
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 248–255

May 2-4, 2023 ©2023 Association for Computational Linguistics

Corpus Annotation Graph Builder (CAG): An Architectural Framework to
Create and Annotate a Multi-source Graph

Roxanne El Baff Tobias Hecking Andreas Hamm Jasper W. Korte Sabine Bartsch∗

German Aerospace Center (DLR), Germany, <first>.<last>@dlr.de
∗ Technical University of Darmstadt, sabine.bartsch@tu-darmstadt.de

Abstract
Graphs are a natural representation of com-
plex data as their structure allows users to
discover (often implicit) relations among the
nodes intuitively. Applications build graphs
in an ad-hoc fashion, usually tailored to spe-
cific use cases, limiting their reusability. To
account for this, we present the Corpus Anno-
tation Graph (CAG) architectural framework
based on a create-and-annotate pattern that en-
ables users to build uniformly structured graphs
from diverse data sources and extend them
with automatically extracted annotations (e.g.,
named entities, topics). The resulting graphs
can be used for further analyses across multi-
ple downstream tasks (e.g., node classification).
Code and resources are publicly available on
GitHub1, 2 and downloadable via PyPi3 with
the command pip install cag.

1 Introduction

In many areas of knowledge, facts are spread across
a multitude of documents in various forms and
modalities (e.g., texts, images, sound recordings,
videos, and program code). It is of great interest
to exploit explicit links between these documents
and - even more so - to detect hidden (or implicit)
connections — for knowledge extraction through
searching, classifying, comparing, and analyzing.

The most explicit and efficient data structure
for working with such interlinked document col-
lections (corpora) is that of a graph whose nodes
represent documents, entities, and annotations
with edges representing relations between them.
Graph databases can naturally manage these for
efficient knowledge querying and storage. In par-
ticular, property graph databases like Neo4j4 and
ArangoDB5 consider nodes as objects with at-

1https://github.com/DLR-SC/
corpus-annotation-graph-builder

2The README includes a link for the documentation.
3https://pypi.org/project/cag/
4https://neo4j.com
5https://www.arangodb.com

tributes and are, therefore, appropriate for holding
documents and metadata or more general objects of
interest (OOI). OOIs can vary in scale and can be
linked via containment relationships: e.g., a book
series contains books, a book contains chapters, a
chapter contains text, pictures, etc.

One central idea behind our framework is that
graphs are not only the object of analysis but also
containers for analysis results. More precisely, to
unveil hidden connections, we suggest deriving a
second type of nodes, which we call annotation
nodes associated with the OOI nodes. They repre-
sent features extracted from the OOIs by methods
like named entity recognition, topic discovery, sen-
timent analysis, image captioning, etc. Implicit
links of OOIs can then be established via shared
annotation nodes (e.g., common topics) that can be
used for further analysis. In this way, with every
analysis passed, the graph can get richer and possi-
bly more connected. We call the resulting graph a
Corpus Annotation Graph.

In this demo paper, we present an architectural
framework that facilitates the application of the
create-and-annotate pattern for creating such a
graph: the Corpus Annotation Graph Builder
(CAG). CAG is built on top of ArangoDB and
its Python drivers. The create-and-annotate pat-
tern consists of two phases (see Figure 1) that
can be repeated multiple times: (1) OOI data can
be collected from different sources (e.g., publica-
tion databases, online encyclopedias, news feeds,
web portals, electronic libraries, repositories, me-
dia platforms) and pre-processed to build the core
nodes. The component responsible for this phase
is the Graph-Creator. (2) Annotations are ex-
tracted from the nodes, and corresponding anno-
tation nodes are created and attached to the graph.
The component dealing with this phase is the
Graph-Annotator. At any time, new OOI nodes
or new annotations can be added, introducing new
information to enrich the graph with subsequent

248

https://github.com/DLR-SC/corpus-annotation-graph-builder
https://github.com/DLR-SC/corpus-annotation-graph-builder
https://pypi.org/project/cag/
https://neo4j.com
https://www.arangodb.com


shows

contains

Data sources Graph Creation Graph Annotation Knowledge 
Extraction

contains

contains

quotes

contains

contains

contains

shows

Person
Greta Thunberg

Topic
Gas Emissions

Organisation
Google

Organisation
IBM

has_person

has_person

is_about

image_of

image_of

shows reuses

image_of

image_of

reuses

have images of 
Greta Thunberg

load as graph

Image Node

Person
Greta Thunberg

Annotation Node

Text Node

Corpus Node

OOI Edge

Annotation Edge

Legend

Figure 1: A simplified illustration of the framework: (1a) The data is collected from different data sources (e.g.,
scientific articles, Wikipedia. (1b) Then, the data is pre-processed and loaded into one common graph with core
nodes and edges referred to as objects of interest (OOI). And (2) Annotations are added to the core nodes, which
creates additional levels of abstraction and allows core components to be linked across different corpora. An
example of a query is Get all documents that contain images with the Person Of Interest; Greta Thunberg. This
results in getting text a from a datasource and text b from another datasource.

runs further.
The CAG architectural framework aims to offer

researchers a flexible but unified way of organizing
and maintaining their interlinked document collec-
tions in a reproducible way.

In the following sections, we go over related
work (Section 2), then we present the architecture
of CAG by describing the building blocks of our
framework (Section 3). Last but not least, Section 4
exemplifies two applications, one as the backbone
technology for searching scientific work and an-
other one describing a knowledge graph construc-
tion using CAG.

2 Related Work

Existing research and tools related to graph data
structures cover various topics, from database man-
agement systems for creating and maintaining
graphs, over a formal framework for graph annota-
tions, to task-oriented (e.g., information retrieval,
node classification) approaches.

As we mentioned in the Introduction (Section 1),
as the foundation of the architectural framework
(CAG), we use a pattern of creating and annotat-
ing graphs. Currently, there exist powerful graph
databases, such as Neo4j and ArangoDB.They of-
fer a mature engine to build and persist property
graphs. We base our architectural framework on
ArangoDB because it allows saving attributes not
only in the nodes but also in the edges of a graph.
It is a valuable option for incorporating more infor-
mation if needed.

Throughout the years, graphs are highly used
to solve several downstream tasks, such as devel-
oping extended similarity metrics for documents
embedded in graphs (Minkov et al., 2006), Named
Entity Recognition (Yu et al., 2008), measuring
the semantic distance between texts (Tsang and
Stevenson, 2010), using a graph-based ranking al-
gorithm (Demir et al., 2010), frame semantic pars-
ing (Zheng et al., 2022) among many others ((Chen
et al., 2022), (Colas et al., 2022), etc.). All these
works demonstrate the importance of graphs and
their multipurpose usage, making it essential to
develop an architectural framework to create and
annotate graphs so they can be (re)used later on for
similar or different downstream tasks.

Regarding graph annotations, lately, Bikaun et al.
(2022) introduced QuickGraph, a rapid annotation
tool that allows users, via its web interface, to up-
load corpora and add annotations to it by select-
ing the annotation type from a predefined list (e.g.,
named entities). As mentioned above, CAG is not a
tool but rather a more general programming frame-
work that employs an architectural pattern for the
goal of code centralization and reproducibility, giv-
ing users the flexibility to select their datasources
and annotation types. CAG has predefined nodes
(e.g., TextNode) and edges to encourage the unifi-
cation of information from different sources, and
it allows the addition of any annotation type to its
predefined annotations.

Formerly, Bird and Liberman (1999, 2001) de-
fined ‘Linguistic annotation’ as a descriptive or

249



Figure 2: The building blocks of the CAG framework.
The framework uses ArangoDB as a graph database with
the Python driver PyArango. On top of that, CAG has a
Config block responsible for establishing the connection
to the database. Moreover, the Main component is the
base component responsible for creating/updating the
graph ontology, nodes, and edges. The top building
blocks are Graph-Creator and Graph-Annotator.

analytical notation applied to raw language data of
any form (e.g., textual, voice). The added notations
may include annotations of all sorts (from phonetic
features to discourse structures) (Bird and Liber-
man, 2001), which provides a formal framework for
constructing, maintaining, and searching linguistic
annotations while remaining consistent with many
alternative data structures and formats. They fo-
cus on linguistic annotations regardless of the raw
data from which they exploit the commonalities
between them. Our work here adapts the same con-
cept for annotations. Our annotation framework
extends an existing graph with new node types hold-
ing a notation derived from any raw data. Maeda
et al. (2002, 2006) present the Annotation Graph
Toolkit, a formal framework to support the develop-
ment of annotation tools of time series data based
on Bird and Liberman (2001) framework; these
tools allow users to annotate a data point manually.
The main difference is that CAG is an architectural
framework, not a toolkit. It allows the incorpora-
tion not only of time series data but any data. Most
importantly, our framework supports automated
bulk annotations instead of manual ones.

3 The Framework

In this section, we describe the technical framework
of the Corpus Annotation Graph builder (CAG). As
mentioned in Section 1, we create an architectural
framework that employs the create-and-annotate
pattern, which requires two main building blocks
in CAG: Graph-Creator and Graph-Annotator. As
shown in Figure 2, these two blocks are built on
top of several other blocks. From the bottom up,
CAG uses ArangoDB as a graph database to store
graphs, which is accessed via the python library,

Function Name Description

Main Component cag.framework.component.py

Constructor Establishes the connection to the
database using the Config class, creates
the graph ontology if it does not exist, or
updates it.

get_document Gets a node or an edge based on a key
or set of attributes.

upsert_node Updates or creates a new node instance.
It uses the get_document function to
fetch existing nodes.

get_edge_attributes Gets the edge attributes based on Edge
type and from and to nodes.

upsert_edge Update or create a new edge instance.

Config cag.utils.config.py

Constructor Establishes the connection to the
database using the database attributes:
database URL, username, password, and
port. It retries in case of connection fail-
ure.

configuration Re-establishes a new connection and
rewrites a previous one.

Table 1: Summary of the functions in the Main
Component and the Config. These functions are used
by CAG’s Graph-Creator and -Annotator.

PyArango6. After that comes the Main Compo-
nent block, which creates and updates the graph
ontology by manipulating the graph elements. It
uses the Config block to establish the connection
to the database. Table 1 summarizes both compo-
nents’ methods, each a Python class.

The sections below delve deeper into the two
main building blocks on top, Graph-Creator, and
Graph-Annotator, where we explain the relation
between them and between the lower blocks.

3.1 Graph-Creator
As mentioned in Section 1, a Graph-Creator (GC)
creates objects of interest (OOI) from a datasource
as nodes and edges where these OOIs are directly
extracted without further analysis (e.g., text content,
image). GC offers a unified layout, structuring the
creation process of a graph from one or many data-
sources. GraphCreatorBase, CAG’s primary
GC class, allows the management of a datasource

6https://pypi.org/project/pyArango/

250

https://pypi.org/project/pyArango/


Function Name Description

Constructor Sets the path to the source data, sets the
data configuration from Config, and calls
the initialization method that should be
implemented.

init_graph An abstract method to initialize
the nodes and edges by using pre-
existing node/edge specific methods
(e.g., create_corpus_node,
create_text_node,
create_image_node,
create_author_node) or by using
the upsert_node or upsert_edge
from the Component class.

update_graph An abstract method to update the
nodes and edges by using pre-existing
methods from the Component methods.

Table 2: Summary of the main functions in the Graph
Creator abstract class.

Name Attributes and Description

Nodes
GenericOOSNode timestamp. The generic node class from

which all python class nodes inherit.

CorpusNode name, type, description, created_on and
timestamp.

TextNode text, timestamp

AuthorNode name and timestamp

ImageNode URL and timestamp

WebResource URL and timestamp

Edges
BelongsTo timestamp. For example a TextNode Be-

longsTo a CorpusNode

HasAuthor timestamp. For example, TextNode
HasAuthor an AuthorNode

RefersTo timestamp. For example, TextNode
RefersTo a WebResource node

Table 3: A sample of the predefined nodes and edges
in CAG (cag.graph_elements).

within a graph. It is an abstract class that inherits all
the functionalities of the "Main Component" (Table
1). As shown in Table 2, GraphCreatorBase
enforces the implementation of two functions: one
for initializing the graph from a datasource and one
for updating it. Additionally, GC offers a prede-
fined set of edges and nodes with their correspond-
ing maintenance (inserting/updating) that can be
optionally used (see Table 3). A project can have as
many graph creators as is needed, usually one per

datasource. A sample code is available on GitHub7.
Another trait of GC is that it allows time propa-

gation through linked nodes since each OOI node
carries a timestamp of its creation. For example,
if a set of content nodes (N ) linked to a parent
node (P ) is updated/created, the latest timestamp
of these nodes can be recursively propagated to P .

The CG creates a graph by loading raw data
to it. This graph is enriched by using the Graph-
Annotator.

3.2 Graph-Annotator
The Graph-Annotator (GA) enriches the graph by
analyzing object of interest (OOI) nodes and link-
ing them to newly created annotation nodes. For
example, as shown in Figure 1, a textual node can
be linked with a has_person edge to a named en-
tity node of type PERSON and attribute “Greta
Thunberg”. Annotations can be applied on differ-
ent levels: (1) a collection of nodes such as corpus
level to extract corpus statistics, topics, etc., (2) a
single node such as text nodes (e.g., keyphrases),
image nodes (e.g., generated captions), etc.

Figure 3 shows the workflow of GA. A set of
nodes, predefined by the user, is fed to a cus-
tomizable pipeline where each pipe has three re-
sponsibilities:(1) accessing the node(s) and extract-
ing a corresponding feature (e.g., named entities),
(2) processing the features (e.g., count the number
of times a named entity, e.g., ORGANIZATION:
“Google”, occurred), (3) updating the graph by sav-
ing the annotations corresponding to this pipe. For
example, Figure 3 shows that all the text nodes
were selected to be annotated. They are, then, fed
to a pipeline that has three pipes: a sentence di-
vider, a named entity pipe, and an emotion pipe.
After running the pipeline, the graph is updated
with the corresponding annotation nodes.

Pipe We define a CAG pipe as a set of objects that
encapsulates several functionalities to deal with the
technical part of annotation, the post-processing,
and the persistency of the annotation nodes in the
graph. A pipe is mainly defined in two steps:
(1) defining its attributes in CAG’s registered
pipes dictionary and (2) and defining a
PipeOrchestrator.
registered pipes is a Python dictionary

that has one entry for each pipe, holding all at-
7https://github.com/DLR-SC/

corpus-annotation-graph-builder/blob/
main/examples/1_create_graph.ipynb

251

https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb
https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb
https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb


Set of Nodes Annotation Pipeline

shows

contains

contains

contains

quotes

contains

shows

Person
Greta Thunberg

Emotion
Sad

Organisation
Google

Sentence 
divider NER emotion

NER

NER

emotion

Annotations in Graph

has_ner

{5 occurrences}

has_emotion

{0.3 sentence
ratio}

has_ner

{2 occurrences}

{6 occurrences}

Annotation Node

Text Node

Corpus Node

OOI Edge

Annotation Edge

Legend

Pipe

Do not save to 
graph save to graph

Figure 3: A simplified illustration of the Graph-Annotator. (1) The text node set is selected and fed to a pipeline.
(2) The pipeline consists of three pipes: sentence divider (preprocessing), NER, and Emotion pipes. After annotating,
(3) the annotation nodes are saved in the graph.

tributes (Table 4) needed for a pipe to tackle its
responsibilities and distinguished by a unique key.
.

Attribute Description

orchestrator_class The path to the pipe’s orchestrator
class.

pipe_id_or_func A Spacy predefined id (e.g., ner) or
a customized function id that is im-
plemented in the pipe_path.

pipe_path The path to the customized function
or empty in case of Spacy.

level Annotation level whether it is on the
level of a single node or a set of
node.

data_type Whether the annotated OOI is a text,
image or URL.

annotated_node_name the name of the OOI node being an-
notated.

node_class The Path to the class of the annota-
tion node.

edge_class The Path to the class of the edge
node.

Table 4: The attributes of a registered
pipes. CAG’s predefined pipes are under
cag.framework.annotator.registered_pipes.py.

The PipeOrchestrator is an abstract
python class that loads the pipe components based
on the attributes provided in the registered
pipes. The orchestrator validates the attributes
in Table 4 (e.g., ensures correct paths) and loads
the required python modules, making them acces-
sible later on for the pipeline. It also creates new

annotation node/edge types by updating the graph
ontology. Additionally, the PipeOrchestrator is an
abstract class that enforces the implementation of
three methods: create_node, create_edge
and save_annotations. The latter method
should loop over the annotations and use the other
two methods to save the annotation nodes and
edges.

After defining all the pipes, the pipeline man-
ages them.

Pipeline GA offers a feature to unify the
pipeline’s definition. The pipeline manages
pipes by using the pipe’s information accessed from
the PipeOrchestrator. It deals with enforc-
ing the flow of the pipes (e.g., extract sentences
before classifying them), executing the pipeline (us-
ing pipe_id_or_func in Table 4), which outputs
the annotations, and saving to the graph (by calling
the pipe’s corresponding save_annotations
mentioned previously). The Pipeline class supports
the execution of customized pipes (a function call),
Spacy (Honnibal et al., 2020) customized com-
ponents, or Spacy native components (e.g., Sen-
tenceRecognizer for sentence segmentation). The
pipeline only executes these functions based on
information provided by the pipe, and it is not re-
sponsible for the logic within these pipes. A pipe is
added as follows to a pipeline (sample on GitHub8):

add_annotation_pipe(
name="MyPipeOrchestrator",
save_output=True,
is_spacy=True
)

It is important to note that for provenance track-
8https://github.com/DLR-SC/

corpus-annotation-graph-builder/blob/
main/examples/2_annotate_graph.ipynb

252

https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/2_annotate_graph.ipynb
https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/2_annotate_graph.ipynb
https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/2_annotate_graph.ipynb


Figure 4: Linking Git repositories and publication en-
tries through readme files and metadata.

ing of annotations, an annotation node can be
equipped with additional metadata about its cre-
ation timestamp, the component that created the
annotation, and additional parameters needed for
the analysis reproduction. An example is listed
below:

{
analysis_component: ’keyphrases,’
parameters:

{
algorithm: text_rank,
relevance_threshold: 0.75

}
}

4 Use Cases

4.1 Linking Publications and Software
In many fields of science, it is common to use Git
repositories hosting platforms such as GitHub and
GitLab. Those repositories often have a “readme”
file introducing the purpose of tools, dataset de-
scriptions, or usage instructions. Thus, these files
agglomerate valuable science and software knowl-
edge (El Baff et al., 2021) that is worth exploring.
Often one can also find references to associated tra-
ditional publications. We use the CAG to integrate
search over fragmented information in publication
outlets and Git repositories. More precisely, we
build a graph that indirectly links repositories and
papers via intermediate keywords and persons and
directly by parsing paper references in repositories’
“readme” files (Figure 4).

The German Aerospace Center (DLR), with a
constantly growing corpus of publications and soft-
ware tools, is interested in efficiently retrieving
digital scientific information. Thus, as a backbone
of an internal search application, the CAG frame-
work is used to build an organizational knowledge
graph linking publications in the DLR publication
database elib9 and repositories in its self-hosted

9https://elib.dlr.de/

GitLab
Corpus

Elib 
Corpus

Person

Abstract

Readme

Publication

Section Type

Task

Method

SectionSoftware

A
n
n
o
t
a
t
i
o
n

N
o
d
e
s

Figure 5: CAG structure for linking GitLab (blue)
projects and publications (yellow). Graph creators cre-
ate blue, yellow, and grey (common node) nodes and
solid edges, and graph annotators add green nodes and
dashed edges by analyzing the OOI nodes.

GitLab instance10.

Graph-Creator. The graph creator processes a
dump of GitLab “readme” files and the associated
project metadata (e.g., contributors, title, URL) re-
trieved through the GitLab API11, as well as dumps
of publication abstracts from the elib publication
database along with titles, authors, institutes into
the hierarchical structure of OOI nodes depicted in
Figure 5 with colors blue for projects, yellow for
publications and grey for common nodes between
the datasources, linked via solid edges.

Graph Annotators. We implement a pipeline
containing several pipes to annotate the graph by
extracting information from the text nodes and sav-
ing the annotation nodes, as shown in Figure 5.

Readme section classifier: We use the Prana et al.
(2019) readme classifier to extract sections labeled
as a description (What/Why sections), reference,
and acknowledgment. These labels are linked to
the readme text nodes.

Reference parser: We developed a tool for pars-
ing paper references in “readme” from raw form
(e.g., APA, BibTeX) to items such as author, title,
and venue. This annotator uses the extracted in-
formation to establish links to publication nodes
where possible.

Concept extraction: For linking software repos-
itories and publications, even if there is no direct
reference or overlap in persons, we use the SPERT
(Eberts and Ulges, 2020) information extraction
model trained on scientific corpora SciERC (Luan
et al., 2018) to extract concepts where we focus
on “Method” and “Task” since these constitute the
most relevant links between papers and software
projects. Such concept annotations are attached

10https://gitlab.dlr.de/
11https://docs.gitlab.com/ee/api/

253

https://elib.dlr.de/
https://gitlab.dlr.de/
https://docs.gitlab.com/ee/api/


to the text nodes of publication abstracts and the
“readme” sections tagged as “description”.

This use case is similar to the portal https:
//paperswithcode.com/, but our solution is
automatized. The CAG framework eases process-
ing large volumes of publications and repository
corpora into a well-defined graph format.

4.2 Wikipedia Page Revisions
We present here a simple use case depicting the
usage of the Graph-Creator and -Annotator from a
widely known source, Wikipedia.

As a community-driven encyclopedia, Wikipedia
has a lens on societal discourse. Since the entire
revision history of each article is publicly available,
Wikipedia constitutes a research dataset that allows
tracing the evolution of themes over time. Using
the CAG framework, we demonstrate how to create
a graph from Wikipedia revisions for the two cat-
egories, climate change and artificial intelligence.
We extract the revisions for two periods, October
2012 and -2022. The data is downloaded using our
tool, wikipedia-periodic-revisions12

which downloads Wikipedia revisions for a specific
category and period. It, then, saves each Wikipedia
Page as a file. The code is available on GitHub13.

Graph-Creator. Figure 6 shows the nodes and
edges predefined by CAG (in blue) and the ones
the newly defined ones (in yellow). The Wikipedia
graph creator loops over the pages to load the data
into the graph. On top, it creates a Wikipedia cor-
pus node as the most general OOI node, referenced
by Wikipedia articles. Each article comprises of
revision nodes, each linked to a text node. Addi-
tionally, the graph creator already establishes cross-
article connections by parsing images and external
references. Figure 6 shows the general scheme of
our use case.

Graph-Annotators. We create an annotation
pipeline utilizing the Spacy named entity recog-
nition module14 to extract named entities from revi-
sion texts. Text nodes containing common entities
(e.g., referring to the same Organization) will be
indirectly linked together through these entities. In
this way, article relationships are also established

12https://github.com/DLR-SC/
wikipedia-periodic-revisions, also down-
loadable via PyPi https://pypi.org/project/
wikipedia_tools/

13https://github.com/roxanneelbaff/cag_
wikipedia_usecase

14https://spacy.io/api/entityrecognizer

belongs_to

belongs_to

belongs_to

ref
ers
_to

ha
s_
au
th
or

Text Node

Corpus 
Node

Image Node
Wikipedia 
page Node

Revision 
Node

Figure 6: Wikipedia graph structure. CAG’s predefined
nodes are in blue, and newly defined nodes are in yellow.

based on common referencing (either explicit by
containing, for example, common images (an OOI)
or implicit by just mentioning common entities).

The resulting CAG structure (see Figure 6) al-
lows interesting graph queries to analyze the co-
evolution of Wikipedia articles through time. Ex-
amples are: “In which context a certain organiza-
tion (named entity) is mentioned on Wikipedia?” or
“Which articles reciprocally reference each other?”.

5 Conclusion and Future Work

We presented CAG, a publicly available architec-
tural framework aiming to employ unified and re-
producible patterns in graph creation and extension
via annotations. CAG allows users to concentrate
on graph ontologies and pipelines while the frame-
work takes the burden of handling repetitive and
cumbersome tasks. We further aim to extend our
framework to have an analysis component incor-
porating dynamic data analysis through time and
space, exploiting the ’create-and-annotate’ graph
results.

6 Acknowledgment

This project is funded by the German Federal Min-
istry of Education (BMBF) under the InsightsNet15

project. We want to thank Shahbaz Syed16 for his
valuable input, especially regarding the Figures pre-
sented in the paper. We also would like to thank
the reviewers for their helpful comments.

15http://insightsnet.org/
16https://scholar.google.com/citations?

hl=en&user=eGe86TEAAAAJ

254

https://paperswithcode.com/
https://paperswithcode.com/
https://github.com/DLR-SC/wikipedia-periodic-revisions
https://github.com/DLR-SC/wikipedia-periodic-revisions
https://pypi.org/project/wikipedia_tools/
https://pypi.org/project/wikipedia_tools/
https://github.com/roxanneelbaff/cag_wikipedia_usecase
https://github.com/roxanneelbaff/cag_wikipedia_usecase
https://spacy.io/api/entityrecognizer
http://insightsnet.org/
https://scholar.google.com/citations?hl=en&user=eGe86TEAAAAJ
https://scholar.google.com/citations?hl=en&user=eGe86TEAAAAJ


References
Tyler Bikaun, Michael Stewart, and Wei Liu. 2022.

QuickGraph: A rapid annotation tool for knowledge
graph extraction from technical text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 270–278, Dublin, Ireland. Association
for Computational Linguistics.

Steven Bird and Mark Liberman. 1999. Annotation
graphs as a framework for multidimensional linguis-
tic data analysis. In Towards Standards and Tools for
Discourse Tagging.

Steven Bird and Mark Liberman. 2001. A formal frame-
work for linguistic annotation. Speech Communica-
tion, 33(1):23–60. Speech Annotation and Corpus
Tools.

Chen Chen, Yufei Wang, Bing Li, and Kwok-Yan Lam.
2022. Knowledge is flat: A Seq2Seq generative
framework for various knowledge graph comple-
tion. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4005–
4017, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Anthony Colas, Mehrdad Alvandipour, and Daisy Zhe
Wang. 2022. GAP: A graph-aware language model
framework for knowledge graph-to-text generation.
In Proceedings of the 29th International Conference
on Computational Linguistics, pages 5755–5769,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Seniz Demir, Sandra Carberry, and Kathleen F. Mc-
Coy. 2010. A discourse-aware graph-based content-
selection framework. In Proceedings of the 6th Inter-
national Natural Language Generation Conference.
Association for Computational Linguistics.

Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. In Proceedings of the 2020 European
Conference on Artificial Intelligence, pages 2006–
2013. IOS Press.

Roxanne El Baff, Sivasurya Santhanam, and Tobias
Hecking. 2021. Quantifying synergy between soft-
ware projects using readme files only. In Proceedings
of the 33rd International Conference on Software En-
gineering and Knowledge Engineering, volume 33.
KSI Research Inc. and Knowledge Systems Institute
Graduate School.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Kazauki Maeda, Steven Bird, Xiaoyi Ma, and Haejoong
Lee. 2002. Creating annotation tools with the anno-
tation graph toolkit. In Proceedings of the Third In-
ternational Conference on Language Resources and
Evaluation (LREC’02), Las Palmas, Canary Islands
- Spain. European Language Resources Association
(ELRA).

Kazuaki Maeda, Haejoong Lee, Julie Medero, and
Stephanie Strassel. 2006. A new phase in annotation
tool development at the Linguistic Data Consortium:
The evolution of the annotation graph toolkit. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Associ-
ation (ELRA).

Einat Minkov, William Cohen, and Andrew Ng. 2006.
A graphical framework for contextual search and
name disambiguation in email. In Proceedings of
TextGraphs: the First Workshop on Graph Based
Methods for Natural Language Processing, pages
1–8, New York City. Association for Computational
Linguistics.

Gede Artha Azriadi Prana, Christoph Treude, Ferdian
Thung, Thushari Atapattu, and David Lo. 2019. Cat-
egorizing the content of github readme files. Empiri-
cal Software Engineering, 24(3):1296–1327.

Vivian Tsang and Suzanne Stevenson. 2010. A graph-
theoretic framework for semantic distance. Compu-
tational Linguistics, 36(1):31–69.

Xiaofeng Yu, Wai Lam, and Shing-Kit Chan. 2008. A
framework based on graphical models with logic for
Chinese named entity recognition. In Proceedings of
the Third International Joint Conference on Natural
Language Processing: Volume-I.

Ce Zheng, Xudong Chen, Runxin Xu, and Baobao
Chang. 2022. A double-graph based framework for
frame semantic parsing. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4998–5011, Seattle,
United States. Association for Computational Lin-
guistics.

255

https://doi.org/10.18653/v1/2022.acl-demo.27
https://doi.org/10.18653/v1/2022.acl-demo.27
https://aclanthology.org/W99-0301
https://aclanthology.org/W99-0301
https://aclanthology.org/W99-0301
https://doi.org/https://doi.org/10.1016/S0167-6393(00)00068-6
https://doi.org/https://doi.org/10.1016/S0167-6393(00)00068-6
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.506
https://aclanthology.org/2022.coling-1.506
https://aclanthology.org/W10-4202
https://aclanthology.org/W10-4202
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
http://www.lrec-conf.org/proceedings/lrec2002/pdf/286.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/286.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/780_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/780_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/780_pdf.pdf
https://aclanthology.org/W06-3801
https://aclanthology.org/W06-3801
https://doi.org/10.1162/coli.2010.36.1.36101
https://doi.org/10.1162/coli.2010.36.1.36101
https://aclanthology.org/I08-1044
https://aclanthology.org/I08-1044
https://aclanthology.org/I08-1044
https://doi.org/10.18653/v1/2022.naacl-main.368
https://doi.org/10.18653/v1/2022.naacl-main.368

