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Abstract
Natural Language Understanding (NLU) is one
of the most critical components of task-oriented
dialogue, and it is often considered as an in-
tent classification task. To achieve outstanding
intent identification performance, system de-
signers often need to hire a large number of
domain experts to label the data, which is in-
efficient and costly. To address this problem,
researchers’ attention has gradually shifted to
automatic intent clustering methods, which em-
ploy low-resource unsupervised approaches to
solve classification problems. The classical
framework for clustering is deep clustering,
which uses deep neural networks (DNNs) to
jointly optimize non-clustering loss and clus-
tering loss. However, for new conversational
domains or services, utterances required to as-
sign intents are scarce and the performance of
DNNs is often dependent on large amounts of
data. In addition, although re-clustering with
k-means algorithm after training the network
usually leads to better results, k-means meth-
ods often suffer from poor stability. To ad-
dress these problems, we propose an effective
two-stage progressive approach to refine the
clustering. Firstly, we pre-train the network
with contrastive loss using all conversations
data and then optimize the clustering loss and
contrastive loss simultaneously. Secondly, we
propose adaptive progressive k-means to allevi-
ate the randomness of vanilla k-means, achiev-
ing better performance and smaller deviation.
Our method ranks second in DSTC11 Track2
Task 1, a benchmark for intent clustering of
task-oriented dialogue, demonstrating the supe-
riority and effectiveness of our method.

1 Introduction

Task-oriented dialogue technique is of great pop-
ularity and is widely adopted in various applica-
tions, such as Microsoft’s XiaoIce (Zhou et al.,
2020), Google Assistant etc. Natural Language
Understanding (NLU) is one of the most crucial
components of task-oriented dialogue, and it is

often considered as an intent classification task. Su-
pervised deep networks are the most widely used
methods for intent classification due to their high
performance, such as classification head based on
pre-trained language models. However, such kind
of methods require a large amount of labeled data
that is collected through painstaking analysis of
conversation transcripts by domain experts. This
is not feasible for many commercial operations,
especially in emerging domains or services.

Therefore, researchers have proposed low-
resource unsupervised intent clustering methods to
address this problem, as described in Table 1. An
intent clustering procedure assigns an intent label
to each dialogue turn labeled with "informIntent"
dialogue act based on the conversation between the
customer and the agent. Such kind of unsupervised
approach has tackled the above mentioned low re-
source dilemma for task-oriented dialogue systems.
The most commonly used clustering method is k-
means (Macqueen, 1967; Lloyd, 1982) due to its
simplicity and efficiency. However, its clustering
performance depends on data representation, which
is often ineffective for high-dimensional data. To
alleviate this problem, Principal Component Anal-
ysis (PCA) and Non-negative Matrix Factorization
(NMF) were proposed. They are non-parametric
linear transformations and followed by clustering
algorithms sequentially. Now there is more work
focusing on nonlinear dimensionality reduction
and co-optimization of clustering objectives using
DNNs, called deep clustering. Two surveys pro-
vide detailed descriptions of this approach. Min
et al. (2018) gives a review from the perspective of
network structure. Aljalbout et al. (2018) presents
a systematic taxonomy of clustering methods using
DNNs.

Xie et al. (2016) proposed Deep Embedded Clus-
tering (DEC), a method for the first time combin-
ing DNN with clustering, which uses deep neural
networks to iteratively optimize sentence represen-
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Speaker Role Utterances Dialog Acts Gold Intent

Agent How can I help you today?
Customer I want to pay my auto insurance bill. InformIntent Intent1
Agent I will need your account number.
Customer It’s two three one five six four eight seven nine.
Agent Okay. Thank you.
Customer So what is my payment? InformIntent Intent2
Agent Okay. I’m showing that no payment is due until April.

Table 1: Intent Clustering. The utterance written in bold is target utterance required to assign intents and its
proportion is relatively small from the conversations.

tation and cluster assignment. Hadifar et al. (2019)
applied DEC approach with sentence embedded by
Smooth Inverse Frequency (SIF) to perform short
text clustering following a multi-stage approach.
To facilitate better data separation, Supporting Clus-
tering with Contrastive Learning (SCCL) (Zhang
et al., 2021) is the first method to introduce con-
trastive learning into clustering by jointly optimiz-
ing contrastive loss and clustering loss.

However, DNNs usually rely on large amounts
of data to update model parameters or proper ini-
tialization to speed up convergence. In addition,
the acquisition of intent utterances is limited and
difficult, especially in emerging dialogue domains
or services, so we improve the clustering perfor-
mance from the perspective of model initialization.
Meanwhile, in order to get better cluster assign-
ments, re-run clustering using k-means is generally
performed after training the network. It is known
that K-means suffer from poor stability due to the
way of obtaining initial centroids. To solve these
problems, we propose an effective two-stage pro-
gressive intent clustering from conversations. Our
main contributions are as follows:

• Pre-training with contrastive learning. To ob-
tain a proper parameter initialization, we pre-
train the network before jointly learning ut-
terance representations and clustering. Due
to the lack of target utterances, contrastive
learning is introduced and trained with all con-
versations. The introduction of pre-training
increases the robustness of the model and
also outputs better initial parameters for sub-
sequent joint training.

• Progressive k-means. To alleviate the stability
of vanilla k-means, we propose progressive
k-means, an improved cluster algorithm that
is adaptive to deep clustering. As the deep

representation is learned, the distance loss is
gradually minimized until convergence. The
cluster centroids are no longer chosen ran-
domly but are replaced by high-confidence
cluster centers.

• Our approach ranks second in ACC met-
rics and first in F1 metrics on the DSTC11
Track2 task1, a benchmark for intent cluster-
ing from conversations for task-oriented di-
alogue, demonsrating the effectiveness and
superiority on two different domain datasets.

2 Proposed Approach

To refine the performance of automatic intent clus-
tering for task-oriented dialogues, we propose
a two-stage progressive approach. Our specific
method pipeline is shown in Figure 1.

• Estimating number of intent. According to the
task description, the number of clusters is un-
known, so we need to automatically estimate
the number of clusters. We consider it as a
parameter and explore the search space based
on a predefined objective function to decide
the optimal value. The utterance representa-
tion is extracted by all-mpnet-base-v2, which
is the best model for learning sentence repre-
sentations. The specific parameter estimation
methods are described in 3.2.

• Stage one. Due to the shortage of target utter-
ances, we used the entire conversations to pre-
train the network with the help of contrastive
learning (see 2.1). During training, we use
progressive K-means (see 2.4) to assign intent
labels to the target utterance. Besides, the pro-
gressive k-means outputs a high-confidence
cluster centers named as High-Score-Center,
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Figure 1: Task Pipeline

which is used as the initial center of clustering
head in the second stage. Pre-training can pro-
vides better initial parameters for subsequent
joint learning and thus converge to a better
position.

• Stage two. During the second stage of the
approach, we jointly optimize contrastive loss
and clustering loss on target utterances, which
can iteratively refine the cluster assignments
alongside improving utterance representations
(see 2.2; 2.3). The parameters of linear layer
of clustering head are initialized by High-
Score-Center which is obtained in the first
stage. In order to get better cluster assign-
ments, progressive k-means is performed on
target utterances during the training process.

2.1 Contrastive Learning
Learning universal sentence embedding is a sig-
nificant problem in natural language processing
(Kiros et al., 2015; Hill et al., 2016; Conneau et al.,
2017; Logeswaran and Lee, 2018). Much recent
research has shown that contrastive learning can be
extremely effective to advance the sentence embed-
dings (Henderson et al., 2020; Zhang et al., 2020).
Contrastive learning aims to learn effective repre-
sentation by pulling semantically close neighbors
together and pushing apart non-neighbors (Hadsell
et al., 2006). It refines representation learning by
using a contrastive prediction task. The training
data consists of positive pairs and negative pairs
constructed from unlabeled or labeled datasets.

We follow the contrastive learning framework
proposed in SimCLR by Chen et al. (2020), using
the normalized temperature-scaled cross-entropy
loss as the training loss which is also called In-
foNCE in the previous literature (Hjelm et al.,
2019). The specific contrastive learning method
we adopt is SimCSE (Gao et al., 2021), which
uses dropout coupled with pre-trained language
models as the minimal data augmentation strat-
egy compared with previous explicit data augmen-
tation strategies. This simple strategy proved to

be superior to many traditional data augmentation
techniques in natural language processing such as
word deletion, reordering and substitution and back
translation, etc. Given a minibatch of N examples
D = {xi}Ni=1. Let hi and h+i denote the represen-
tation of example xi, which is the output obtained
by feeding xi into the encoder twice by applying
different dropout masks zi and z+i , constituting a
positive pair. The negative pair is derived from two
different examples within the minibatch D. The
contrastive learning objective xi is as follows,

lCL
i = −log(

esim(hi,h
+
i )/τ

∑N
j=1 e

sim(hi,h
+
j )/τ

) (1)

hi = fθ(xi, zi), h
+
i = fθ(xi, z

+
i ) (2)

fθ(.) denotes the encoder, τ denotes the temper-
ature parameter which we set as 0.5, sim(h1, h2)

is the cosine similarity
hT1 h2

||h1||.||h2||
.

The contrastive learning approach can also be
replaced by EsimCSE (Wu et al., 2021), which re-
fines the positive and negative construction method
called Enhanced SimCSE. Since positive pairs are
of the same length, EsimCSE breaks this length
pattern by using word repetitions that do not de-
stroy the meaning of the sentence. In addition, by
introducing momentum contrast (He et al., 2020),
more negative pairs can be leveraged to guide the
model to achieve a better representation.

2.2 Clustering with KL divergence

DEC was proposed by Xie et al. (2016), which
trains the auto-encoder by minimizing reconstruc-
tion loss and then fine-tunes the encoder network
by optimizing KL-divergence with an auxiliary tar-
get distribution. Let ei denote the representation
of instance xi, uk, k ∈ 1, ...,K denote the cluster
centroid. Following Laurens and Hinton (2008),
we use the Student’s t-distribution to measure the
similarity between embedded point ei and centroid
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k,

qik =
(1 + ||ei − uk||2/α)−

α+1
2

∑K
k′=1(1 + ||ei − u′k||2/α)−

α+1
2

(3)

qik can be regarded as the probability of assigning
xi to the k cluster and then be used as a soft assign-
ment of embeddings to cluster centers, α denotes
the degree of freedom of the Student’s t-distribution
which we set as 1.

We use a linear layer to approximate the cen-
troids of each cluster and optimize it iteratively by
leveraging an auxiliary distribution. let pik denote
the auxiliary probability which has stricter proba-
bilities compared to the similarity score qik,

pik =
q2ik/fk∑K

k′=1 q
2
ik/f

′
k

(4)

Here fk =
N∑

i=1

qik, k = 1, ...,K can be in-

terpreted as the soft cluster frequencies. By
quadratic sharpening of the soft assignments qik,
this target distribution can assign more weight
to high-confidence instances and less weights to
low-confidence instances. In addition, by using
soft cluster frequencies for normalization, the bias
caused by large clusters can be avoided.

Finally, we use KL divergence, which can mea-
sure the similarity between two probability distri-
butions P and Q, as the training objective to achieve
pushing the soft assignments to the target distribu-
tion. The specific loss is as follows,

lCi = KL[pi||qi] =
K∑

k=1

piklog
pik
qik

(5)

Unlike SCCL, in which the parameters of the
linear layer that fits the clustering centroids are ini-
tialized by the cluster centers generated by standard
K-means in the hidden space h. We instead use the
clustering centers computed from the high-scoring
instances generated by the progressive k-means
(detailed as 2.4) we iterated during pre-training.

2.3 Joint Learning
We adopt joint learning where simultaneous opti-
mization of representation learning and clustering
is performed. In the second stage of our method,
we adopt joint learning. Its specific structure is
shown in Figure 2. First, the encoder maps the
input data to the representation space, followed by

Figure 2: Joint Modeling Framework

the clustering head and contrastive head modules
described in detail above. Inspired by SimCSE,
we pass the input data into the encoder twice with
different dropout masks. The overall training ob-
jective is the weighted sum of the contrast loss and
clustering loss as follows.

L = LInstance−CL + ηLCluster (6)

LInstance−CL =
N∑

i=1

lCL
i /N (7)

LCluster =
N∑

i=1

lCi /N (8)

LInstance−CL denotes the contrastive loss, the
average loss over the minibatch. LCluster denotes
the average clustering loss on minibatch.

2.4 Progressive K-means
Deep clustering is a method that uses deep neural
networks to jointly optimize representation learn-
ing and clustering. We propose progressive K-
means, which is adaptive to this method, intro-
ducing an updated representation of instances for
iteration in the outer layer of the original K-means
iteration.

Except for the first starting centers, we use the
improved cluster centroids generated by the last
optimization. K-means is a well-known clustering
algorithm that is widely used due to its simplic-
ity and efficiency. However, the arbitrary nature
of its initial centers leads to relatively large dif-
ferences between cluster assignments, which ulti-
mately does not guarantee the accuracy of the re-
sults. K-means++ (Arthur and Vassilvitskii, 2007)
improves the method of selecting the starting cen-
ter. The centroids are selected based on the weight
of the data points, which are calculated based on
their squared distance from the nearest center. De-
spite the significant improvements, the clustering
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Dataset
Conversation Cluster

Nums Turns Turns Len Labels L/S

Insurance 948 66875 1205 17 22 10
Finance 2000 130274 1597 27 39 45
Banking 1000 59180 1503 23 29 63

Table 2: Dataset statistics. Nums: number of conversations; Len: average number of words in each cluster query;
Labels: number of clusters; L/S: the ratio of the size of the largest cluster to that of the smallest cluster.

Method ACC Precision Recall F1 NMI ARI #cluster

Baseline 55.80 64.97 62.98 63.26 62.98 39.85 29
T23(best) 69.79 76.09 76.12 76.00 75.05 59.23 30.5
T07(ours) 69.59 72.01 81.64 76.50 73.48 60.13 27.5

Table 3: Overall performance. Average experimental results of different methods on two test datasets; ACC-ARI is
metric introduced as 3.3; Cluster is the predicted number of clusters and the true cluster numbers is 34; The highest
value for each metric is written in bold

performance is still inadequate. To solve this prob-
lem, we propose an improved K-means which is
adaptive to successive iterative representations.

Algorithm 1 Progressive K-means

1: for epoch = 1, T s//Interval do
2: Obtain the representation from the network
3: if epoch = 1 then
4: Kmeans++
5: Save High-Score-Centers
6: else
7: Kmeans++ initialized with High-Score-

Centers
8: Update High-Score-Centers
9: end if

10: end for

Algorithm 1 summarizes the progressive K-
means, where Ts denotes the total training steps,
Interval denotes the frequency of cluster updates,
K-means++ denotes the original complete iterative
process, and High-Score-Centers are the average
embedding of the first 20 high silhouette coeffi-
cient score instances in each cluster, which will
be used as the initial centroids of subsequent iter-
ations. This approach can be used in combination
with deep clustering methods. Except for the first
iteration, K-means++ uses the latest representation
of the instance with better separation in each new
iteration and uses High-Score-Centers as the ini-
tial centroid. Thus, it results in an asymptotic and
stable cluster assignment that greatly mitigates the

randomness and deviation of K-means.

3 Experiments and Results

3.1 Datasets

We evaluated the proposed method on one develop-
ment dataset and two test datasets provided by the
organizers of DSTC11 Track2. The performance
on the test dataset validates the effectiveness of
our method. The ablation studies performed on the
development dataset demonstrate the properties of
different parts of our method.

The three datasets mentioned above are from
different domains, namely insurance, finance and
banking. The dataset contains about 1K customer-
supported spoken conversations with manual tran-
scription and annotation. Both customers and
agents are real people. Each conversation has an av-
erage of 70 turns. Detailed statistics are presented
in Table 2.

3.2 Experimental Setup

We adopt all-mpnet-base-v2 (Song et al., 2020) in
the Sentence Transformers Library (Reimers and
Gurevych, 2019) as an encoder, which is a pre-
trained language model that can learn state-of-the-
art universal sentence representations. Same with
Zhang et al. (2021), the clustering head is imple-
mented by a linear layer with size 768×K, where
K denotes the number of clusters, and the con-
trastive head is implemented using MLP with an
input hidden size of 768 and an output hidden size
of 128. We use the Adam optimizer with batch size
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Method ACC Precision Recall F1 NMI ARI #cluster

Baseline 51.85 69.25 53.98 60.67 65.71 33.61 46
(T23)Best 68.13 70.95 76.52 73.63 72.85 55.52 32
(T07)Ours 67.06 71.82 78.71 75.11 74.48 55.77 41

Table 4: Performance of Finance dataset; the gold cluster numbers is 39; The highest value for each metric is written
in bold

Method ACC Precision Recall F1 NMI ARI #cluster

Baseline 59.75 60.68 71.99 65.85 60.26 46.10 12
(T05)Best 75.25 78.78 82.50 80.60 78.45 70.69 26
(T07)Ours 72.12 72.19 84.56 77.89 72.47 64.50 14

Table 5: Performance of Banking dataset; the gold cluster numbers is 29; The highest value for each metric is
written in bold

of 400 and set the maximum sentence length to 64,
100, and 100 for insurance, finance, and banking,
respectively. We use a constant learning rate of 1e-
6 to optimize the encoder while setting a learning
rate of 1e-4 to optimize the rest of our model.

Hyperparameter Optimization (Hyperopt)
(Bergstra et al., 2013) is used to search for the
optimal number of clusters between 5 and 50.
In this paper, we use Tree of Parzen Estimators
(TPE) to search for the best parameters in a
specified search space based on a predefined
objective function. Specifically, we perform
k-means with different numbers of clusters and
then output the number with the highest silhouette
coefficient score. Considering that the choice
of initial centroids has a considerable impact on
the clustering performance when applying the
k-means algorithm, we conducted multiple search
experiments. First we performed 30 Hypteropt
search experiments with different seeds to obtain
30 optimal clustering numbers, and then we chose
the mode of data points greater than the 60th
percentile as the final clustering number. Outliers
are considered here, and not all data points are
used.

In the ablation study, K-means++ is executed af-
ter training the network to obtain clustering results.
Similar to Xie et al. (2016), we run K-means++
with 20 restarts and select the best centroids. The
experimental results are the average of 7 trials, and
the standard deviation is also shown as Hadifar et al.
(2019).

We measure the performance of our method on
test datasets using fusion results of 7 trials. We

fuse the results by voting. If the number of votes is
greater than half, the result is used, otherwise the
result of the model with the largest sample size is
used. In this way, the more authoritative the model,
the more likely it is to be chosen.

3.3 Experiment results
We evaluate the clustering performance from two
perspectives and six standard metrics. Clustering
accuracy (ACC), Adjusted Rand Index (ARI) and
Normalized Mutual Information (NMI) focus more
on model performance itself (Huang et al., 2014;
Wang et al., 2017) while Precision, Recall and F1
forcus more on performance of practical applica-
tion (Hadifar et al., 2019). They are used together
to provide a comprehensive measure of overall sys-
tem performance. ACC is used as the primary met-
ric for evaluating system submission rankings and
is calculated using the following logic:

ACC =

∑N
i=1 δ(map(ci) = yi)

N
(9)

δ(.) is an indicator function, ci is the cluster-
ing label for xi, map(.) is a mapping between the
predicted labels and ground-truth labels using the
Hungarian algorithm (Kuhn, 1955) for 1:1 assign-
ment. It is a mapping between predicted labels
and ground truth labels using the Hungarian algo-
rithm for 1:1 assignment. For Precision, Recall
and F1, the predicted categories will be assigned
to the most frequent target categories, allowing a
many-to-one assignment to ensure maximum sam-
ple matching.

The organizers ranked the submitted systems
using the average ACC metric calculated on the
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Datase ACC Precision Recall F1 NMI ARI

SCCL 56.57±2.38 65.37±1.68 61.67±1.97 63.46±1.66 64.33±1.33 41.71±1.76
+Pretraining 62.16±1.68 67.94±1.58 75.46±0.92 71.49±0.78 69.65±0.65 46.90±2.01
+Refined centers 65.15±1.78 71.22±1.82 74.70±0.19 72.90±0.87 70.86±0.59 51.12±1.26
Our Method 66.72±0.59 72.96±0.41 74.20±0.51 73.57±0.42 71.30±0.23 51.89±0.70

Table 6: Ablation results on Insurance dataset. Performance was assessed by the mean results and standard deviation
of 7 trials

financial and banking datasets. We first compare
our approach with the baseline and the best model,
and the results are presented in Table 3. Obviously,
our model outperforms the baseline model by a
large margin.

• Baseline. It adopts a traditional sequential
modeling approach where feature representa-
tions are first extracted before using K-means.
Clustering is performed directly in the feature
space generated by the pre-trained language
model all-mpnet-base-v2 in the sentence trans-
formation library. Hyperopt is used to esti-
mate the number of clusters.

• Submission System. T23 is the model rank-
ing first and our method is denoted as T07.

As shown in Table 3, our system ranks second with
the ACC (0.2% lower than the first place) and first
with the F1 (0.5% higher than T23), indicating
that our model is more competitive in the actual
dialogue system development. In terms of other
metrics, it has good and bad. In addition, our pre-
dicted number of clusters is 27.5, which differs
from the ground truth figure by 6.5 (ground truth is
34).

To further analyze the performance of our sys-
tem, we report the performance on the Finance and
Banking datasets, respectively, as shown in Table
4 and Table 5. On the Finance dataset, our sys-
tem ranks second in terms of ACC (1.07% lower
than first) and outperforms T23 on the other five
metrics. Notably, our model ranks first in the F1
and ARI metrics, outperforming T23 by 1.48% and
0.25%, respectively. The target cluster count is 39,
while our prediction is 41. On the banking dataset,
our system is 3.13% lower than the best model on
the acc metric, ranking sixth. The performance is
not satisfactory compared to the financial dataset,
which may be caused by the bias brought by the
estimated clusters counts. The ground truth label

is 29 and our predicted value is 14, resulting in a
difference of 15 data points.

Furthermore, T23 has the best result in the finan-
cial dataset but ranks 8th in the banking dataset,
while T05 has the best result in the banking dataset
but ranks 6th in the financial dataset. It demon-
strates that none of these models guarantee accu-
racy and that there is much room for improvement,
particularly in terms of stability. In addition, it
also reflects that this task is difficult and the per-
formance of clustering can be affected by a variety
of factors. The two approaches we propose: im-
proving the clustering algorithm and improving the
initialization, are stable and effective in various
domains. In the future, we will concentrate on do-
ing more work on the estimation of the number of
clusters.

3.4 Ablation Study
In order to improve the effectiveness of the auto-
matic intent clustering method in dialogues, we
refined the SCCL method from different perspec-
tives. To investigate the effectiveness of each part
of our proposed method, we performed an abla-
tion study on the insurance dataset, by adding each
module to SCCL in turn. Details are shown in Ta-
ble 6. +Pretraining: A pre-training module with
contrastive loss is added to the SCCL approach,
which is trained using the entire conversations. It
shows an improvement of almost 6% in the Acc
metric and significant improvements in other met-
rics. In addition, the bias of the model is reduced
due to better learned representations. +Refined
centers: The parameters in the clustering head
are initialized with the High-Score-Centers gen-
erated by the progressive k-means in pre-training.
The results show an improvement of nearly 3%,
demonstrating the great impact of initialization and
the effectiveness of our proposed progressive k-
means. Our Method: In addition to the above
modifications, we performed progressive k-means
after training the network to replace the previous
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k-means method. The performance is also slightly
improved by 1.6% and the bias is reduced to within
1%.

4 Conclusion

In this paper, to refine the performance of auto-
matic intent clustering for task-oriented dialogue,
we propose a two-stage progressive approach. To
alleviate the lack of target utterance, we introduce
pre-training before joint learning to increase the ro-
bustness of the model. In addition, we propose pro-
gressive K-means, an enhanced K-means method,
which is compatible with deep clustering. Also, we
use the High-Score-Center obtained by performing
progressive K-means in the first stage to initialize
the parameters of the clustering head in the second
stage. Ultimately, our model results in better perfor-
mance and lower deviation. Our proposed system
proved its effectiveness by ranking second in ACC
metrics and first in F1 metrics in DSTC11 Track2
Task 1. In addition, we conducted an ablation study
to verify the performance of each component.
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