
Proceedings of The Eleventh Dialog System Technology Challenge, pages 31–39
September 11, 2023 ©2023 Association for Computational Linguistics

Multi-Stage Coarse-to-Fine Contrastive Learning for
Conversation Intent Induction

Caiyuan Chu1∗†, Ya Li2†‡, Yifan Liu2, Jia-Chen Gu4,
Quan Liu2,3, Yongxin Ge1, Guoping Hu2,3

1Chongqing University, Chongqing, China
2iFLYTEK Research, Hefei, China 3State Key Laboratory of Cognitive Intelligence

4University of Science and Technology of China, Hefei, China
{Chucy,yongxinge}@cqu.edu.cn, gujc@ustc.edu.cn,

{yali8,yfliu7,quanliu,gphu}@iflytek.com

Abstract

Intent recognition is critical for task-oriented
dialogue systems. However, for emerging
domains and new services, it is difficult to
accurately identify the key intent of a conver-
sation due to time-consuming data annotation
and comparatively poor model transferability.
Therefore, the automatic induction of dia-
logue intention is very important for intelligent
dialogue systems. This paper presents our
solution to Track 2 of Intent Induction from
Conversations for Task-Oriented Dialogue at
the Eleventh Dialogue System Technology
Challenge (DSTC11). The essence of intention
clustering lies in distinguishing the represen-
tation of different dialogue utterances. The
key to automatic intention induction is that,
for any given set of new data, the sentence
representation obtained by the model can be
well distinguished from different labels. There-
fore, we propose a multi-stage coarse-to-fine
contrastive learning model training scheme
including unsupervised contrastive learning
pre-training, supervised contrastive learning
pre-training, and fine-tuning with joint con-
trastive learning and clustering to obtain a
better dialogue utterance representation model
for the clustering task. In the released DSTC11
Track 2 evaluation results, our proposed system
ranked first on both of the two subtasks of this
Track.

1 Introduction

The design of dialogue mode is very important
for the development of task-oriented dialogue
system. It typically consists of a set of intents
with corresponding slots for capturing and handling
domain-specific dialogue box states. Previous work
on schema-guided dialogue (Rastogi et al., 2020a,b;
Ruan et al., 2020; Lee et al., 2022) focused
on data-efficient joint dialogue state modeling
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across domains and zero-shot generalization to new
APIs. However, for new emerging domains and
novel services, the identification of key intents of
such schema typically requires domain expertise
and/or laborious analysis of a large volume of
conversation transcripts. As the demand for and
adoption of virtual assistants continues to increase,
recent work has investigated ways to accelerate
pattern design through the automatic induction of
intentions (Hakkani-Tür et al., 2015; Haponchyk
et al., 2018; Perkins and Yang, 2019; Chatterjee
and Sengupta, 2020) or the induction of slots
and dialogue states (Min et al., 2020; Hudeček
et al., 2021). However, the lack of realistic shared
benchmarks with public datasets, metrics, and task
definitions has made it difficult to track progress in
this area. For this reason, the Eleventh Dialogue
System Technology Challenge (DSTC11) proposed
a track of Intent Induction from Conversations for
Task-Oriented Dialogue. This Track is composed
of two subtasks, which are organized as shown
in Fig. 1. 1) Intent Clustering, which needs to
cluster the given dialogue statements and evaluate
them using standard clustering metrics. 2) Open
Intent Induction, in which participants are required
to generate a set of intents, each represented
by a list of sample utterances. The induced
intents and utterances will be evaluated using
their performance on a downstream classification
task over reference intents. Both subtasks aim to
discover intents from conversations. This Track is
very challenging due to the lack of labeled data and
the unknown number of conversation intents.

This paper presents a system that is evaluated
in this Track. For these tasks, in order to obtain
a better dialogue utterance representation model
under the condition that the data is unlabeled, we
propose a multi-stage coarse-to-fine contrast learn-
ing model training scheme. The backbone of our
multi-stage training scheme is the RoBERTa-large
(Liu et al., 2019). Firstly, pre-training is performed
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Figure 1: An overview of the tasks in this Track, including the tasks of Intent Clustering and Open Intent Induction.

by unsupervised contrastive learning in a large
number of consecutive conversations. Secondly,
the model is fine-tuned using a dataset with labels
from the same domain as that of the target data
for supervised comparative learning. Finally, the
model obtained after the above two training steps
is further fine-tuned on the target data by joint
clustering and contrastive learning to obtain the
final model. In addition, for the selection of the
number of clustering categories k, we adopted the
automatic parameter optimization method based on
silhouette coefficients (Rousseeuw, 1987) provided
in the baseline code. As shown in the released
evaluation results, our proposed model ranked
first on both subtasks. Furthermore, experimental
results are analyzed by ablation tests. Finally, we
draw conclusions and give an overview of our
future work.

2 Related Work

Labeled data for task-oriented dialogue systems is
often scarce because of the high cost of data an-
notation. Consequently, learning generic dialogue
representations that effectively capture dialogue
semantics at various granularities (Hou et al., 2020;
Krone et al., 2020; Gu et al., 2019; Yu et al.,
2021) lays a good foundation for handling a variety
of downstream tasks (Vinyals et al., 2016; Snell
et al., 2017). Contrastive learning has recently
demonstrated promising results in the processing
of natural language. Among which SimCSE (Gao

et al., 2021) and TOD-BERT (Wu et al., 2020)
get a very good performance on general texts and
dialogues, respectively. DSE (Zhou et al., 2022) set
new state-of-the-art results on general dialogues.

SimCSE (Gao et al., 2021) uses Dropout (Sri-
vastava et al., 2014) to construct positive pairs by
passing a sentence through the encoder twice to
generate two different embeddings. Despite the fact
that SimCSE performs better than ordinary data
augmentation that directly manipulates discrete
text, it has proven to be a poor performer in
the field of dialogue, which is confirmed in the
DSE (Zhou et al., 2022). Moreover, TOD-BERT
takes an utterance and the concatenation of all the
previous utterances in the dialogue as a positive
pair. Although showing promise on the same
tasks, TOD-BERT’s semantic granularity and data
statistics in many other dialogue tasks differ from
those evaluated in their paper. DSE learns from
dialogues by taking consecutive utterances of the
same dialogue as positive pairs for contrastive
learning, and state-of-the-art results are obtained
in several tasks, including intention classification.
Recently, MTP-CLNN (Zhang et al., 2022) set new
state-of-the-art results in the New Intent Discovery
field. However, the supervised pre-training part of
it requires the data to have a small number of labels
to get better results. According to our experimental
verification, the generalization ability of the pre-
trained model in the first stage is poor for data with
no labels at all. In addition, recent research results
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Figure 2: The framework of our proposed multi-stage coarse-to-fine contrastive learning model training scheme.

on short text clustering show that the combined
training method based on clustering and contrastive
learning, SCCL (Zhang et al., 2021) achieves very
good results. However, a better pre-trained model
for the clustering task as encoded by SCCL can
further improve the results of clustering. To this
end, the goal of our work in the first two stages is
to continue pre-training language models to derive
better representations for downstream tasks.

3 Methodology

Our proposed multi-stage coarse-to-fine model
training scheme consists of three stages: Con-
trastive Learning with Consecutive Utterances
(CLCU), Contrastive Learning with the Nearest
Neighbors and the Same Intent (CLNNSI) and
Contrastive Learning with Joint Clustering (CLJC).
This is shown in Fig. 2. In the first stage, a pre-
trained model is obtained by performing unsuper-
vised contrastive learning on a large amount of
dialogue data using consecutive discourses of the
same dialogue as positive pairs. In the second stage,
for labeled data in the same domain, we treat that
sample with its neighboring samples or samples
with the same intention as a positive pairs, and
then fine-tune the model by contrastive learning.

The third stage further fine-tunes the model by
joint contrastive learning and clustering jointly on
the target data. The negative pairs for contrastive
learning are collected by small batches of negative
sampling in the above three stages of model
training. After training, we employ a simple non-
parametric clustering algorithm named k-means
to obtain clustering results. In this section, we
describe our multi-stage coarse-to-fine contrastive
learning model training scheme in detail below.

3.1 Stage 1: CLCU

CLCU encourages the model to treat an utterance
as similar to its neighboring utterances and dissimi-
lar to utterances that are not subsequent to it or that
belong to other dialogues when doing contrastive
learning on consecutive utterances. Consecutive
utterances contain implicit categorical information,
which benefits dialogue classification tasks (e.g.,
intent classification). Consider pairs 1 and 4 in
Fig. 2 stage 1: We implicitly learn similar represen-
tations of I am looking for restaurants and Find me
some restaurants, since they are both consecutive
with What type of food do you like?. In contrast,
SimCSE does not enjoy these benefits by simply
using Dropout as data augmentation. Although
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TOD-BERT also leverages the intrinsic semantics
of dialogue by combining an utterance with its
dialogue context as a positive pair, the context
is often a concatenation of 5 to 15 utterances.
Due to the large discrepancy in both semantics
and data statistics between each utterance and its
context, simply optimizing the similarity between
them leads to less satisfying representations on
many dialogue tasks. Just like the experimental
results in DSE (Zhou et al., 2022). TOD-BERT can
even lead to degenerated representations on some
downstream tasks when compared to the original
BERT (Devlin et al., 2019) model. Therefore,
in the first stage, we adopt the method of DSE,
which learns from dialogues by taking consecutive
utterances of the same dialogue as positive pairs
for contrastive learning, and directly use the model
they trained on a large number of datasets as our
first stage model.

3.2 Stage 2: CLNNSI
In the second stage, a small number of labeled
datasets in the same domain as the target data
are used, which makes our model have stronger
generalization ability. And adopt an objective that
pulls neighboring instances together and pushes
distant ones away in the embedding space to learn
compact representations for clustering. To be
specific, we first encode the utterances with the
pre-trained model from stage 1. The inner product
is then used as a distance metric to find the top-K
nearest neighbors of each utterance xi in the embed-
ding space, forming a neighborhood Ni. During
training, for each minibatch of utterances B =
{xi}Mi=1 and each utterance xi ∈ B, we uniformly
sample one neighbor x′i from its neighborhood
Ni. Then use data augmentation to generate x̃i
and x̃′i for xi and x′i respectively. Here, x̃i and
x̃′i are treated as a positive pair. We then obtain
an augmented batch B′ = {x̃i, x̃′i}Mi=1 with all the
generated samples. To compute contrastive loss,
we construct an adjacency matrix A′ for B′, which
is a 2M × 2M binary matrix where 1 indicates
positive relations (either being neighbors or having
the same intent label) and 0 indicates negative
relations. Hence, the contrastive loss can writed as:

li = − 1

|Ci|
∑

j∈Ci

log
exp (sim (ẽi, ẽj) /τ)∑2M
k ̸=i exp (sim (ẽi, ẽk) /τ)

,

(1)

Lstg2 =
1

2M

2M∑

i=1

li, (2)

Figure 3: The training framework for stage 3.

where Ci =
{
A′

ij = 1 | j ∈ {1, . . . , 2M}
}

de-
notes the set of instances having positive relation
with x̃i and |Ci| is the cardinality. ẽi is the
embedding for utterance x̃i, τ is the temperature
parameter. sim(., .) is a similarity function on
a pair of normalized feature vectors. Has the
following advantages by introducing the notion
of neighborhood relationships in contrastive learn-
ing: 1) Similar instances are pulled together and
dissimilar instances are pushed away to achieve
more compact clusters; and 2) known intents are
naturally incorporated with the adjacency matrix.

3.3 Stage 3: CLJC

Previous research efforts focused on integrating
clustering with deep representation learning by
optimizing a clustering objective defined in the
representation space (Zhang et al., 2017; Shaham
et al., 2018). Despite promising improvements,
the clustering performance is still inadequate,
especially in the presence of complex data with
a large number of clusters. One possible reason is
that, even with a deep neural network, data still
has significant overlap across categories before
clustering starts. Consequently, the clusters learned
by optimizing various distance or similarity-based
clustering objectives suffer from poor purity. More-
over, contrastive learning has recently achieved
remarkable success in self-monitoring (Wu et al.,
2018; Chen et al., 2020), as the name suggests,
a contrastive loss is adopted to pull together
samples augmented from the same instance in the
original dataset while pushing apart those from
different ones. This beneficial property can be
leveraged to support clustering by scattering apart
the overlapped categories. Hence, in the third
stage, for target data, we adopt the method of joint
clustering and contrastive learning to further fine-
tune the model. The training framework stage3 is
shown in Fig. 3. Among them, xi1 ,xi2 and xj1 ,xj2
are obtained by means of data augmentation. In
this paper, we adopt the contextual augmenter data
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dataset dial. test-utt. task1-utt. task2-utt.

dev 948 913 1205 4332
banking 1000 407 1503 3696
finance 2000 1130 1597 6676

Table 1: Statistics of the DSTC11-Track 2 datasets. utt.:
utterance, dial.: dialogue.

augment in the form of a pre-trained transformers
to find the top-n suitable words of the input
text for insertion or substitution. We used word
substitution to augment the data and chose Bertbase
and Robertabase to generate augmented pairs. And
the overall objective is:

Lstg3 = LCL + ηLClu, (3)

where LCL and LClu are the loss functions of
comparative learning and clustering, respectively.
η balances between the contrastive loss and the
clustering loss of stage3, for simplicity, it is set to
10 in our experiment.

4 Experiments

4.1 Dataset
For this Track, one development dataset and two
test datasets are provided. Each dataset consists of
1) some human-to-human conversations between
a customer and an agent, and 2) a set of testing
samples with corresponding intent annotations.
The task1-utterances and task2-utterances are ut-
terances in which "intents" are non-empty and
"dialogue_acts" are "InformIntent" in dialogues
in each dataset, respectively. Detailed statistics of
the dataset are summarized in Table 1.

4.2 Metrics
Task 1 and task 2 are both evaluated by the fol-
lowing six metrics,: accuracy (ACC) (Huang et al.,
2014), normalized mutual information (NMI), F1-
score, Recall, Precision, and adjusted rand index
(ARI). But the ACC is the primary metric used for
ranking system submissions. Metrics dependent
on reference intents will be computed using an
automatic alignment of cluster labels to reference
intent labels. For task 1, alignments will be
computed based on turn-level reference intent
labels. For task 2, to avoid the need to assign
labels to turns in the input transcripts, alignments
will be computed using classifier predictions on
the set of utterances held out for evaluation. In

Team ACC P R F1 NMI ARI

T23 69.79 76.09 76.12 76.00 75.05 59.23
T07 69.59 72.01 81.64 76.50 73.48 60.13
T35 69.31 78.41 73.35 75.78 74.30 58.67
T05 69.06 73.26 78.32 75.70 75.54 61.38
T02 68.83 73.04 78.06 75.46 75.13 60.88
T17 67.15 70.49 78.48 74.10 73.20 60.86
T36 66.32 71.86 74.46 73.13 73.64 58.05
T24 66.19 71.17 77.36 74.13 74.72 58.15
T00 64.92 71.42 74.80 73.05 71.08 50.37
T34 63.73 71.01 74.84 72.59 72.98 52.77
. . . . . . . . . . . . . . . . . . . . .
baseline 55.80 64.97 62.98 63.26 62.98 39.85

Table 2: The summary of the task 1 evaluation results
on the two datasets, with the best score in bold.

Team ACC P R F1 NMI ARI

T23 76.30 78.68 89.86 83.55 87.42 71.82
T02 75.34 78.18 88.18 82.86 87.32 68.87
T36 74.85 78.81 87.59 82.85 87.00 71.36
T24 74.70 79.76 87.62 83.42 87.45 70.71
T05 74.52 79.50 87.49 83.17 87.88 70.26
T17 73.79 83.25 84.87 83.99 88.11 71.42
T14 69.55 70.68 87.97 78.27 83.67 65.11
T13 69.43 82.66 74.47 78.26 82.29 62.13
T27 68.70 80.29 77.51 78.76 83.69 63.83
T19 67.50 69.09 89.4 77.92 83.73 63.67
. . . . . . . . . . . . . . . . . . . . .
baseline 63.61 68.93 79.59 73.86 80.09 57.24

Table 3: The summary of the task 2 evaluation results
on the two datasets, with the best score in bold.

both cases, 1:1 alignments between induced intents
and reference intents will be computed using the
Hungarian algorithm (Kuhn, 1955).

4.3 Experiment Results

The final summary results of the test-banking
dataset and the test-finance dataset for the two
subtasks are shown in Tables 2 and 3. Our
model ranks first in the test sets for both subtasks.
Compared with the baseline, where the baseline
model in the above tables is the official provided
baseline model mpnet by Track 2 of DSTC11. It
is trained on a large and diverse dataset of over
1 billion training pairs. And the test ACC of our
model is improved by 13.99% and 12.69% on tasks
1 and 2, respectively. It shows the effectiveness of
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task1 task2

GloVe (Pennington et al., 2014) 20.58 29.12
MPNet (Song et al., 2020) 46.14 60.23
SimCSE (Gao et al., 2021) 47.39 57.74
DSE (Zhou et al., 2022) 58.67 64.18
SCCL (Zhang et al., 2021) 65.32 78.34
Our model 75.68 85.76

Table 4: Comparison of the accuracy of different models
on the development dataset for the two tasks.

our method.
In addition, we give the results of our method on

the development dataset compared with some rep-
resentative baseline models. We compared with the
following baseline models: (1) GloVe (Pennington
et al., 2014). One of the official baseline models
provided by the Track 2 of DSTC11, which is a
sentence-transformers model. It maps sentences
or paragraphs to a 300 dimensional dense vector
space and can be used for tasks like clustering or
semantic search. (2) MPNet (Song et al., 2020).
Another official baseline model provided by Track
2 of DSTC11, which is trained on a large and
diverse dataset of over 1 billion training pairs. The
base model is MPNet-base. (3) SimCSE (Gao
et al., 2021). The model we chose is trained on
106 randomly sampled sentences from English
Wikipedia by unsupervised contrastive learning,
and its base model is RoBERTa-large. (4) DSE
(Zhou et al., 2022). It is trained on a large
number of training pairs constructed in the style
of consecutive conversational sentences as positive
pair using multiple conversational datasets. And
the base model is RoBERTa-large. (5) SCCL
(Zhang et al., 2021). Fine-tuning of the baseline
model using the development dataset by joint
training with clustering and contrastive learning,
where the baseline model is the DSE-trained model
described above.

As can be seen from the experimental results in
Table 4, our model obtained the best results in both
subtasks compared to several other representative
baseline models, with accuracy rates of 75.68% and
85.76%, respectively. On task 1, the accuracy of
our model outperformed GloVe by 55.1%, outper-
formed MPNet by 29.54%, outperformed SimCSE
by 28.29%, outperformed DSE by 17.01%, and
outperformed SCCL by 10.36%. On task 2,
the accuracy of our model outperformed GloVe

task1 task2

model 75.68 85.76
w/o. stage1,stage2 and stage3 46.14 60.24
w/o. stage2 and stage3 58.59 60.90
w/o. stage3 70.71 80.28

Table 5: Accuracy of ablation experiment on the
development set.

by 56.64%, outperformed MPNet by 25.53%,
outperformed SimCSE by 28.02%, outperformed
DSE by 21.56%, and outperformed SCCL by
7.42%. This illustrates the soundness of our
approach.

4.4 Ablation Study

Through ablation experiments with a random seed
set to 42 in the clustering algorithm on the devel-
opment dataset, the experimental results are shown
in Table 5. When there is no stage1, stage2 and
stag3 (this is the case is the baseline), the ACC
of the test on task1 and task2 are 46.14%, 60.24%
respectively. when stage1, stage2 and stage3 are
performed, the results on task1 are improved by
12.45%, 12.12% and the results on task2 improved
by 0.68%, 19.38%, and 5.48%, respectively. In
addition, the TSNE visualization of the utterances
representation of the model obtained at each stage
on the development set is shown in Fig. 4. It can be
observed from the figure that each cluster becomes
more and more compact after each stage compared
to the baseline model. That verifies the rationality
of each stage.

5 Conclusion

In this paper, we present our solution to the
challenge of Intent Induction from Conversations
for task-Oriented Dialogue of DSTC11. Firstly,
we chose RoBERTa-large, which was pre-trained
on a large number of continuous dialogues. Since
continuous utterances also contain implicit clas-
sification information, they are beneficial for the
task of dialogue intention classification. Secondly,
the use of some labeled datasets in the same
domain as the target data makes our model have
stronger transfer ability. And we adopt KNN to
select the positive pair for contrastive learning in
order to pull neighboring instances together and
push distant ones away in the embedding space
to learn compact representations for clustering.
Lastly, the joint training method of clustering
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(a) Baseline (b) Stage 1

(c) Stage 2 (d) Stage 3

Figure 4: TSNE visualization (Van der Maaten and Hinton, 2008) of the dialogue representations provides by
baseline and three stages on the development set, each color indicates a ground truth semantic category.

and contrastive learning makes the advantages of
clustering and contrastive learning complementary.
Experimental results demonstrate that our methods
can effectively cluster the utterances with intention
in the dialogue. Our method of competitive
performance achieved first place in two subtasks.
In the future, we will explore better ways to obtain
a better dialogue utterance representation model
for the clustering task.

Acknowledgements

We thank anonymous reviewers for their valuable
comments.

References

Ajay Chatterjee and Shubhashis Sengupta. 2020. Intent
mining from past conversations for conversational
agent. CoRR, abs/2005.11014.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
International conference on machine learning, pages
1597–1607. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021,
pages 6894–6910. Association for Computational
Linguistics.

37

http://arxiv.org/abs/2005.11014
http://arxiv.org/abs/2005.11014
http://arxiv.org/abs/2005.11014
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552


Jia-Chen Gu, Zhen-Hua Ling, and Quan Liu. 2019.
Interactive matching network for multi-turn response
selection in retrieval-based chatbots. In Proceedings
of the 28th ACM International Conference on
Information and Knowledge Management, CIKM
2019, pages 2321–2324. ACM.

Dilek Hakkani-Tür, Yun-Cheng Ju, Geoffrey Zweig,
and Gokhan Tur. 2015. Clustering novel intents in
a conversational interaction system with semantic
parsing. In Sixteenth Annual Conference of the
International Speech Communication Association.

Iryna Haponchyk, Antonio Uva, Seunghak Yu,
Olga Uryupina, and Alessandro Moschitti. 2018.
Supervised clustering of questions into intents for
dialog system applications. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2310–2321.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-
shot slot tagging with collapsed dependency transfer
and label-enhanced task-adaptive projection network.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1381–1393.

Peihao Huang, Yan Huang, Wei Wang, and Liang
Wang. 2014. Deep embedding network for clustering.
In 2014 22nd International conference on pattern
recognition, pages 1532–1537. IEEE.
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