup-simcse-roberta (Gao et al., 2021)
roberta-b roberta-base (Liu et al., 2019b)

all-minilm-l6 sentence-transformers/all-MiniLM-L6-v2 (Reimers and Gurevych, 2019)
all-mpnet-b sentence-transformers/all-mpnet-base-v2 (Reimers and Gurevych, 2019)

pp-multilingual-mpnet-b sentence-transformers/paraphrase-multilingual-mpnet-base-v2 (Reimers and
Gurevych, 2019)

sentence-t5-l sentence-transformers/sentence-t5-large (Reimers and Gurevych, 2019)

centroid Centroid-based Clustering
hdbscan HDBSCAN (Campello et al., 2013)
k-means K-Means (MacQueen et al., 1967)

sil. Silhouette Scores (Rousseeuw, 1987; Kaufman and Rousseeuw, 2009)
DEC Deep Embedded Clustering (Xie et al., 2016)

SCCL Supporting Clustering with Contrastive Learning (Zhang et al., 2021a)
DSSCC Deep Semi-Supervised Contrastive Clustering (Kumar et al., 2022)

elbow Elbow method (Hardy, 1994)
hdb4k HDBSCAN for identifying K
merge Iterative Merging

Table 12: Abbreviations for datasets, models, and techniques used by submissions.
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Team Banking Finance Avg.
ACC P R F1 NMI ARI K ACC P R F1 NMI ARI K ACC F1 NMI

T23 71.5 81.2 75.7 78.4 77.3 62.9 29 68.1 70.9 76.5 73.6 72.8 55.5 32 69.8 76.0 75.1
T07 72.1 72.2 84.6 77.9 72.5 64.5 14 67.1 71.8 78.7 75.1 74.5 55.8 41 69.6 76.5 73.5
T35 73.3 79.2 76.4 77.8 73.5 63.8 53 65.4 77.6 70.3 73.8 75.1 53.5 75 69.3 75.8 74.3
T05 75.2 78.8 82.5 80.6 78.5 70.7 26 62.9 67.8 74.1 70.8 72.6 52.1 27 69.1 75.7 75.5
T02 75.0 78.6 82.2 80.4 78.0 70.2 26 62.6 67.5 73.9 70.6 72.3 51.6 27 68.8 75.5 75.1
T17 72.0 77.0 78.3 77.7 75.7 70.1 25 62.3 63.9 78.6 70.5 70.7 51.6 25 67.1 74.1 73.2
T36 72.5 76.6 77.9 77.3 76.1 66.7 28 60.2 67.1 71.0 69.0 71.2 49.4 28 66.3 73.1 73.6
T24 69.4 73.6 81.6 77.4 76.6 64.6 28 63.0 68.8 73.1 70.8 72.9 51.7 28 66.2 74.1 74.7
T00 66.7 74.8 75.5 75.1 71.9 51.2 17 63.2 68.1 74.1 70.9 70.3 49.5 25 64.9 73.0 71.1
T34 67.5 78.7 73.7 76.1 76.1 57.4 22 60.0 63.3 76.0 69.1 69.9 48.2 22 63.7 72.6 73.0
T25 68.2 68.2 89.7 77.5 74.1 66.3 11 56.9 57.1 83.5 67.8 70.3 54.4 18 62.6 72.7 72.2
T10 68.4 70.5 75.7 73.0 69.6 61.1 20 56.7 66.4 62.3 64.3 67.4 42.9 35 62.5 68.6 68.5
T14 67.0 69.1 77.6 73.1 72.1 66.7 21 56.0 59.7 68.0 63.6 62.6 45.0 25 61.5 68.4 67.4
T30 69.6 69.6 82.4 75.5 67.1 59.3 12 52.6 56.3 76.1 64.7 65.1 45.3 19 61.1 70.1 66.1
T19 68.7 68.7 82.3 74.9 70.6 60.6 12 49.7 49.7 81.3 61.7 64.3 46.7 14 59.2 68.3 67.4
T37 65.1 73.9 69.4 71.6 69.6 54.9 20 52.3 75.1 54.2 63.0 71.0 34.7 49 58.7 67.3 70.3
T29 60.9 74.5 67.5 70.9 71.6 52.0 23 55.4 66.8 64.4 65.6 67.5 41.3 29 58.1 68.2 69.6
T26 65.1 73.8 73.3 73.6 69.7 52.0 17 50.8 54.4 67.1 60.1 60.3 43.7 45 58.0 66.8 65.0
T06 64.4 66.4 79.1 72.2 68.7 58.3 32 50.8 54.4 67.1 60.1 60.3 43.7 45 57.6 66.1 64.5
T01 57.7 74.4 59.3 66.0 70.0 50.3 30 57.1 72.4 65.2 68.7 72.1 43.1 36 57.4 67.3 71.0
T20 62.8 62.8 90.1 74.0 72.0 61.6 10 50.8 72.4 52.8 61.1 68.8 33.7 50 56.8 67.6 70.4
T28 55.9 55.9 72.6 63.2 59.8 37.0 12 57.2 73.9 60.3 66.4 71.6 39.1 44 56.6 64.8 65.7
T03 57.4 57.4 88.4 69.6 67.5 55.8 9 53.9 53.9 78.3 63.8 64.1 50.3 17 55.6 66.7 65.8
T13 53.8 72.5 58.0 64.5 64.0 35.0 30 56.8 71.5 63.7 67.4 68.9 37.2 46 55.3 65.9 66.4
T33 74.5 78.5 79.7 79.1 75.2 68.2 80 35.1 38.6 84.9 53.0 47.9 15.0 88 54.8 66.1 61.6
T18 58.5 58.5 89.0 70.6 69.2 56.3 9 51.0 56.4 73.3 63.7 67.7 42.4 19 54.8 67.1 68.4
T21 59.9 62.3 70.0 65.9 60.5 46.8 14 47.7 64.9 49.9 56.4 63.4 29.2 46 53.8 61.2 62.0
T16 57.2 57.2 77.0 65.6 56.1 45.4 9 48.7 61.9 57.8 59.8 60.7 32.7 29 52.9 62.7 58.4
T04 65.7 72.9 76.4 74.6 71.9 57.4 16 34.6 35.8 90.9 51.4 49.1 11.6 45 50.1 63.0 60.5
T15 51.1 62.7 58.8 60.7 60.3 48.1 36 46.8 54.6 56.2 55.4 59.0 38.3 39 48.9 58.0 59.7
T27 51.0 58.4 67.5 62.6 59.8 37.9 18 46.8 50.8 73.3 60.1 61.9 37.3 19 48.9 61.3 60.8
T22 52.0 65.5 59.3 62.3 59.4 37.4 27 41.5 60.1 53.2 56.4 62.0 27.3 46 46.7 59.3 60.7
T11 42.2 50.6 58.9 54.4 49.8 7.9 37 46.1 54.3 62.2 58.0 57.1 11.9 47 44.2 56.2 53.4
T31 34.3 34.3 63.2 44.4 31.6 20.1 6 35.9 54.8 38.1 45.0 52.3 20.5 46 35.1 44.7 42.0

Base 59.7 60.7 72.0 65.9 60.3 46.1 12 51.8 69.3 54.0 60.7 65.7 33.6 46 55.8 63.3 63.0

Table 13: Per-dataset results across all metrics for Task 1. Base indicates the baseline system described in Section 5.
K indicates the number of induced intents. The number of reference intents for Banking and Finance are 29 and 39
respectively. Bold denotes the best results for each dataset.
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Team Banking Finance Avg.
ACC P R F1 NMI ARI K U/I ACC P R F1 NMI ARI K U/I ACC F1 NMI

T23 88.7 92.1 93.6 92.9 94.2 84.8 26 141.7 63.9 65.2 86.1 74.2 80.7 58.9 39 170.1 76.3 83.5 87.4
T02 79.4 82.6 90.2 86.2 89.1 72.3 35 47.8 71.3 73.8 86.2 79.5 85.5 65.5 36 56.7 75.3 82.9 87.3
T36 78.4 84.5 87.2 85.9 89.0 72.0 42 107.7 71.3 73.1 88.0 79.8 85.0 70.7 42 161.2 74.9 82.8 87.0
T24 77.9 85.0 87.7 86.3 89.4 72.6 42 103.6 71.5 74.5 87.5 80.5 85.5 68.8 42 155.5 74.7 83.4 87.5
T05 77.9 86.0 87.7 86.8 90.4 73.5 39 93.1 71.2 73.0 87.3 79.5 85.3 67.0 40 140.3 74.5 83.2 87.9
T17 75.2 87.5 84.5 86.0 89.5 71.6 40 91.5 72.4 79.0 85.2 82.0 86.8 71.3 43 130.8 73.8 84.0 88.1
T09 73.0 85.5 84.8 85.1 89.8 71.0 36 46.6 70.1 73.1 86.5 79.2 83.9 64.9 37 54.9 71.5 82.2 86.8
T14 75.9 77.6 89.9 83.3 87.0 70.4 30 122.8 63.2 63.7 86.0 73.2 80.3 59.8 34 195.1 69.6 78.3 83.7
T13 73.5 89.9 75.9 82.3 85.0 69.7 51 72.2 65.4 75.4 73.0 74.2 79.5 54.6 51 130.1 69.4 78.3 82.3
T27 71.7 87.2 78.4 82.6 86.1 67.4 51 72.5 65.7 73.4 76.6 75.0 81.3 60.2 51 130.9 68.7 78.8 83.7
T08 79.4 80.6 87.0 83.7 87.7 73.5 25 147.4 57.5 58.9 87.3 70.4 78.4 56.0 28 237.0 68.4 77.0 83.1
T19 74.2 74.2 91.9 82.1 87.0 69.2 19 193.9 60.8 64.0 87.0 73.7 80.5 58.1 33 201.1 67.5 77.9 83.7
T20 65.1 65.4 96.3 77.9 85.6 62.9 13 283.4 63.6 70.2 82.7 75.9 82.9 62.6 50 132.7 64.4 76.9 84.3
T15 66.1 76.9 77.6 77.3 82.9 61.2 36 40.8 60.6 65.0 74.8 69.5 77.5 56.2 39 45.4 63.4 73.4 80.2
T03 61.7 62.2 92.4 74.3 82.4 59.7 15 245.6 63.2 63.7 86.0 73.2 80.3 59.8 34 195.1 62.4 73.8 81.3
T30 70.3 70.3 94.3 80.5 86.0 66.2 12 122.8 51.5 52.2 82.6 64.0 72.0 44.4 19 83.4 60.9 72.3 79.0
T00 75.7 80.8 86.2 83.5 87.3 68.1 34 108.4 43.7 45.1 75.4 56.5 65.8 38.8 39 170.1 59.7 70.0 76.6
T31 69.3 78.1 70.3 74.0 79.4 61.9 41 89.9 49.7 56.6 66.3 61.1 69.8 36.7 48 138.2 59.5 67.5 74.6
T34 63.6 69.8 77.4 73.4 79.6 58.5 21 35.2 55.0 55.7 85.3 67.4 75.6 50.3 24 35.4 59.3 70.4 77.6

Base 70.8 73.7 87.2 79.9 84.0 66.1 26 141.7 56.5 64.2 71.9 67.8 76.2 48.4 50 132.7 63.6 73.9 80.1

Table 14: Per-dataset results across all metrics for Task 2. U/I indicates the number of utterances per intent. K
indicates the number of induced intents. Base gives the baseline system performance (equivalent to T04 and T26).
Bold denotes the best results for each dataset.
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