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Abstract

State-of-the-art models for identifying offen-
sive language often fail to generalize over more
nuanced or implicit cases of offensive and hate-
ful language. Understanding model perfor-
mance on complex cases is key for building ro-
bust models that are effective in real-world set-
tings. To help researchers efficiently evaluate
their models, we introduce OLEA, a diagnos-
tic, open-source, extensible Python library that
provides easy-to-use tools for error analysis in
the context of detecting offensive language in
English. OLEA packages analyses and datasets
proposed by prior scholarship, empowering re-
searchers to build effective, explainable and
generalizable offensive language classifiers.

1 Introduction

Offensive language1 detection models are integral
to online platforms’ moderation systems. Such
systems excel at detecting and filtering out mes-
sages with explicit keywords and mentions, how-
ever these systems are known (1) to perform poorly
on messages that are implicitly offensive or have
negation (Röttger et al., 2020; Palmer et al., 2020);
(2) to be subject to annotator biases (Sap et al.,
2021); (3) not to be robust to diachronic language
(Florio et al., 2020); and (4) to be insensitive to
and to overdetect AAE as offensive language (Sap
et al., 2021; Blodgett et al., 2016). Failing to ad-
dress these issues and gaps can cause marginal-
ized groups to be further dehumanized or attacked
(Mathew et al., 2021; Kennedy et al., 2020).

Models have been shown to be ineffective at gen-
eralizing across these complexities (Yin and Zu-
biaga, 2021), tending to aggregate different types
of hate speech under broad labels, causing large
within-class variances (Waseem et al., 2017a). In

∗ The first three authors contributed equally.
† Please direct inquiries about the library to this email.

1We use the term "offensive language" to encompass offen-
sive language and hate speech. This paper contains censored
offensive language examples.

response, prior research has curated diagnostic
datasets such as HateCheck (Röttger et al., 2020)
and COLD (Palmer et al., 2020), to evaluate exist-
ing models on specific types of hate speech. Such
evaluation datasets allow us to view model perfor-
mance as a continuum, and move away from mono-
lithic F1 scores that can obscure a model’s limita-
tions and explainability (Kennedy et al., 2020).

We introduce OLEA,2,3 an extensible, open-
source Offensive Language Error Analysis tool and
infrastructure designed to a) evaluate offensive lan-
guage classifiers on different types of problematic
language use, and b) provide detailed feedback
about model performance. The library makes it
convenient for researchers to analyze their mod-
els by providing an extensive set of error-analysis
methods, callable with minimal coding, to measure
case-specific model performances. In addition, the
library provides a common interface for comparing
different offensive language classifiers on granular
linguistic categories. OLEA provides:

- nuanced error analysis methods focused on
understanding model performance on specific
linguistic occurrences;

- interfaces to two evaluation datasets that com-
pile a broad typology of offensive language
phenomena; and

- scaffolding to support easy distribution of new
datasets and associated analysis methods.

OLEA formats evaluation datasets to be easily in-
terpreted, and uses popular Python packages such
as Pandas (Wes McKinney, 2010) and Matplotlib
(Hunter, 2007) to encapsulate the data and error
analysis methods.

2 Background and Related Work

Offensive language is complex, and systems for
detecting it automatically need to be able to han-
dle both explicit and implicit cases (Schmidt and

2https://pypi.org/project/olea/
3https://www.youtube.com/watch?v=e8VVhP6kNlY
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Figure 1: Diagram of the OLEA Library pipeline.

Wiegand, 2017; Waseem et al., 2017b). Detect-
ing explicit offensive language often relies on key-
word detection (Wiegand et al., 2019), but keyword-
driven systems can lead to messages being falsely
flagged, causing unchecked or unnoticed racial bi-
ases to propagate in the system’s decisions (Sap
et al., 2021; Blodgett et al., 2016). Implicit offen-
sive language is generally more difficult to detect
than its explicit counterpart (ElSherief et al., 2021;
Caselli et al., 2020). It is also more likely to change
over time, as the world changes, and as users coin
new phrases and terms to implicitly refer to minor-
ity groups (Florio et al., 2020).

Datasets for this task address different (often
overlapping) concerns, making direct comparison
difficult. HateXplain (Mathew et al., 2021) and
CAD (Vidgen et al., 2021) both provide rationales
indicating where annotators see offensive content.
OLID (Zampieri et al., 2019a) identifies offensive
text and the specific targeted minority group in a
three-tiered labeling structure. HateCheck (Röttger
et al., 2020) and COLD (Palmer et al., 2020) are
described more in Section 3.1.

Linguistic explainability of the prediction fail-
ures of NLP models has lagged behind perfor-
mance gains according to benchmark datasets
(Hovy, 2022). McMillan-Major et al. (2022) pro-
vide an interactive system mostly for end users of
offensive language detection systems. Their sys-
tem helps users explore datasets and understand
how different models score and classify individ-
ual text inputs.OLEA has complementary function-
ality, focusing on fine-grained analysis of model
performance (especially misclassifications) across
existing evaluation datasets. We focus instead on
model developers, providing streamlined error
analysis and interpretation of system outputs rel-
ative to linguistically-grounded categorizations.

3 Library Tour and Design

Figure 1 shows an overview of OLEA’s core func-
tionalities. Users submit their model’s predictions

(3.2) on OLEA’s preloaded datasets (3.1) and then
call error analysis and evaluation functions (3.3).
Users may also extend OLEA with new datasets
and may write new analysis functions, adding to
the library’s capabilities (3.4). Most of OLEA’s
modules expect a Pandas4 dataframe with the text
of the instance to be classified, one or more labels
indicating offensiveness, and a predicted label for
the instance. Dataframes may include columns
with additional information related to the instance
and/or its annotation.

3.1 Preloaded diagnostic datasets

The primary function of OLEA is to make it easy
for users to evaluate the capabilities of their mod-
els in a fine-grained way. We provide interfaces
(via HuggingFace’s datasets library5 and the Hug-
gingFace Hub) to two offensive language datasets,
both designed specifically for diagnostic evaluation
of detection systems. Both datasets include fine-
grained annotations and binary offensiveness labels
and were curated to compare model performance
with linguistic phenomena. Tables 1 and 2 list the
features available for analysis.

The HateCheck (Röttger et al., 2020) test suite
includes labels reflecting specific linguistic con-
structions often seen in online hate speech, such as
use of spelling changes to obscure hateful language
and presence of threatening language. HateCheck
also includes annotations of specific identities tar-
geted in each instance of hate speech.

COLD (Palmer et al., 2020) provides fine-
grained labels of some linguistic phenomena rele-
vant for implicit/complex offensive language. Two
examples are presence/absence of slur terms and
presence/absence of adjectival nominalizations.

3.2 Submitting predictions

Before using the analysis functions described be-
low, the user needs to submit their model’s predic-

4https://pandas.pydata.org/docs/
5https://huggingface.co/docs/datasets/index
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Feature Description

functionality
The shorthand for the functionality tested
by the test case.

case_id
The unique ID of the test case (assigned to
each of the 3,901 cases initially generated)

test_case The text of the test case.

label_gold
The gold standard label (hateful/non-hateful)
of the test case. All test cases within a given
functionality have the same gold standard label.

target_ident

Where applicable, the protected group
targeted or referenced by the test case. We
cover seven protected groups in the test suite:
women, trans people, gay people, black people,
disabled people, Muslims and immigrants.

direction

For hateful cases, the binary secondary label
indicating whether they are directed at an
individual as part of a protected group or aimed
at the group in general.

focus_words
Where applicable, the key word or phrase in a
given test case (e.g. "cut their throats").

focus_lemma
Where applicable, the corresponding
lemma (e.g. "cut sb. throat").

ref_case_id

For hateful cases, where applicable, the ID of the
simpler hateful case which was perturbed to
generate them. For non-hateful cases, where
applicable, the ID of the hateful case which is
contrasted.

ref_templ_id The equivalent, but for template IDs.

templ_id

The unique ID of the template from which the
test case was generated (assigned to each of the
866 cases and templates from which we
generated the 3,901 initial cases).

Table 1: Features available via the HateCheck dataset.
Names and descriptions from Röttger et al. (2020).

Feature Description
ID The unique ID for the text

Text
The text containing social media messages

(some containing offensive language)
Cat The gold label category of the text

Off
Offensive or not? ( Y / N )

Majority Vote
Off1, Off2, Off3 Individual annotator labels for Off ( Y / N )

Slur
Contains a slur? ( Y / N )

Majority Vote
Slur1, Slur2, Slur3 Individual annotator labels for Slur ( Y / N )

Nom
Contains adjectival nominalization? ( Y / N )

Majority Vote
Nom1, Nom2, Nom3 Individual annotator labels for Slur ( Y / N )

Dist
Contains linguistic distancing? ( Y / N )

Majority Vote
Dist1, Dist2, Dist3 Individual annotator labels for Dist ( Y / N )

Table 2: Features available as part of the COLD dataset.
Names and descriptions from Palmer et al. (2020).

tions on the selected dataset, as well as a map-
ping between the model’s predicted labels (e.g.
1, 0) and the labels in the selected dataset (e.g.
hateful, non-hateful).6 The code snippet below
illustrates the process and assumes that the user’s
data has been stored as a Pandas dataframe named

6Note that this process applies both for preloaded datasets
and for datasets read in from the user’s own system.

user_data. In this example, the model predictions
are found in a column called predictions. The
user has selected three features for potential analy-
sis: Text, is_slur and text_length.
from olea.data import Dataset
setup = Dataset(

data = user_data ,
features = ["Text","is_slur",

"text_length"],
gold_column = "gold_labels",
text_column = "Text")

predictions = user_data["predictions"]
mapping = {"hateful": 1,

"non -hateful": 0}
data_submit = setup.submit(

batch = user_data ,
predictions = predictions ,
map = mapping)

The submit method passes the relevant parameters
to the analysis module.

3.3 Error analysis functions
The heart of our library is a collection of func-
tions for detailed evaluation and error analysis.
Throughout, we evaluate the model’s coarse-
grained classification performance (e.g. offen-
sive vs. not offensive) for subsets of instances
grouped according to a particular feature. The
features generally correspond to dataframe
columns. For example, we may compare per-
formance for instances containing a slur term
to performance for instances with no slur term.
Plots are produced using Matplotlib (Hunter, 2007),
and we include the option to save plots to files.
Section 4 shows concrete examples of the analysis
outputs, and code examples appear in Appendix A.

analyze_on. In its most general version, this
function evaluates model performance for a cat-
egorical column specified by the user. OLEA in-
cludes versions of analyze_on customized to the
two preloaded datasets. The COLD-specific ver-
sion evaluates performance for features constructed
from combinations of four binary features: offen-
siveness, presence of slur term, presence of adjecti-
val nominalization, and presence of linguistic dis-
tancing. The HateCheck-specific version includes
linguistic features (e.g. negation, derogation, or
profanity) and features related to the identity of
the targeted individual or class (e.g. trans people,
Muslims, or disabled people).

check_anno_agreement. This function is in-
tended for datasets which include labels from mul-
tiple annotators, such as COLD. The function com-
pares performance on instances with full annotator
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agreement for the label of offensiveness to perfor-
mance on instances with partial agreement. Full an-
notator agreement is taken as a proxy for instances
that are “easy” to classify, and partial agreement
indicates more complex cases.

aave. This function evaluates performance for
instances (likely) written using African American
English. The scores are calculated using the Twit-
terAAE model (Blodgett et al., 2016). These scores
represent an inference of the proportion of words
in the instance that come from a demographically-
associated language/dialect.

check_substring. Given a user-specified text
string, this function compares performance on in-
stances with the substring to instances without.

str_len_analysis. This function outputs a his-
togram showing model performance on instances
of different lengths (character or word count).

3.4 Adding datasets and analyses

Extensibility is a key principle guiding the design
of OLEA, with the goal of providing an easy-to-use,
uniform platform for error analysis in the context
of offensive language detection. In addition to the
two preloaded datasets, users can submit their own
datasets using the process described in 4.2. To add
a dataset, users need only define an interface (using
the Dataset class) indicating where to find both
target labels and features relevant for analysis.

OLEA has a helper function for preprocessing
English text to remove user names and URLs and
convert emoji to their textual descriptions.7

from olea.utils.preprocess_text import
PreprocessText as pt

processed_text = pt.execute(user_data["
raw_text"])

user_data["preprocessed_text"] =
preprocessed_text

For example, the preprocessor converts "@user-
name_1 Have you seen the video that @an-
other_user made? https://fakelink.io" to
"USER have you seen the video that USER made?
eyes fire HTML".

Finally, users can write and share their own anal-
ysis functions, focusing on user-specified dimen-
sions, as in 4.2.2. OLEA’s code is modularized
such that adding a new analysis requires enough
Python knowledge to write the function, but not a
detailed understanding of the entire codebase.

7Preprocessing scheme is described in Palmer et al. (2020).

4 Use Case Demonstrations

OLEA aids model development by providing an
easy and comparable platform to test and build ro-
bust offensive language classifiers. We demonstrate
three use cases: a) analysis on preloaded datasets
(4.1), including model comparison (4.1.4), b) anal-
ysis on custom data (4.2), and c) sharing datasets
and analysis functions (4.2).

4.1 User model performance evaluation using
preloaded datasets

This section demonstrates how to use OLEA for
detailed analysis of the strengths and weaknesses
of existing offensive language detection models.
For this demo, we use roBERTa-offensive (Bar-
bieri et al., 2020), a pre-trained generic language
model, fine-tuned on the SemEval2019 OffensEval
dataset (Zampieri et al., 2019b). We use this model
to make top-level predictions (offensive or not) for
both COLD and HateCheck. Although they use
different labels (offensive vs hateful), COLD and
HateCheck align in their definitions by taking into
account non-offensive uses of slurs and classify-
ing derogatory text as offensive. Users explicitly
run individual error analyses and specify whether
a plot of the results should automatically be gener-
ated. These individual analysis functions show the
model’s performance with respect to a particular
feature (i.e. an existing dataframe column, or a new
one added by the function).

Each function returns two dataframes. The
metrics dataframe contains a classification report
for the analysis.8 This dataframe uses OLEA’s
built in Metrics function, which is built upon and
uses Scikit-learn’s (Pedregosa et al., 2011) met-
rics library. The plot_info dataframe contains
details of the analysis for the selected dimension,
plus computed accuracy and the option to show
textual examples. If show_examples = True, the
function returns one randomly-selected incorrectly-
classified instance for each value of the dimension
being analyzed.9 If the plot option is selected, the
plots are built from the plot_info dataframe.

4.1.1 Generic analysis functions
Table 3 shows the classification report for roBERTa-
offensive on COLD. Here, the classification report

8Appendix A provides more code examples for loading in
data and starting generic analyses.

9The variable show_examples defaults to false to avoid
accidental viewing of hateful or offensive language.
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N Y macro avg weighted avg
precision 0.743 0.587 0.665 0.670
recall 0.502 0.803 0.652 0.643
f1-score 0.599 0.678 0.639 0.636
support 1072 944 2016 2016

Table 3: Metrics classification report for roBERTa-
offensive on COLD, using analyze_on on the dimen-
sion of offensiveness. N=not offensive, Y=offensive.

Annotator Agreement Full Partial
Total 1431 585

Total Correct 1004 292
Accuracy 0.702 0.499

Incorrect Classification
Example

an illegal is not an
immigrant and
illegals do take
american jobs
considering they
are not americans.

USER yooo i was
thinking bout
that the other day
lol.. you only really
speaking of one
person my n*ggah

Example’s
Predicted Label

N Y

Example’s Gold Label Y N

Table 4: plot_info report for roBERTa-offensive on
COLD, using check_anno_agreement (full vs. partial),
with randomly-selected examples.

provides F1, precision, and recall for the two cat-
egories of offensive and non-offensive, as well as
the macros and weighted averages. This model
performs better overall on offensive instances, with
high recall, but shows much better precision for
non-offensive instances. These reports can be eas-
ily modified to analyze subsets of the data.

Table 4 shows plot_info for
roBERTa-offensive on COLD, using
check_anno_agreement. The table shows
accuracy for each category (full vs. partial) and
one example incorrect prediction. Accuracy is
much higher for instances with full agreement than
for those with some disagreement. Offensiveness
can be subjective, so it is useful to examine model
performance on these different cases. Showing
examples allows users to review difficult cases and
may provide insights for model improvement.

4.1.2 COLD analysis

The next analysis (Fig. 2) is on the fine-grained
COLD categories. roBERTa performs well on of-
fensive tweets containing slurs and poorly on the re-
claimed category (non-offensive tweets containing
slurs). The model also performs poorly on offen-
sive tweets containing adjectival nominalization.
These insights suggest that the model relies too
much on slurs for identifying offensive language.

Figure 2: Results for roBERTa-offensive on COLD,
focusing on fine-grained categories. Percent value above
a bar shows percent accuracy for that category.

Figure 3: Results for roBERTa-offensive on HateCheck,
focusing on identity of the target.

4.1.3 HateCheck analysis

HateCheck includes a column identifying the tar-
geted group of the offensive language. This analy-
sis can help identify which groups a model is more
or less sensitive to. Figure 3 shows that the model
does a better job of recognizing hateful speech
when an identity is targeted than when one is not.

Figure 4a analyzes the performance of roBERTa-
offensive on the fine-grained HateCheck categories;
complete table is in Appendix B. Most instances
of counter-speech (when hate speech is quoted or
is referred to with a non-hateful effect) are incor-
rectly classified. An example of counter-speech is
"I lost all respect for you when you said women
are pathetic". Instances belonging to the categories
of derogation, identity, threats, pronoun references,
and phrasing are mostly correctly classified.
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Figure 4: Comparison of HateXplain and roBERTa models on the fine-grained HateCheck categories. The category
labels are followed by either (h) to denote that it is comprised of only hateful instances, (nh) for only non-hateful
instances, or nothing to denote a mix of hateful and non-hateful instances

(a) Results for roBERTa-offensive on HateCheck, focusing on
fine-grained categories.

(b) Results for HateXplain on HateCheck, focusing on fine-
grained categories.

4.1.4 Model comparison
So far we have compared one model’s performance
on two different datasets. Next, we compare two
different models on the same dataset. The sec-
ond model is HateXplain (Mathew et al., 2021).
Both models of course suffer when classifying data
sourced from outside their training domain.10,11

But we get a much truer sense of the models’ out-
of-domain capabilities when we look at the side-
by-side analysis of the two models for the fine-
grained HateCheck categories (Figures 4a and 4b).
While roBERTa-offensive does not perform well
on counter-speech, HateXplain correctly classifies
most counter-speech instances. And while Hat-
eXplain struggles to recognize hateful expressions
with spelling changes, roBERTa does much better.

4.2 OLEA as infrastructure: Extending
functionality

OLEA is open-source12 and has been designed to
be extensible with new datasets and new analyses.

4.2.1 Analysis on custom data
The analysis methods described above can be eas-
ily applied to new corpora. The code below shows

10roBERTa-offensive reports an F1 of 0.78 on OLID but
drops to 0.62 on HateCheck. HateXplain reports F1 of 0.69
on the HateXplain dataset, and drops to 0.37 on HateCheck.

11We map HateXplain’s “offensive” and “hate speech” la-
bels both to HateCheck’s “hateful”.

12https://github.com/alexispalmer/olea, Licensed
under MIT License

the process of loading the OLID dataset (Zampieri
et al., 2019a) as a pandas dataframe. The user
only needs to specify a path to the data and the
relevant column headings. The Dataset class acts
as a wrapper for the data loaded from disk and
allows the user to access class utilities such as
generator(), which in turn is helpful for access-
ing data in batches.
olid = pd.read_csv('data/olid/

olid_levela.csv')
olid_dataset = Dataset(data = olid ,

features = 'Text',
gold_column = 'label ',
text_column = 'Text')

data_gen = olid_dataset.generator(
batch_size =64)

data = next(data_gen)

We can now submit model predictions, returning a
DatasetSubmissionObject which can be used to
conduct the generic analyses previously described;
code in Appendix A.

4.2.2 Sharing datasets and analysis patterns
With just a bit of coding, interfaces new datasets
can be added to the OLEA library more perma-
nently, and for the benefit of all users.13 We demon-
strate again using OLID,14 establishing the new
OLIDDataset class which inherits from Dataset.
class OLIDDataset(Dataset) :

text_column = 'Text'

13OLEA is not currently hosting datasets. The preloaded
datasets are hosted via HuggingFace’s datasets library.

14Note that we only consider OLID’s "level-A" annotations.
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gold_column = 'label '
features = ['Text','label_id ']

def __init__(self , olid_csv_path:str) :
self.olid_csv_path = olid_csv_path
self._data = self._load_data ()

def _load_data(self) -> pd.DataFrame:
return pd.read_csv(self.
olid_csv_path)

To accommodate the properties of the new dataset,
we need to override some attributes of the Dataset
class and to modify the method for loading data.

OLEA’s scaffolding minimizes the amount of
new code needed to add a new dataset, as well
as automatically handling helper utilities such
as mapping model predictions to the custom
Dataset object. The library also runs sanity
checks on submitted predictions before returning a
DatasetSubmissionObject.

The advantage of using a native
DatasetSubmissionObject is that users may run
Generic analyses on it. However, if authors have
a unique analysis that they wish to couple with
their dataset, they may specify a special Analysis
class that can operate on submissions. The class
methods can be modified to accommodate patterns
or properties specific to the dataset.

class OLIDAnalysis(object) :
@classmethod
def analyze_on(cls , submission:
DatasetSubmissionObject , on:str) :

'''
Unique OLID analysis goes here!
'''
return get_metrics(submission ,

on)

5 Conclusion and Future Directions

This paper introduces OLEA, a tool for easy, in-
depth error analysis and an infrastructure for shar-
ing new datasets and analysis methods. OLEA
helps researchers understand the strengths and
weaknesses of their offensive language detection
models. In the near term, we will continue to add
new analysis methods and datasets, including meth-
ods for corpus exploration, and providing auto-
matic trends and insights of model performance
without users needing to run explicit analyses. Mid
term, we plan to extend OLEA to additional lan-
guages, and eventually we would like to expand
OLEA into a general error analysis library for a
range of language classification tasks. Because
OLEA is a convenient way for authors to share
datasets and analyses, it is our hope that a com-
munity will develop around the library, and that

models ultimately will improve as we learn more
about what they can and cannot do.

Ethical Considerations. We acknowledge the
ethical implications of releasing a tool that encour-
ages accessing hate speech datasets where tweet
author anonymity may not be ensured. This tool
is to help researchers identify how their offensive
language model can improve, with the intended
benefit of more accurate identification of language
that negatively affects vulnerable populations, and
should not be used for any task that promotes or
spreads the usage of hate speech or unnecessarily
exposes people to hate speech. Even when used
as intended and functioning correctly, users may
react negatively to seeing offensive language, so
we take steps to minimize exposure by defaulting
show_examples to False during analysis, though
researchers belonging to vulnerable populations
might be more negatively affected. If the tool gives
incorrect results, researchers might overestimate
their model performance, which could directly hurt
vulnerable populations depending on the deploy-
ments of the model. This tool relies on datasets
that often categorize people based on their identity,
and it supports analyses based on these categories.
We believe that these categorizations are necessary
for a granular understanding and examination of
offensive language classification.

Limitations. OLEA is restricted in the languages
that it can be applied to. Currently, for the substring
analyses, it assumes that the language is delimited
by spaces. Additionally, the library is primarily fo-
cused on providing error analyses for offensive lan-
guage applications. Its use outside of this domain
is not known or well-defined. Though we focus
on error analysis for offensive language identifi-
cation, the system makes no binding assumptions
as to the proper definitions of offensive language
and hate speech, nor does it assert (or assume) any
difference between these two categories which can
complicate cross-model comparison. Furthermore,
this tool is just an analysis tool; it does not ad-
dress concerns regarding language drift and other
sociolinguistic biases that may be present within
a user’s dataset, nor does it address any annotator
biases present in original datasets.

Acknowledgments. Thanks to the anonymous re-
viewers for useful feedback. Thanks also to Cutter
Dalton for testing, and to members of the 2021-
2023 CLASIC cohort for helpful discussions!
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A Code Examples

In this appendix, we provide code snippets corre-
sponding to Section 4.

A.1 Preliminaries
Installation
pip install olea

Import Statements
import pandas as pd
from olea.data.cold import COLD ,

COLDSubmissionObject
from olea.data.hatecheck import

HateCheck
from olea.analysis.cold import

COLDAnalysis
from olea.analysis.generic import

Generic
from olea.analysis.hatecheck import

HateCheckAnalysis
from olea.utils import preprocess_text

A.2 Code examples for Section 4.1
Download and Preprocess COLD text:
cold = COLD()
pt = preprocess_text.PreprocessText ()
processed_text = pt.execute(cold.data()[

"Text"])
cold.data()["Text"] =processed_text

Create predictions using roBERTa-offensive
from transformers import AutoTokenizer ,

AutoModelForSequenceClassification
from transformers import

TextClassificationPipeline

link = "cardiffnlp/twitter -roberta -base
-offensive"

tokenizer = AutoTokenizer.
from_pretrained(link)

model =
AutoModelForSequenceClassification.
from_pretrained(link)

#Create Pipeline for Predicting

pipe =
TextClassificationPipeline(model=
model , tokenizer=tokenizer)

preds = pd.DataFrame(pipe(list(
cold.data()["Text"])))["label"]

Create Submission Objects:

cold_so = cold.submit(
batch = cold.data(),
predictions = preds ,
map = {"LABEL_0": 'N', 'LABEL_1 ': "Y
"})

hc_so = hc.submit(
batch = hc.data(),
predictions = preds ,
map = {"LABEL_0": 'non -hateful ', '
LABEL_1 ': "hateful"})

Generate Table 3:

plot_info , metrics = Generic.analyze_on(
cold_so ,
'Cat',
show_examples = False ,
plot = False)

Generate Table 3 and Save plot to file:

plot_info , metrics = Generic.analyze_on(
cold_so ,
'Cat',
show_examples = False ,
plot = False ,
savePlotToFile= "cold_cats.png")

Generate Table 4:

plot_info , metrics = Generic.
check_anno_agreement(cold_so , ["Off1
","Off2","Off3"],show_examples =
True , plot = False)

Generate Figure 2:

plot_info , metrics =COLDAnalysis.
analyze_on(
cold_so ,
'Cat',
show_examples = False ,
plot = True)

Generate Figure 3:

plot_info , metrics = Generic.analyze_on(
hc_so ,
'target_ident ')

Generate Figure 4a, Figure 4b, and Table 5:

plot_info , metrics = HateCheckAnalysis.
analyze_on(
hc_so ,
'category ')

A.3 Code examples for Section 4.2

Run analysis functions on local custom data:
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predictions = model.predict(data)
submission = olid_dataset.submit(

batch = data ,
predictions = predictions ,
map = {1:'OFF', 0:'NOT'})

# performance on AAVE
Generic.aave(submission)
# performance on texts containing

substring 'female '
Generic.check_substring(submission , "

female")

Submit predictions for newly-established dataset
class OLIDDataset:
olid = OLIDDataset('data/olid.csv')
datagen = olid.generator (64)
data = next(datagen)
preds = model.predict(data)
map = {'OFF' : 1.0 , 'NOT' : 0.0}
submission = olid.submit(batch = data ,

predictions = preds ,
map = map)

B Full Results Table for Figure 4a

category Metrics precision recall f1-score support
counter (nh) hateful 0.000 0.000 0.000 0
counter (nh) non-hateful 1.000 0.038 0.074 314
counter (nh) macro avg 0.500 0.019 0.037 314
counter (nh) weighted avg 1.000 0.038 0.074 314
derogation (h) hateful 1.000 0.805 0.892 560
derogation (h) non-hateful 0.000 0.000 0.000 0
derogation (h) macro avg 0.500 0.403 0.446 560
derogation (h) weighted avg 1.000 0.805 0.892 560
identity(nh) hateful 0.000 0.000 0.000 0
identity(nh) non-hateful 1.000 0.892 0.943 315
identity(nh) macro avg 0.500 0.446 0.471 315
identity(nh) weighted avg 1.000 0.892 0.943 315
negation hateful 0.295 0.236 0.262 140
negation non-hateful 0.335 0.406 0.367 133
negation macro avg 0.315 0.321 0.315 273
negation weighted avg 0.315 0.319 0.313 273
nonhateful-abuse (nh) hateful 0.000 0.000 0.000 0
nonhateful-abuse (nh) non-hateful 1.000 0.339 0.506 192
nonhateful-abuse (nh) macro avg 0.500 0.169 0.253 192
nonhateful-abuse (nh) weighted avg 1.000 0.339 0.506 192
phrasing (h) hateful 1.000 0.868 0.929 273
phrasing (h) non-hateful 0.000 0.000 0.000 0
phrasing (h) macro avg 0.500 0.434 0.465 273
phrasing (h) weighted avg 1.000 0.868 0.929 273
profanity hateful 0.601 1.000 0.751 140
profanity non-hateful 1.000 0.070 0.131 100
profanity macro avg 0.800 0.535 0.441 240
profanity weighted avg 0.767 0.613 0.492 240
pronoun-references (h) hateful 1.000 0.908 0.952 273
pronoun-references (h) non-hateful 0.000 0.000 0.000 0
pronoun-references (h) macro avg 0.500 0.454 0.476 273
pronoun-references (h) weighted avg 1.000 0.908 0.952 273
slurs hateful 0.593 0.778 0.673 144
slurs non-hateful 0.515 0.306 0.384 111
slurs macro avg 0.554 0.542 0.528 255
slurs weighted avg 0.559 0.573 0.547 255
spelling changes (h) hateful 1.000 0.549 0.709 760
spelling changes (h) non-hateful 0.000 0.000 0.000 0
spelling changes (h) macro avg 0.500 0.274 0.354 760
spelling changes (h) weighted avg 1.000 0.549 0.709 760
threats (h) hateful 1.000 0.810 0.895 273
threats (h) non-hateful 0.000 0.000 0.000 0
threats (h) macro avg 0.500 0.405 0.447 273
threats (h) weighted avg 1.000 0.810 0.895 273

Table 5: The Metrics classification report for roBERTa-
offensive on HateCheck
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