
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 128–135

May 2-4, 2023 ©2023 Association for Computational Linguistics

SPINDLE:
Spinning Raw Text into Lambda Terms with Graph Attention

Konstantinos Kogkalidis♢ and Michael Moortgat♢ and Richard Moot2
♢ Institute for Language Sciences, Utrecht University

2 LIRMM, Université de Montpellier, CNRS
{k.kogkalidis,m.j.moortgat}@uu.nl, richard.moot@lirmm.fr

Abstract
This paper describes SPINDLE1 – an open
source Python module implementing an effi-
cient and accurate parser for written Dutch
that transforms raw text input to programs for
meaning composition, expressed as λ terms.
The parser integrates a number of breakthrough
advances made in recent years. Its output
consists of hi-res derivations of a multimodal
type-logical grammar, capturing two orthog-
onal axes of syntax, namely deep function-
argument structures and dependency relations.
These are produced by three interdependent sys-
tems: a static type-checker asserting the well-
formedness of grammatical analyses, a state-of-
the-art, structurally-aware supertagger based on
heterogeneous graph convolutions, and a mas-
sively parallel proof search component based
on Sinkhorn iterations. Packed in the software
are also handy utilities and extras for proof vi-
sualization and inference, intended to facilitate
end-user utilization.

1 Introduction

The transparency and formal well-behavedness of
lambda calculi make them the ideal format for ex-
pressing compositional structures, a fact that has
been duly emphasized by parsers and tools with a
predominant focus on semantics. Lambda calculi
form a key ingredient of type-logical grammars,
where they find use as the computational coun-
terpart of a so-called grammar logic, a substruc-
tural logic of the intuitionistic linear variety that is
designed to capture (aspects of) natural language
syntax and semantics (Moortgat, 1997). For type-
logical grammars, the Curry-Howard isomorphism
guarantees a straightforward passage between logi-
cal rules, type constructors and term-forming opera-
tors; put simply, Parse ≡ Proof ≡ Program, and Cat-
egory ≡ Proposition ≡ Type. The modus operandi

1Stylized spind2λe and standing for spindle parses into
dependency-decorated λ expressions. Source code and
user instructions can be found at https://github.com/
konstantinosKokos/spindle.

is straightforward: a lexicon associates words with
logical formulas, and the logic’s rules of inference
decide how formulas may interact with one another.

By extension, words may only combine in a
strict, well-typed manner, forming larger phrases
in the process. Parsing becomes a process of log-
ical deduction, at the end of which the result (a
proof) gives rise to a recipe for meaning assem-
bly (a program). This program is turned into exe-
cutable code as soon as one plugs in appropriate
interpretations for the lexical constants (words) and
for the term operations (composition instructions).
The set-up is general-purpose in that it readily ac-
commodates different choices for these interpre-
tations; valid targets can for instance be found in
(truth-conditional) formal semantics, distributional-
compositional models (Sadrzadeh and Muskens,
2018), or tableau-based theorem provers (Abzian-
idze, 2017).

In this work, we are interested in what happens
prior to semantic execution; that is, we abstract
away from lexical semantics and seek to reveal the
compositional recipe underlying a natural language
utterance. To that end, we employ a type gram-
mar aimed at capturing two different syntactic axes,
only rarely observed together in the wild: function-
argument structures and dependency relations. To
procure a derivation from an input phrase, we de-
sign and implement a system combining three dis-
tinct but communicating components. Component
number one is the implementation of the grammar’s
type system — it comes packed with a number of
useful facilities, most important being a static type
checker that verifies the syntactic well-formedness
of the analyses construed. Component number two
is a supertagger responsible for assigning a type to
each input word — the tagger is formulated on the
basis of a hyper-efficient heterogeneous graph con-
volution kernel that boasts state-of-the-art accuracy
among categorial grammar datasets. The third and
last component is a neural permutation module that

128

https://github.com/konstantinosKokos/spindle
https://github.com/konstantinosKokos/spindle


exploits the linearity constraint of the target logic
to simplify proof search as optimal transport learn-
ing (Peyré et al., 2019) — this reformulation al-
lows for a massively parallel and easily optimizable
implementation. The three components alternate
roles through the processing pipeline, switching
between phases of low level linear algebra routines
and high level logical reasoning (GPU and CPU
intensive, respectively). Their integration yields a
lightspeed-fast and highly accurate neurosymbolic
parser, neatly packaged and made publicly avail-
able.

2 System Decomposition

2.1 Type Grammar

The system’s theoretical backbone is its type logic
– a uniquely flavoured, semantics-first type-logical
grammar that strays from the categorial norm in
two major ways. First, it focuses on deep syntactic
structure (or tectogrammar, in Curry’s terms) rather
than surface form; its functional types are therefore
oblivious to directional or positional constraints,
abiding only to the linearity condition: every occur-
rence of an atomic proposition must be used once
and exactly once. Second, it dresses functional
types up, so as to have them encode grammatical
functions, making a three-way distinction between
complements, heads and adjuncts.

A full exposition of the grammar is beyond the
scope of this paper, but a superficial and simplified
rundown should help shed light on what is to follow.
Its first aspect, function-argument structures, is
modeled using linear logic’s implication arrow, ⊸,
which gives us access to resource-conscious ver-
sions of function application and variable abstrac-
tion (Girard, 1987; Abramsky, 1993). In their lin-
guistic usecase, functional types of the form A⊸B

denote predicates that consume a single occurrence
of some object of type A, the result being a compos-
ite phrase of type B. Reasoning about gaps, ellipses
and the like is accomplished with the aid of higher-
order types, i.e. instances of the previous scheme
where A is itself a function — these higher-order
types launch a process of hypothetical reasoning,
whereby we may temporarily assume the existence
of a resource to produce a derivation locally, only
to later withdraw the hypothesis, creating a new
function in the process. The second aspect, de-
pendency relations, are modeled using a labeled
assortment of residuated pairs of unary operators
lent from temporal logic. Atomic types without any

x : A ⊢ x : A
id

(c 7→ A) ∈ L
c : A ⊢ c : A

lex

Γ ⊢ s : A⊸B ∆ ⊢ t : A
Γ,∆ ⊢ s t : B

⊸E
Γ, x : A ⊢ s : B

Γ ⊢ λx.s : A⊸B
⊸I

Γ ⊢ s : 2δA

⟨Γ⟩δ ⊢ ▼δs : A
2δE

Γ ⊢ s : A

⟨Γ⟩δ ⊢ △δs : ♢δA
♢δI

Figure 1: Logical rules of inference used by the type
grammar (subset). The id rule instantiates a fresh vari-
able of arbitrary type A. The lex rule provides declares
a constant c as being of type A, given type assignment
c 7→ A pulled from the lexicon L (or, in the post-neural
era, the supertagger). Introduction rules are complex
types constructors, elimination rules are destructors.
The ⊸E rule says a term s of type A⊸B derived from
premises Γ can apply to a term t of type A derived from
premises ∆, producing a complex term s t of type B
derived from the merger of Γ and ∆. The ⊸I rule says
that if the premises of some term s of type B include
a variable x of type A, we can abstract over the latter,
producing a term λx.s of type A⊸B. The 2δE rule re-
moves the box from a term s of type 2δA, producing
term ▼δs of type A and enclosing the premises under
brackets ⟨_⟩δ . Dually, the ♢δI rule puts a term s of type
A under the scope of a diamond, producing term △δs
of type ♢δA and again enclosing the premises under
brackets ⟨_⟩δ .

dependency decorations are assigned to linguisti-
cally autonomous units and phrases, e.g. NP for
a noun phrase. Functional types denoting heads
impose a diamond ♢c on the complements they
select for, label c being the dependency slot the
complement is to occupy, e.g. ♢suNP⊸Smain for
an intransitive verb looking for a subject-marked
noun phrase to produce a matrix clause. Dually,
functional types denoting adjuncts are themselves
decorated with a box 2a, label a now being the
dependency role projected by the adjunct prior to
application, e.g. 2mod(NP⊸NP) for an adjective,
promising to provide a function over noun phrases
if one is to remove its box. Introducing a diamond
or eliminating a box leaves a structural imprint that
encloses complete phrases under brackets, and a
computational imprint that calls for a special treat-
ment of the wrapped term – both labeled by the
grammatical function of the diamond (resp. box)
that was introduced (resp. eliminated). The key log-
ical rules of the type grammar and their isomorphic
term operations are presented in Figure 1.

129



Wat
c0 ⊢ ♢whbody(♢predcPRON⊸SVI)⊸WHQ

lex

is
c1 ⊢ ♢predcPRON⊸♢suNP⊸SVI

lex
x ⊢ ♢predcPRON

id

c1, x ⊢ ♢suNP⊸SVI
⊸E

die
c2 ⊢ 2det(N⊸NP)

lex

⟨c2⟩det ⊢ N⊸NP
2detE

rare
c3 ⊢ 2mod(N⊸N)

lex

⟨c3⟩mod ⊢ N⊸N
2modE

tekening
c4 ⊢ N

lex

⟨c3⟩mod, c4 ⊢ N
⊸E

⟨c2⟩det, ⟨c3⟩mod, c4 ⊢ NP
⊸E

⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ ♢suNP
♢suI

c1, x, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ SVI
⊸E

c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ ♢predcPRON⊸SVI
⊸I

⟨c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su⟩whbody ⊢ ♢whbody(♢predcPRON⊸SVI)
♢whbodyI

c0, ⟨c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su⟩whbody ⊢ c0 △whbody(λx.c1 x △su(▼det(c2) (▼mod(c3) c4)) : WHQ
⊸E

Wat is die rare tekening

whbody

su

mod

det

Figure 2: Natural deduction proof for the sentence Wat is die rare tekening? ‘What is that strange drawing?’. For
space economy, compositional λ term is only explicitly written in the endsequent (bottom of the proof). From the
antecedent structure of the endsequent, we may also recover a dependency tree. Color coding serves to informally
differentiate between complement (red) vs. adjunct (green) structural brackets/dependency arcs.

2.1.1 Proof Representation

Proofs in the type logic are traditionally served in
the tree-like natural deduction format. Proofs in
natural deduction benefit from an easy translation
to (i) λ expressions, by following the rules of Fig-
ure 1, and (ii) dependency trees, by simply casting
structural brackets to dependency arcs, going from
the head of each phrase to (the heads of) its de-
pendents. Figure 2 presents a visual example. An
alternative representation is in the far less verbose
format of a proof net, a geometric construction that
abstracts away from the bureaucratic book-keeping
of hypothetical reasoning and tree-structured rule
ordering. Figure 3 presents the proof net equiva-
lent of the running example. Proof nets are easier
to reason about in a neural setup by allowing us
to treat parsing as the vastly simplified problem
of matching each occurrence of an atomic propo-
sition in negative position, i.e. a prerequisite of
a conditional implication, with an occurrence in
positive position, i.e. a (conditionally) proven state-
ment. The parallel nature of proof nets allows the
matching to occur simultaneously across the entire
proof; that is, all decisions are done in a single
instant, without the bottleneck of having to wait for
conditionals to be satisfied in a bottom-up fashion.
On the other hand, proof nets are slightly under-
specified compared to natural deduction proofs, be-
ing explicit only with respect to function-argument
structures – translating from one format to another
requires establishing some conventions on what
constitutes a canonical proof.

2.1.2 Implementation

The syntax of the type system is implemented as
a tiny DSL written in Python.2 It is used as the
representation format of Æthel (Kogkalidis et al.,
2020a), a dataset of some 70 000 analyses of writ-
ten Dutch, which also constitutes the system’s train-
ing data. The implementation was originally de-
signed to assert the type-safety of the dataset, to
facilitate the conversion between natural deduction
trees, λ terms and proof nets, and to ease third-
party corpus analysis by providing niceties such as
search and pretty printing utilities, cross compila-
tion to LATEX for visualization purposes, interfaces
for proof transformations, etc. All these function-
alities are imported unchanged. The conversion
routines allow us to conduct neural proof search
in the favorable regime of proof nets, and convert
the result to natural deduction format only at the
very end, just for the sake of presentation and/or
sanity testing. Importantly, the type-checker is re-
purposed as a tool for verifying the correctness of
analyses constructed – an analysis that does not
amount to a valid proof will fail to pass the checker,
throwing a type error and alerting us to the fact.
In other words, we can blindly trust anything the
parser gives us as correct, at least in the sense of
(proof-theoretic) syntactic validity.

2Source code can be found at https://github.com/
konstantinosKokos/aethel.

130

https://github.com/konstantinosKokos/aethel
https://github.com/konstantinosKokos/aethel


Wat

⊸♢whbody

⊸♢predc

PRON0 Svi
1

WHQ2

is

⊸♢predc

⊸♢suPRON3

NP4 Svi
5

die

2det⊸

N6 NP7

rare

2mod⊸

N8 N9

tekening

N10

Figure 3: Proof net equivalent of the proof of Figure 2, with unary diamonds (resp. boxes) fused with the implication
dominating (resp. dominated by) them for depth compression. Atomic propositions are indexed by enumeration for
identification purposes. Color coding here serves to differentiate between resources we have (green) and resources
we need (red) – the rule is start green from the bottom, change (resp. keep) color for the left (resp. right) daughter of
an implication. Bold edges denote the tree structure underlying type assignments. Dashed edges denote the correct
matching between resources of opposite polarity.

2.2 Supertagging Module

Lexical type ambiguity and lexical type sparsity
are common and pervasive problems for any cat-
egorial grammar. The de facto approach rests on
a supertagger, a neural module replacing the fixed
lexicon, traditionally formulated as a sequence clas-
sifier and trained to produce the most plausible type
assignments for each word in the context of an in-
put sentence. Here, these problems are exacerbated
by the highly elaborated type system. Some 80%
of Æthel’s approx. 6 000 types are rare (i.e. have
less than 10 occurrences in the corpus), and some
10% of the total sentences contain at least 1 such
rare type. This necessitates a more ambitious treat-
ment than the standard "set-and-forget" approach
of completely discarding rare type assignments as
inconsequential. The solution comes in the form
of a constructive supertagger, an auto-regressive
neural decoder that is trained to construct types
on the fly according to their algebraic decompo-
sition, rather than treat them as singular, opaque
blocks (Kogkalidis et al., 2019). This configuration
enables the construction of valid types regardless
of whether they have been seen before or not, ex-
tending coverage beyond the training data. The
supertagger employed here follows a geometrically
informed, task-specific decoding order, whereby
types are represented as the structural unfolding of
binary trees. Following Prange et al. (2021), trees
are decoded in parallel across the entire batch of
input sequences, establishing an upper temporal

bound on decoding that scales with the maximal
tree depth – in practice, a constant. To circumvent
the locality of a standard tree decoder, the target
output being not a batch of trees but a batch of
sequences of trees (see Figure 3), the supertagger
is formulated as a a graph neural network, utilizing
message-passing connections to transfer feedback
from tree nodes to their lexical roots and from lex-
ical roots to their neighbours, ensuring that deci-
sions made at each decoding step are influenced
by prior decisions across the entire output (Kogka-
lidis and Moortgat, 2022). As a result, it strikes the
perfect balance between the speed and memory ef-
ficiency of a tree-shaped architecture, allowing for
more training iterations and faster inference, and
the stronger autoregressive properties of a seq2seq
model, improving performance. Further, being in-
herently constrained to trees, its output is struc-
turally correct-by-construction – under no circum-
stance can any of the types produced be ill-formed.
Used in isolation, the architecture currently sits at
the top of the accuracy leaderboard for categorial
grammar supertagging across different formalisms
and languages – the performance is marginally in-
ferior in the multi-task training setup adopted here.

2.3 Permutation Module

Conducting search over proof nets is typically ill-
advised. The problem traditionally involves ex-
amining all possible bijections between positive
and negative atomic propositions. The number of

131



such bijections scales factorial to the number of
atomic propositions, quickly becoming prohibitive.
To navigate this combinatorially explosive land-
scape, neural proof nets relax proof search into a
continuous, differentiable problem, where finding
the correct bijection is translated to a transporta-
tion problem (Kogkalidis et al., 2020b) learned by
yet another graph neural network. Concretely, the
representations of all occurrences of atomic propo-
sitions are extracted from the decoder and binned
according to their sentential index, sign and polarity
(e.g. a single bin would be all occurrences of a pos-
itive NP in sentence #13 of the input batch). Each
bin is contrasted with its inverse polarity counter-
part using some similarity metric (here a weighted
inner product). The result is a collection of square
matrices, each matrix containing attention weights
(or similarity scores) in the cartesian product of
positive and negative items of the same sign and
sentence. These matrices are grouped by their car-
dinality, and the Sinkhorn operator (Sinkhorn and
Knopp, 1967) is used to push them towards bina-
rity and bistochacity, yielding approximations of
permutation matrices representing the goal bijec-
tions (Mena et al., 2018).

To make things concrete using the running ex-
ample of Figure 3, each of the atomic types Svi,
NP and PRON has a single negative and a single
positive occurrence, therefore their bijections are
trivial (a testament to supertagging being almost
parsing). The single positive occurrence of WHQ

stands for the goal type of the phrase, and remains
unmatched. Only N requires a decision, having two
possible bijections. The correct candidate is en-
coded by the permutation table below, where rows
enumerate positive and columns negative items:

✓
✓

6 8
9

10
ΠN :=

This reformulation entails a tremendous speedup:
the painstakingly slow problem of symbolic proof
search is cast into simple, well-optimized and
batchable matrix operations. The current parser
builds on the insight that the permutation module is
invariant to the source of atomic symbol represen-
tations, and in fact greatly benefits from the faster
and more accurate task-adapted supertagger.

2.4 Integration
Neurosymbolic integration yields an end-to-end
pipeline that consists of the following phases. First,
the user inputs a list of sentences to be parsed.
Contextualized token representations are obtained
from a fine-tuned BERTBASE model, which are then
aggregated according to the input’s word bound-
aries. The resulting word representations act as
initial seeds for decoding to begin on an empty
canvas. During decoding, types are progressively
constructed, while seeds are updated by exchang-
ing messages with one another on the basis of their
sequential proximity. After a small number of de-
coding steps, the process terminates, yielding a se-
quence of type assignments for each input sentence.
A rudimentary invariance check is then performed,
controlling whether each sequence counts an equal
number of atomic propositions of each polarity.
Sentences failing the invariance check are not eligi-
ble for proof search, and their analysis stops early.
Passing sentences are symbolically processed to
obtain a collection of sparse indexing tensors, used
to gather the decoder’s representations into the bins
described earlier. Bins are batched and contrasted,
and a small number of Sinkhorn iterations is em-
ployed as a 2-dimensional softmax analogue. The
soft Sinkhorn distances are discretized using the
Hungarian algorithm in order to enforce bijectiv-
ity (Jonker and Volgenant, 1987). Bijections are re-
associated with their origin symbols and sentences,
using the reverse of the previous indexing operation.
Control is then passed to the symbolic component,
which attempts to traverse the candidate proof nets,
verifying the correctness criteria of acyclicity and
connectedness in the process (Danos and Regnier,
1989). The traversal coincides with a translation
to a natural deduction format, the construction of
which corresponds to static type checking of the
output (Lamarche, 2008). Assuming no type mis-
matches are caught, the output is a proof proper,
which by Curry-Howard isomorphism is rewritten
as a dependency-decorated λ term. The user is
finally presented with an analysis for each input
sentence – ideally, a λ term, but occasionally a
rejected intermediate result together with an error
description.

3 Evaluation

3.1 Performance
The system has been evaluated on the test set of
Æthel. Without any pre-filtering or post-processing

132



training wheels (i.e. no constraints on sentence
length, type rarity/depth or cardinality of bijec-
tions), the parser produces a proof that satisfies
strict syntactic equality with the ground truth in
3 191 of the 5 770 test set samples. This amounts
to a significant 55.30% of the test sentences being
analyzed without a single error with respect to type
assignments, phrasal chunking, function-argument
structures and dependency annotations produced3

In total, 4 901 sentences are assigned a passing
analysis, which sets the coverage to a more modest
84.94%. The discrepancy between the high accu-
racy and low coverage is due to the rigidness of
the type system: only 5 010 of the sentences satisfy
the invariance check, being thus amenable to any
proof. This signals that the performance bottleneck
lies on the supertagger rather than the permutation
module; a parse is assigned to 97.82% of parsable
sentences, and it’s also the perfect parse 75.30% of
the time. These findings are summarized in Table 1.

parsability coverage
(some proof obtainable) (some proof obtained)

86.83 84.94

types correct accuracy
(correct proof obtainable) (correct proof obtained)

56.88 55.30

Table 1: Sentential-level evaluation of the parser.

To obtain a more refined perspective on perfor-
mance, we employ an adaptation of the parsing
community’s favorite F1-score. Concretely, we
gather all samples for which a proof was produced,
and decompose both prediction and ground truth
into their respective sets of subproofs. We measure
tp as the two sets’ intersection, fp as the differ-
ence between predicted and correct subproofs and
fn as the difference between correct and predicted
subproofs, from which we may obtain precision as
p = tp/(tp+ fp), recall as r = tp/(tp+ fn) and their
harmonic mean as F1 = 2pr/(p+ r). On top of the
vanilla versions of these metrics, we can also ex-
amine relaxations by incorporating a combination
of two modulo factors. Relaxation one targets the
functional core of the logic, applying a forgetful
transformation that strips proofs of their modali-
ties in order to examine typed function-argument

3This is comparable to the state-of-the-art for the similar
(in fact simpler) problem of CCG parsing; see Clark (2021)
for an up-to-date overview.

structures in isolation. Relaxation two targets the
modal enhancement of the logic, collapsing the set
of atomic types into a single point (thus treating
all functional types of the same shape as equal) in
order to examine dependency structures in isola-
tion. Relaxing on both axes at once is essentially
replacing type constants by type variables, where
all we care about are the type- and dependency-
agnostic linear function-argument structures – this
is the metric most comparable to external theories.4

Note that relaxations are performed only after in-
ference – the point being that a strict proof must
have been produced for its relaxations to be consid-
ered (i.e. lax accuracy is still bottlenecked by strict
coverage). The results are averaged over covered
samples5 and presented in Table 2.

local metrics
modulo p r F1

– 89.52 89.68 89.39
modalities 90.93 91.13 90.85
functional types 91.09 91.26 90.97
both 92.31 92.52 92.24

Table 2: Decomposition metrics and relaxations.

3.2 Efficiency

Regarding efficiency, the architecture contains a
non-negligible total of 117M parameters, 94% of
which are inherited from the underlying BERT
model. The memory footprint of the network’s
forward pass does not exceed 3.5GB on the test
set with a batch size of 64, making it reasonably
lightweight for use at home. Using a middle range
laptop GPU, the network takes about 15 seconds
to tag the full test set (i.e. 370 sents/sec or 6 000
tokens/sec), and 80 seconds to tag and parse it
(i.e. 70 sents/sec), including tokenization and post-
processing. Note, however, that sentence-level
batching is not yet implemented for inference mode
proof search, i.e. sentences are tagged in parallel
but proven sequentially. Cross-sentential padding
and batching of Sinkhorn inputs is in the works
– benchmarking shows that the asymptotic behav-
ior of a forward pass over batches of 64 matrices
only starts becoming apparent when they exceed

4Proofs are in β and η normal, so no free points from
abstractions. Variables are only equal if they match in both
name and type, so no free points from variable instantiations
either.

5Averaging over the full test set would artificially inflate p
and deflate r scores, since no partial proofs are returned from
failing samples.

133



>>> from inference import InferenceWrapper as IW
>>> from aethel.utils.tex import compile_tex, sample_to_tex
>>> parser = IW(weight_path='./data/model_weights.pt')
>>> analysis = parser.analyze(['Wat is die rare tekening?'])[0]
>>> analysis
Analysis(

lexical_phrases=(
LexicalPhrase(string=Wat, type=(♢whbody(♢predc(VNW)→SV1))→WHQ, len=1),
LexicalPhrase(string=is, type=♢predc(VNW)→♢su(NP)→SV1, len=1),
LexicalPhrase(string=die, type=2det(N→NP), len=1),
LexicalPhrase(string=rare, type=2mod(N→N), len=1),
LexicalPhrase(string=tekening, type=N, len=1),
LexicalPhrase(string=?, type=PUNCT, len=1)),

proof=c0, 〈c1, 〈〈c2〉det, 〈c3〉mod, c4〉su〉whbody ⊢ c0 △whbody((λx0.c1 x0 △su(▼det(c2) (▼mod(c3) c4)))) : WHQ)
>>> tex_proof = compile_tex(sample_to_tex(analysis)) # see Figure 2 for output :)

Figure 4: User interaction example in python console.

the order of 27, being locked at an insubstantial
1ms prior to that.6

4 User Interface

The user interface is bare-bones, but simple and
easy to use. The parser is currently packaged as a
code repository, which, once downloaded, can be
used as a python module. A front-end class wraps
around the scary inner workings of the parser and
provides easy access to an inference routine. Struc-
ture checking is handled internally and error han-
dling is graceful: the user is guaranteed an output
even in the case of a partial failure. The output
implements the same protocols as samples of the
Æthel corpus, and is thus compatible with all of
the latter’s bells and whistles. Proofs can be pretty-
printed, interactively processed and transformed
(e.g. for semantic applications), or visualized using
LATEX as a middlewoman. For the more ambitious,
training and evaluation utilities are also available.

5 Conclusion & Future Work

Thus concludes the demonstration tour of spind2λe:
a unique neurosymbolic parser that can accurately
and efficiently convert raw text into λ expressions.
Unlike cheaper alternatives, these λ expressions
are not structureless ad-hoc imitations produced
from arbitrary decoding, but executable, type-safe
and 100% guaranteed correct programs. The soft-
ware focuses on Dutch, but the universality of the
intuitionistic linear core allows easy cross-lingual
adaptation that essentially boils down to retraining
with a new type lexicon; a French implementation
is currently in the works (De Pourtales et al., 2023).

6To comprehend how extremely unrealistic 27 is, consider
that this would amount to finding the correct bijection out
of 27! = 3.9 × 10215 possibilities across 64 pairs of sets in
parallel.

As to what the future holds, the intention is to
keep the module synchronized and up-to-date with
Æthel: any upcoming major release of the latter
will be reflected in an update of the former (be it
soft patching or retraining). Compatibility aside,
planned features include deploying the module as
a web service, compiling it as a stand-alone pack-
age and documenting the annotations (so as to be
more inclusive towards the type-uninitiated). Any
performance, stability or efficiency improvements
stemming from related research or moments of en-
gineering inspiration are also likely to find their
way to the user-facing front. Contributions and
feedback are always welcome.

Limitations

The implementation described capitalizes on a dis-
entanglement between neural and symbolic oper-
ations to improve efficiency. But doing so comes
at the heavy price of a unidirectional data flow that
lacks feedback. The symbolic component has the
singular role of testing and verifying the neural out-
put, but emits back no messages of its own. Failures
may be caught, but they are nonetheless irrecov-
erable – a partial output that fails some structural
constraint signifies an abrupt and non-negotiable
end to the processing pipeline, significantly reduc-
ing coverage. A better operationalization would be
to use the symbolic core to continuously ask for
neural output as long as the structural constraints
are not met (or the user is not satisfied with the
parse provided). However, this would only be fea-
sible if the neural components were to be extended
with some notion of backtracking. In that sense,
the parallel nature of both the supertagger and the
parser becomes now a double-edged sword, hinder-
ing the potential applicability of standard heuristic
algorithms like beam search.

More generally, the software carries the standard

134



risks of any NLP architecture reliant on machine
learning, namely linguistic biases inherited from
the unsupervised pretraining of the incorporated
language model and annotation biases derived from
the supervised training over human-labeled data.

Acknowledgements

This software described was developed with funds
from the Dutch Research Council (NWO, grant nr.
360-89-070).

References
Samson Abramsky. 1993. Computational interpreta-

tions of linear logic. Theoretical computer science,
111(1-2):3–57.

Lasha Abzianidze. 2017. LangPro: Natural language
theorem prover. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 115–120,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Stephen Clark. 2021. Something old, something new:
Grammar-based CCG parsing with transformer mod-
els. CoRR, abs/2109.10044.

Haskell B Curry. 1961. Some logical aspects of gram-
matical structure. Structure of language and its math-
ematical aspects, 12:56–68.

Vincent Danos and Laurent Regnier. 1989. The struc-
ture of multiplicatives. Archive for Mathematical
logic, 28(3):181–203.

Caroline De Pourtales, Julien Rabault, Konstantinos
Kogkalidis, and Richard Moot. 2023. DeepGrail:
Neural proof nets for French. Technical report,
LIRMM. Forthcoming.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428.

Jean-Yves Girard. 1987. Linear logic. Theoretical
computer science, 50(1):1–101.

Roy Jonker and Anton Volgenant. 1987. A shortest aug-
menting path algorithm for dense and sparse linear
assignment problems. Computing, 38(4):325–340.

Konstantinos Kogkalidis and Michael Moortgat. 2022.
Geometry-aware supertagging with heterogeneous
dynamic convolutions.

Konstantinos Kogkalidis, Michael Moortgat, and Te-
jaswini Deoskar. 2019. Constructive type-logical su-
pertagging with self-attention networks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 113–123, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020a. ÆTHEL: Automatically ex-
tracted typelogical derivations for Dutch. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 5257–5266, Marseille, France. Eu-
ropean Language Resources Association.

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020b. Neural proof nets. In Pro-
ceedings of the 24th Conference on Computational
Natural Language Learning, pages 26–40, Online.
Association for Computational Linguistics.

François Lamarche. 2008. Proof nets for intuitionistic
linear logic: Essential nets.

Gonzalo Mena, David Belanger, Scott Linderman, and
Jasper Snoek. 2018. Learning latent permutations
with gumbel-sinkhorn networks. In International
Conference on Learning Representations.

Michael Moortgat. 1997. Categorial type logics. In
Handbook of logic and language, pages 93–177. El-
sevier.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data sci-
ence. Foundations and Trends® in Machine Learn-
ing, 11(5-6):355–607.

Jakob Prange, Nathan Schneider, and Vivek Srikumar.
2021. Supertagging the long tail with tree-structured
decoding of complex categories. Transactions of the
Association for Computational Linguistics, 9:243–
260.

Mehrnoosh Sadrzadeh and Reinhard Muskens. 2018.
Static and dynamic vector semantics for lambda cal-
culus models of natural language. J. Lang. Model.,
6(2):319–351.

Richard Sinkhorn and Paul Knopp. 1967. Concerning
nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348.

135

https://doi.org/10.18653/v1/D17-2020
https://doi.org/10.18653/v1/D17-2020
http://arxiv.org/abs/2109.10044
http://arxiv.org/abs/2109.10044
http://arxiv.org/abs/2109.10044
http://arxiv.org/abs/2203.12235
http://arxiv.org/abs/2203.12235
https://doi.org/10.18653/v1/W19-4314
https://doi.org/10.18653/v1/W19-4314
https://aclanthology.org/2020.lrec-1.647
https://aclanthology.org/2020.lrec-1.647
https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.1162/tacl_a_00364
https://doi.org/10.15398/jlm.v6i2.228
https://doi.org/10.15398/jlm.v6i2.228

