@inproceedings{el-baff-etal-2023-corpus,
title = "Corpus Annotation Graph Builder ({CAG}): An Architectural Framework to Create and Annotate a Multi-source Graph",
author = "El Baff, Roxanne and
Hecking, Tobias and
Hamm, Andreas and
Korte, Jasper W. and
Bartsch, Sabine",
editor = "Croce, Danilo and
Soldaini, Luca",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-demo.28",
doi = "10.18653/v1/2023.eacl-demo.28",
pages = "248--255",
abstract = "Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command pip install cag.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="el-baff-etal-2023-corpus">
<titleInfo>
<title>Corpus Annotation Graph Builder (CAG): An Architectural Framework to Create and Annotate a Multi-source Graph</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roxanne</namePart>
<namePart type="family">El Baff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Hecking</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Hamm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jasper</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Korte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Bartsch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danilo</namePart>
<namePart type="family">Croce</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Soldaini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command pip install cag.</abstract>
<identifier type="citekey">el-baff-etal-2023-corpus</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-demo.28</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-demo.28</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>248</start>
<end>255</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Corpus Annotation Graph Builder (CAG): An Architectural Framework to Create and Annotate a Multi-source Graph
%A El Baff, Roxanne
%A Hecking, Tobias
%A Hamm, Andreas
%A Korte, Jasper W.
%A Bartsch, Sabine
%Y Croce, Danilo
%Y Soldaini, Luca
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F el-baff-etal-2023-corpus
%X Graphs are a natural representation of complex data as their structure allows users to discover (often implicit) relations among the nodes intuitively. Applications build graphs in an ad-hoc fashion, usually tailored to specific use cases, limiting their reusability. To account for this, we present the Corpus Annotation Graph (CAG) architectural framework based on a create-and-annotate pattern that enables users to build uniformly structured graphs from diverse data sources and extend them with automatically extracted annotations (e.g., named entities, topics). The resulting graphs can be used for further analyses across multiple downstream tasks (e.g., node classification). Code and resources are publicly available on GitHub, and downloadable via PyPi with the command pip install cag.
%R 10.18653/v1/2023.eacl-demo.28
%U https://aclanthology.org/2023.eacl-demo.28
%U https://doi.org/10.18653/v1/2023.eacl-demo.28
%P 248-255
Markdown (Informal)
[Corpus Annotation Graph Builder (CAG): An Architectural Framework to Create and Annotate a Multi-source Graph](https://aclanthology.org/2023.eacl-demo.28) (El Baff et al., EACL 2023)
ACL