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Abstract

Conventional Task-oriented Dialogue (TOD)
Systems rely on domain-specific APIs/DBs or
external factual knowledge to create responses.
In DSTC11 track 5, we aims to provide a
new challenging task to accommodate subjec-
tive user requests (e.g.,“Is the WIFI reliable?”
or “Does the restaurant have a good atmo-
sphere?”) into TOD. We release a benchmark
dataset, which contains subjective knowledge-
seeking dialogue contexts and manually anno-
tated responses that are grounded in subjective
knowledge sources. The challenge track re-
ceived a total of 48 entries from 14 participat-
ing teams.

1 Introduction

Task-oriented Dialogue (TOD) Systems aim to
build dialogue systems to help users to achieve
specific goals (e.g., booking a hotel or a restaurant).
Most solutions of TOD are either based on domain-
APIs (Budzianowski et al., 2018; Rastogi et al.,
2020) and structured databases (Eric et al., 2017;
Wu et al., 2019), which can only handle limited
scenarios. Recent works incorporate unstructured
factual information (Dimitrakis et al., 2018; Kim
et al., 2020, 2021b; Feng et al., 2020, 2021; Ma-
jumder et al., 2022) into dialogue modeling, which
further enlarges the model’s ability of task-oriented
assistance.

However, in many TOD tasks, users care about
not only factual information but subjective informa-
tion as well, such as the experiences, opinions, and
preferences of other customers. For example, when
booking a hotel or a restaurant, users may ask ques-
tions like “Is the WIFI reliable?” or “Does the
restaurant have a good atmosphere?”. To respond
to such user requests, an agent needs to seek infor-
mation from subjective knowledge sources such as
online customer reviews.

In this track, we focus on enabling the TOD
model to leverage subjective knowledge during

Avalon Hotel
While I was not pleased with the slow 
wi-fi and small room, I was content with 
their awesome breakfast options. They

have friendly and engaging staff…

The room and hotel had a fast wifi
which was useful and not aggravatingly 
slow like we‘ve all seen. The room was …

I traveled to the Avalon alone for work.

The slow Wi-Fi and noisy room made 
work a bit difficult. I really liked the …

Gonville Hotel
I stayed at the Gonville and it was

amazing! They had fast wifi and a 
great top floor view! It also has …

I recently stayed at Gonville ... They 
had stable wifi and it was even 
better as it was free. The food is …

One thing that was kind of 

disappointing was the breakfast …

We loved their breakfast options ...

Dialogue 3
U: I'm looking for a 

hotel called Avalon.

S: The Avalon hotel is 

located in downtown.

U: Does it have wifi?

S: Yes, it has wifi.

U: Is the wifi reliable?

S: According to 
previous reviews, 
some customers have
complained that the
WIFI is slow and make
work a bit difficult.
But one said it is fast.

Dialogue 2
U: I'd like to find someplace 

to stay in downtown.

S: Both Avalon and Gonville

are located near downtown.

Would you like to stay in one 

of those guesthouses?

U: Which one has free wifi?

S: Both facilities do.

U: Is it high quality wifi with a 

stable connection?

S: Overall, customers
thought the WIFI at Gonville
is fast, while that at Avalon
may be slow and unstable.

Dialogue 1
U: I need to book a 

hotel that has 4 stars.

S: If you'd like 

something cheap, I 

recommend Gonville. 

U: Does the cheaper 

one include WiFi?

S: Yes, Gonville offers 

free WiFi.

U: Is it fast enough to 

watch online videos?

S: Yes, reviewers said
that their WIFI is
stable and fast.

SK-Grounded TOD

Subjective Knowledge Source

Figure 1: Examples of the SK-TOD task. The top part
shows two hotels and their customer reviews. The bot-
tom part shows three dialogue sessions between the
system (denoted by S) and three users (denoted by U).
The last user utterance is a subjective question about
the WIFI quality of the hotel(s). The system needs to
retrieve information from the relevant subjective knowl-
edge, which is highlighted in the review text.

task-oriented assistance. To this end, we pro-
posed a novel task of subjective-knowledge-based
task-oriented dialogue (SK-TOD) (Zhao et al.,
2023). More specifically, we focus on subjective
knowledge-seeking user requests and choose user
reviews as external subjective knowledge sources.
In Figure 1, we show three examples of such re-
quests, where customers ask about the WiFi quality
of hotels. User reviews are great resources for
subjective information because even for the same
aspect of the same product/service, customers may
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have different opinions and leave either positive or
negative reviews.The subjectivity of reviews also
indicates that a TOD system should consider mul-
tiple reviews to get a more comprehensive user
opinion. Based on that, an ideal response should
inform users of the diversity of opinions by includ-
ing both positive and negative opinions as well as
the proportions (like the response in Dialogue 3).
Such a two-sided response has been observed as
more credible and valuable for customers (Kamins
et al., 1989; Lee et al., 2008; Baek et al., 2012),
which can also protect the trust of users in the TOD
system.

Building TOD upon subjective knowledge in
this way brings in two unique challenges. First,
instead of selecting the top few relevant knowl-
edge snippets (as what is needed for Fact-TOD),
the SK-TOD model needs to select all relevant
knowledge snippets. Second, the model needs to
aggregate these knowledge snippets into a concise
response that can faithfully reflect the diversity and
proportion of opinions. To facilitate the research of
subjective-knowledge-grounded TOD, we released
a large-scale dataset for this track, which contains
19,696 subjective knowledge-seeking dialogue con-
texts and manually annotated responses that are
grounded on 143 entities and 1,430 reviews (8,013
sentences).

This paper provides an overview of the track.
The rest of the paper is organized as follows. We
first introduce the problem formulation (Section 2)
and data statistics (Section 3). Then we introduce
the baseline approach (Section 4) and the evalu-
ation metrics (Section 5). Finally, we report the
participants and results (Section 6), and we close
the paper with the conclusion (Section 7).

2 Problem Formulation

Formally, we have a dialogue context C =
[U1, S1, U2, S2, · · · , Ut] between a user and a sys-
tem, where each user utterance Ui is followed
by a system response utterance Si except the last
user utterance Ut. The dialogue involves single
or multiple entities E = {e1, · · · , em}. Along
with the dialogue, we have a subjective knowl-
edge source B = {(e1,R1), (e2,R2), · · · } con-
sisting of all the entities and their corresponding
customer reviews. Each entity e has multiple re-
views R = {R1, R2, · · · }. Each review can be
split into multiple segments [K1,K2, · · · ] such as
paragraphs, sentences, or sub-sentential units. In

Train Val Test
# instances 14768 2129 2799
# seen instances 14768 1471 1547
# unseen instances 0 658 1252
# multi-entity instances 412 199 436
Knowledge Snippets
Avg. # snippets per instance 3.80 4.07 4.21
Avg. # tokens per snippet 14.68 15.49 14.5
Dialogue
Avg. # uttrances per instance 9.29 9.44 9.36
Avg. # tokens per request 8.65 8.94 9.12
Avg. # tokens per response 24.18 23.61 23.86

Table 1: Basic statistics of our dataset.

this track, we regard each review sentence as a
knowledge snippet.

The SK-TOD task contains the following three
sub-tasks.

Knowledge-Seeking Turn Detection aims to
identify the user request that requires to be ad-
dressed with subjective knowledge. We regard it as
a binary-classification problem, where the input is
the dialogue context C and the output is a binary
indicator.

Knowledge Selection is then used to select the
knowledge snippets that are relevant to the user’s
request. The inputs are the dialogue context C and
the knowledge snippets candidates K, which is a
combination of all the knowledge snippets of the
relevant entities in E . The output K+ ⊆ K is a
subset of relevant knowledge candidates. Note that
there might be multiple knowledge snippets in K+.

Response Generation is to create an utterance
St that responds to the user’s request based on the
dialogue context C and the relevant knowledge
snippets K+.

3 Data

We ground the data collection in MultiWOZ
(Budzianowski et al., 2018; Eric et al., 2020) and
select dialogues from the domains of hotels and
restaurants. The data collection is conducted by a
group of crowd workers through Amazon Mechan-
ical Turk as described in (Zhao et al., 2023).

The dataset contains 19,696 instances with sub-
jective user requests and subjective-knowledge-
grounded responses in total. The average length of
the subjective user request and the agent response is
8.75 and 24.07 tokens, respectively. While most of
the instances contain a single entity, there are 1,047
instances where multiple entities are compared
(like Dialogue 2 in Figure 1). Each instance re-
quires on average 3.88 subjective knowledge snip-
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Figure 2: The pipeline architecture of SK-TOD.

Figure 3: The Illustration of baselines for each subtask.

pets. To help identify the subjective knowledge-
seeking user request, we randomly sample another
18,383 dialogues with non-subjective user requests
from the original MultiWOZ dataset.

We split the dataset into training (75%), valida-
tion (10.8%), and test (14.2%) sets. Table 1 shows
the detailed statistics of each subset. Our validation
and test sets contain two subsets: the seen subset
where the aspects of these instances are included
in the training set, and the unseen subset where the
aspects are not included in the training set. The
unseen subset is designed to evaluate models’ gen-
eralizability to arbitrary aspects.

4 Baseline

In this section, we describe the baseline method
for SK-TOD. Figure 3 shows the pipeline of the
baseline method which consists of three sequential
sub-tasks. The details of each subtask are described
as follows. They are illustrated in Figure 3.

4.1 Knowledge-Seeking Turn Detection

We employ a pre-trained language model (e.g.,
BERT (Devlin et al., 2019)) to encode C and adopt
the hidden state of the first token as its represen-
tation. Then we apply a classifier to obtain the
probability that the current user request is a subjec-

tive knowledge-seeking request. That is,

h = Enc(C)

P (C) = softmax (FFN (h)) .
(1)

The model is finetuned with the binary cross-
entropy loss.

4.2 Knowledge Selection

Given a dialogue history, we first adopt a word-
matching-based method used by Jin et al. (2021) to
extract relevant entities. To select relevant knowl-
edge snippets, we calculate the relevance score
between the dialogue context C and a knowledge
snippet K ∈ K of the corresponding entities. We
regard it as a pairwise text scoring problem and
consider the cross-encoder (Wolf et al., 2019) ap-
proach. We encode the concatenation of C and K
to obtain the contextualized BERT representation.
That is,

h = Enc(C,K)

P (C,K) = softmax (FFN (h)) .
(2)

During training, we use all relevant knowledge
snippets to construct positive (C, K) pairs. Due
to the large size of irrelevant knowledge snippets,
we randomly sample the same number of irrelevant
snippets to build negative pairs. We optimize the
model using the binary cross-entropy loss. During
inference, we predict the relevance probability of
all knowledge snippets in the candidates. Since
both precision and recall matter during KS, instead
of selecting the top few results, we use a threshold
to determine the relevance, which is estimated from
the validation set.

4.3 Response Generation

We apply T5 (Raffel et al., 2020), a sequence-
to-sequence pre-trained model as the generation

276



model. The model receives the concatenation of di-
alogue context and the selected knowledge snippets
as input, and has the target response as output. We
train the model by maximizing p(ST | C,K+, Z).
During the test, we generate the system response
using beam-search with top-K sampling (Fan et al.,
2018).

5 Evaluation Criteria

Each participating team submitted up to five system
outputs each of which contains the results for all
three tasks on the unlabeled test instances. We first
evaluated each submission using the task-specific
objective metrics by comparing to the ground-truth
labels and responses. For Knowledge-Seeking Turn
Detection and Knowledge Selection, we report the
precision, recall, F1 score, and accuracy score. For
Response Generation, following the evaluation of
other generation tasks, we employ BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and METEOR
(Banerjee and Lavie, 2005) to evaluate results com-
pared to the reference responses.

Considering the dependencies between the tasks
in the pipelined architecture, the final scores for
knowledge selection and knowledge-grounded re-
sponse generation are computed by considering the
first step knowledge-seeking turn detection recall
and precision performance, as follows:

Sp(X) =

∑
xi∈X

(
s(xi) · f1(xi) · f̃1(xi)

)

∑
xi∈X f̃1(xi)

,

Sr(X) =

∑
xi∈X

(
s(xi) · f1(xi) · f̃1(xi)

)

∑
xi∈X f1(xi)

,

Sf (X) =
2 · Sp(X) · Sr(X)

Sp(X) + Sr(X)
, (3)

where f1(x) and f̃1(x) are the reference and pre-
diction for the knowledge-seeking turn detection
task, respectively, and s(x) is the knowledge selec-
tion or response generation score in a target metric
for a single instance x ∈ X .

Then, we aggregated a set of multiple scores
across different tasks and metrics into a single over-
all score computed by the mean reciprocal rank, as
follows:

Soverall(e) =
1

|M |

|M |∑

i=1

1

ranki(e)
, (4)

where ranki(e) is the ranking of the submitted
entry e in the i-th metric against all the other sub-
missions and M is the number of metrics we con-
sidered.

Based on the overall objective score, we selected
the finalists to be manually evaluated by the follow-
ing two crowd sourcing tasks:

• Appropriateness: whether the response is flu-
ent and naturally connected to the dialogue
context.

• Accuracy: whether the sentiment proportion
provided by the response is accordant with
that of the subjective knowledge.

For Appropriateness, we only show the dialogue
context and the responses. For Accuracy, we fur-
ther show the oracle knowledge snippets. To in-
crease the annotation quality, we first ask workers
to annotate the sentiment label of each knowledge
snippet, and then evaluate the accuracy of each
response. Both measures are evaluated using the
5-Point Likert scale.

In both tasks, we assigned each instance to three
crowd workers and took their average as the final
human evaluation score for the instance. Those
scores were then aggregated over the entire test
set following Equation 3, i.e., weighted by the
knowledge-seeking turn detection performance. Fi-
nally, we used the average of the Appropriateness
and Accuracy scores to determine the official rank-
ing of the systems in the challenge track.

6 Results

We received 48 entries in total submitted from 14
participating teams. To preserve anonymity, the
teams were identified by numbers from 1 to 14.

6.1 Objective Evaluation Results
Table 2 shows the objective evaluation results of
the best entry from each team selected based on
the overall score (Equation 4). The full results
including all the submitted entries are available on
the track repository1.

1https://github.com/alexa/
dstc11-track5
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Table 2: Objective evaluation results of the best entries from each team. Bold denotes the best score for each metric; and * indicates the finalists selected for the human evaluations.

Task 1: Detection Task 2: Selection Task 3: Generation
Team-Entry P R F P R F EM BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L
Baseline 0.9982 0.9979 0.9980 0.7901 0.7877 0.7889 0.3906 0.1004 0.1748 0.3520 0.1430 0.2753
1 - 0 0.9977 0.7702 0.8693 0.7872 0.6048 0.6841 0.3090 0.0873 0.1512 0.3061 0.1248 0.2400
2 - 3∗ 0.9940 0.9986 0.9963 0.8093 0.7858 0.7974 0.4156 0.0984 0.1774 0.3658 0.1509 0.2875
3 - 1 0.9986 0.9971 0.9979 0.7567 0.8242 0.7890 0.3966 0.0874 0.1641 0.3425 0.1372 0.2702
4 - 1 0.9982 0.9986 0.9984 0.8183 0.8442 0.8311 0.4895 0.1003 0.1731 0.3510 0.1422 0.2737
5 - 0 0.9986 0.9968 0.9977 0.7741 0.8557 0.8128 0.4675 0.0963 0.1719 0.3470 0.1379 0.2692
6 - 0∗ 0.9968 0.9996 0.9982 0.8039 0.8775 0.8391 0.5547 0.1017 0.1894 0.3629 0.1478 0.2804
7 - 4∗ 0.9979 0.9993 0.9986 0.8183 0.8506 0.8342 0.5314 0.1075 0.1744 0.3585 0.1459 0.2794
8 - 0∗ 0.9979 0.9982 0.9980 0.8240 0.8141 0.8190 0.5130 0.1029 0.1764 0.3587 0.1479 0.2822
9 - 1 0.9995 0.7691 0.8693 0.8385 0.6398 0.7258 0.3873 0.0788 0.1532 0.3141 0.1233 0.2406
10 - 0 0.9950 0.9986 0.9968 0.7955 0.7936 0.7946 0.4177 0.1035 0.1791 0.3598 0.1473 0.2812
11 - 0 0.9989 0.9982 0.9986 0.6540 0.5391 0.5910 0.3071 0.0980 0.1614 0.3368 0.1386 0.2713
12 - 2∗ 0.9986 0.9986 0.9986 0.7538 0.8227 0.7868 0.4291 0.0961 0.1715 0.3572 0.1467 0.2798
13 - 3∗ 0.9964 0.9982 0.9973 0.8590 0.8449 0.8519 0.6432 0.1081 0.1819 0.3652 0.1528 0.2872
14 - 0∗ 0.9979 0.9989 0.9984 0.7856 0.8035 0.7944 0.4183 0.1066 0.1748 0.3599 0.1577 0.2899278
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Figure 4: Knowledge-seeking turn detection perfor-
mance (F-measure) from different entries. The hori-
zontal line indicates the baseline performance.

Table 3: Human evaluation results. Bold indicates the
best score for each metric.

Rank Team Entry Accuracy Appropriateness Average
Ground-truth 2.9189 3.6422 3.2806
1 6 0 2.9095 3.6596 3.2846
2 8 0 2.9005 3.6535 3.2770
3 13 3 2.9100 3.6321 3.2710
4 2 3 2.8908 3.6487 3.2697
5 7 4 2.9046 3.6348 3.2697
6 12 2 2.8856 3.6518 3.2687
7 14 0 2.8912 3.6427 3.2670
Baseline 2.8715 3.6348 3.2531

Figure 4 shows that the majority including the
baseline achieved near-perfect knowledge-seeking
turn detection results with F-measure surpassing
0.99. This can be attributed to the characteristics
of this data, where knowledge-seeking and non-
knowledge-seeking turns are easily distinguishable
from each other. For knowledge selection, the ma-
jority of the teams submitted the improved results
over the baseline (Figure 5), while only half of the
teams achieved higher average scores than the base-
line for response generation (Figure 6). Team 13
was determined to be the best team based on the
overall objective scores (Equation 4), derived from
the highest F-measure and exact matching accuracy
for knowledge selection, along with the averaged
response generation scores.

6.2 Human Evaluation Results

We selected 7 finalists to be manually evaluated,
corresponding to the best entry from each of the
top half teams in the overall objective score (Equa-
tion 4). Table 3 shows the official ranking of the
finalists based on the human evaluation results.
Team 3 achieved the highest accuracy score, which
aligns with their knowledge selection results from
the objective evaluation. On the other hand, Team 6
achieved the highest appropriateness ratings, which
were even higher than the scores for the reference
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Figure 5: Knowledge selection performance (F-
measure) from different entries. The horizontal line
indicates the baseline performance.

Team
 13

Team
 6

Team
 14

Team
 10

Team
 2

Team
 8

Team
 7

Base
lin

e

Team
 12

Team
 4

Team
 5

Team
 11

Team
 3

Team
 1

Team
 9

0.00

0.05

0.10

0.15

0.20

0.25

0.30
BLEU
METEOR
ROUGE-L

Figure 6: Knowledge-grounded generation performance
from different entries. The horizontal line indicates the
average of the baseline scores.

responses. This led them to be the final winner
based on the average score between accuracy and
appropriateness.

To further analyze the correlation between each
automatic metric and the final human evaluation
results, we calculated the Spearman’s rank corre-
lation coefficient (Spearman, 1961) of the ranked
lists of all the entries in every pair of objective
and human evaluation metrics, as shown in Fig-
ure 7. Consistent with the findings from our pre-
vious challenge tracks (Kim et al., 2021a, 2022),
the knowledge selection metrics have the highest
correlation with the accuracy ratings in the human
evaluation. Among the response generation met-
rics, METEOR shows better alignment with the
human ratings, particularly as it is the only met-
ric with a positive correlation with appropriateness
ratings. Nonetheless, none of the automatic evalua-
tion metrics showed a strong correlation with the
appropriateness ratings. This suggests a new re-
search direction aimed at developing more reliable
metrics for this task.
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Figure 7: Correlations between the objective and human
evaluation metrics in Spearman’s ρ. The higher score of
a pair of metrics has, the stronger correlation they have.

7 Conclusion

We presented the official evaluation results of the
Task-Oriented Conversational Modeling with Sub-
jective Knowledge Track in DSTC11 This chal-
lenge track addressed the new conversational mod-
eling tasks to accommodate subjective user re-
quests into task-oriented dialogue systems. A total
of 14 teams participated with an overall number
of 48 entries submitted. One notable thing is that
some teams have used the large language models
(LLMs) such as OpenAI’s ChatGPT and GPT-4 for
enhancing data augmentation and refining response
ranking. While these methods were expected to
help to improve our task performances, it was not
a decisive factor to achieve elevated scores and
win the benchmark in both automatic and human
evaluations. This suggests a future research direc-
tion exploring more effective strategies for utilizing
LLMs for the tasks.
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