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Abstract

In this paper, we present ALLECS, a
lightweight web application to serve grammati-
cal error correction (GEC) systems so that they
can be easily used by the general public. We de-
sign ALLECS to be accessible to as many users
as possible, including users who have a slow
Internet connection and who use mobile phones
as their main devices to connect to the Internet.
ALLECS provides three state-of-the-art base
GEC systems using two approaches (sequence-
to-sequence generation and sequence tagging),
as well as two state-of-the-art GEC system com-
bination methods using two approaches (edit-
based and text-based). ALLECS can be ac-
cessed at https://sterling8.d2.comp.nus.
edu.sg/gec-demo/1.

1 Introduction

English has become the de facto language for inter-
national discourse, spoken by approximately more
than 1.4 billion speakers, with almost 75% of them
being non-native speakers (Eberhard et al., 2022).
As the number of English-as-a-second-language
(ESL) and English-as-a-foreign-language (EFL)
speakers keeps increasing, the need for automated
tools to assist ESL and EFL speakers in learning
and writing English also increases in tandem.

Grammatical Error Correction (GEC) is a task
that aims to automatically detect and correct er-
rors that are present in a text, including grammati-
cal errors, orthographic errors, misspellings, word
choice errors, etc. (Ng et al., 2014; Bryant et al.,
2022). GEC tools have a wide range of applica-
tions, including helping native speakers to correct
their occasional mistakes, assisting language learn-
ers (Knutsson et al., 2003; Chollampatt et al., 2016;
Nadejde and Tetreault, 2019; Katinskaia and Yan-
garber, 2021), and improving the quality of other

1The source code and a video demonstration of ALLECS
can be accessed at https://github.com/nusnlp/ALLECS.

natural language processing (NLP) tasks (Yin et al.,
2020; Liao et al., 2022).

GEC experienced significant progress in the last
decade thanks to the HOO (Dale and Kilgarriff,
2011), CoNLL-2013 (Ng et al., 2013), CoNLL-
2014 (Ng et al., 2014), and BEA-2019 (Bryant
et al., 2019) shared tasks. Qorib and Ng (2022)
reported that state-of-the-art GEC systems have ex-
ceeded human-level performance based on the stan-
dard evaluation metric, F0.5 score. With the rapid
progress in GEC, different approaches emerged to
achieve state-of-the-art performance, including sys-
tem combination (Qorib et al., 2022), sequence tag-
ging (Lai et al., 2022), and sequence-to-sequence
generation (Rothe et al., 2021). Even though many
GEC systems publicly publish their source code
along with their trained models, these systems can
typically only be run through a command-line in-
terface on a highly capable computing resource.
Command-line interface is not easy to navigate for
non-technical people and few people have access
to a capable computing resource. These factors
become a formidable barrier for the general public
to benefit from the research progress of GEC.

In this paper, we present ALLECS (A
Lightweight Language Error Correction System), a
simple system to release GEC models to the general
public with a lightweight web-based interface. Our
web interface only requires 2.5 KB of data transfer
overhead for each run. This means that ALLECS
can be readily used by users in developing coun-
tries with slow Internet connections (Delaporte and
Bahia, 2020). Furthermore, we use a responsive
design for the web interface, allowing it to be run
comfortably on devices with various screen dimen-
sions and sizes. This allows users to use the system
through a mobile phone, which is the dominant
device type to connect to the Internet in developing
countries (Glushkova et al., 2019). Usability is im-
portant for people living in developing countries,
as they are the ones who can benefit the most from
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Figure 1: The user interface of ALLECS

a GEC system.

ALLECS can easily host GEC systems using dif-
ferent approaches, including system combination.
Currently, ALLECS hosts two sequence-tagging
base models, one sequence-to-sequence generation
base model, and two combination methods. We
briefly explain the base systems we use in AL-
LECS in Section 3. ALLECS also easily allows
the addition of other base models. To the best of
our knowledge, ALLECS is the first web applica-
tion with a graphical user interface for GEC system
combination methods.

2 System Overview

The interface of ALLECS consists of five compo-
nents, which are base model selection, combination
method selection, output mode, input text box, and
output text box. The user interface of ALLECS is
shown in Figure 1.

2.1 Base model selection

The user first needs to choose the base model(s). If
the user chooses more than one base model, AL-
LECS will run a system combination method based
on the combination method selected, as described
in the next section. ALLECS includes three state-
of-the-art GEC systems as the base models: GEC-
ToR Roberta (Omelianchuk et al., 2020), GECToR
XLNet (Omelianchuk et al., 2020), and T5-Large
(Rothe et al., 2021). We describe the base systems
in more detail in Section 3.

2.2 Combination method selection

Next, the user needs to choose the combination
method. If the user only chooses one base sys-
tem, the selected combination method is ignored.
ALLECS includes two state-of-the-art system com-
bination methods, ESC (Qorib et al., 2022) and
MEMT (Heafield and Lavie, 2010). We describe
the system combination methods in more detail in
Section 3.

2.3 Output mode

Users can choose to highlight the corrections by se-
lecting the “Highlight corrections” box. If the user
chooses to highlight the corrections, text spans in
the output text that are different from the input text
are highlighted in blue and a simple explanation of
each correction can be displayed by clicking a high-
lighted text span. The appearance of highlighted
corrections can be seen in Figure 2. Displaying
corrections with simple explanations can help lan-
guage learners to understand their mistakes better.
We extracted the corrections with their edit types
using ERRANT (Bryant et al., 2017).

2.4 Input text box

The user needs to put the text he wants to correct
in the input text box and clicks the run button. The
corrected text will then be displayed in the output
text box. Most recent GEC base systems expect the
input to be a single sentence tokenized with SpaCy
(Honnibal et al., 2020) version 1.9, following the
requirement from the BEA-2019 shared task. As
such, an input text needs to be segmented into sen-
tences and then tokenized with SpaCy before each

299



Figure 2: Text spans displayed in blue are the corrections made by the GEC system. A vertical blue bar without
any text inside denotes text deletion. When a blue highlight or a blue bar is clicked, a simple explanation of the
correction is shown.

sentence is given as the input to the GEC model.
To retain the text structure, it is first split by line
before segmented into sentences. This way, we
can keep the information on which line a sentence
should be printed. To segment a text into sentences,
we follow the practice used in the NUCLE corpus
(Dahlmeier et al., 2013) by using the nltk Punkt
tokenizer (Bird and Loper, 2004; Kiss and Strunk,
2006).

2.5 Output text box

After a text is entered into the input text box and
the “Run” button is clicked, the corrected text will
appear in the output text box. As the base GEC
systems are expected to work on tokenized input
and output, the output text needs to be detokenized
to look more natural. Since SpaCy does not have a
detokenizer and the document context of the origi-
nal input may no longer be relevant after a sentence
is corrected, we use Moses (Koehn et al., 2007) to
detokenize a sentence. We found that Moses can
detokenize a sentence that is tokenized by SpaCy
reasonably well, only missing some cases like the
detokenization of “is n’t” and “are n’t” and remov-
ing spaces around hyphens. For these missed cases,
we create simple rules to apply string replacement
after Moses detokenization. Detokenization is not
applied if the user chooses to highlight the correc-
tions because the highlights need some room to
make them clearly visible.

3 GEC Base Systems and Combination
Methods

In ALLECS, we provide three base systems
and two system combination methods. The
base systems we provide come from two ap-
proaches, sequence-to-sequence generation (T5-
Large) and sequence tagging (GECToR). The com-
bination methods we provide also come from
two approaches, edit-based (ESC) and text-based
(MEMT) combination. The performance of the
base systems and the combination methods on the
BEA-2019 development set, CoNLL-2014 test set,
and BEA-2019 test set is presented in Table 1. The
scores of the base systems are presented in the top
part of the table while the scores of the combination
methods when combining the three base systems
are presented in the bottom part.

3.1 T5-Large

T5 (Text-To-Text Transfer Transformer) (Raffel
et al., 2020) is a large transformer model trained
with a unified framework that converts all text-
based language tasks into a text-to-text format. T5
is a sequence-to-sequence model with an architec-
ture similar to the original Transformer (Vaswani
et al., 2017).

Rothe et al. (2021) adapt T5 for grammatical
error correction by fine-tuning the model on a
new dataset they released, cLang-8. The cLang-8
dataset is made from re-labeling the Lang-8 dataset
(Mizumoto et al., 2011; Tajiri et al., 2012), using a
large model that is pre-trained with 50 billion doc-
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BEA-2019 Dev CoNLL-2014 BEA-2019 Test
Model P R F0.5 P R F0.5 P R F0.5
1. T5-Large 60.38 44.04 56.21 72.84 51.62 67.30 74.30 66.75 72.66
2. GECToR XLNet 66.00 34.14 55.62 77.49 40.15 65.34 79.20 53.90 72.40
3. GECToR Roberta 62.37 35.52 54.18 73.91 41.66 64.00 77.20 55.10 71.50
ESC 72.24 37.29 60.84 81.72 42.04 68.74 85.71 57.45 78.04
MEMT 61.82 44.02 57.19 70.64 50.20 65.32 75.41 66.44 73.42

Table 1: The top rows report the performance of the GEC systems that are provided as the base systems in
ALLECS, while the bottom rows report the performance of the GEC system combination methods that are provided
in ALLECS when combining the three base systems above.

uments from 101 languages and trained with the
BEA-2019 training data. See (Rothe et al., 2021)
for more details.

The T5 authors released the code2 to train the
GEC model but not their trained model. We use
their original code to train the GEC base model
using their hyper-parameter values3.

3.2 GECToR

GECToR models GEC as a sequence tagging task
by defining a set of token transformations. They
defined two types of token transformations: basic
transformations and g-transformations. The ba-
sic transformations include the keep, delete, and
token-dependent append and replace transforma-
tions. The g-transformations are task-specific trans-
formations such as merging two words, changing
the verb form, changing the noun number, etc.

GECToR was built by fine-tuning a large pre-
trained model in three rounds of training. In the
first round, they trained the model on 9M sentence
pairs of synthetic data. In the last two rounds, the
model is further trained on the BEA-2019 training
data. At inference time, GECToR runs iteratively
for a number of rounds. This helps to increase both
precision and recall of the corrections. Despite
running the inference multiple times, GECToR’s
inference speed is up to 10 times faster compared to
models using the sequence-to-sequence approach.
See (Omelianchuk et al., 2020) for more details.

In ALLECS, we use the XLNet and Roberta ver-
sions of GECToR, as the ensemble of these models
produces the highest scores. We use the original
source code and model weights4 in ALLECS.

2https://github.com/google-research/
text-to-text-transfer-transformer/

3https://github.com/google-research-datasets/
clang8/issues/3#issuecomment-913682092

4https://github.com/grammarly/gector/tree/
fea1532608

3.3 ESC
ESC is a system combination method that formu-
lates the combination task as binary classification.
ESC takes the union of all edits from the base sys-
tems and generates the features for each edit based
on its edit type and inclusion in the base systems.
ESC uses logistic regression to predict the probabil-
ity that an edit is correct, and filters the edits based
on a threshold and a greedy selection method.

At the time of writing, ESC is the highest-
scoring GEC system on the CoNLL-2014 test
set and the BEA-2019 test set, by combining
T5-Large (Rothe et al., 2021), GECToR XLNet
(Omelianchuk et al., 2020), GECToR Roberta
(Omelianchuk et al., 2020), Riken & Tohoku (Kiy-
ono et al., 2019), UEDIN-MS (Grundkiewicz et al.,
2019), and Kakao&Bain (Choe et al., 2019). In
ALLECS, for simplicity, we only provide the top
three base systems since the performance of the
ensemble of these three systems is still highly com-
petitive with other state-of-the-art systems. We use
ESC’s original code5 but slightly modify it to take
inputs stored in memory rather than reading them
from files. We then train the ensemble model for
all possible base system configurations.

3.4 MEMT
MEMT is a system combination method that com-
bines the base models’ outputs by first aligning
them and generating all possible candidate sen-
tences based on the token alignment. Candidate
generation has some constraints, such as no repe-
tition, weak monotonicity, and completeness. For
each candidate sentence, MEMT generates the fea-
tures based on the language model score, n-gram
similarity to each base model’s output, and the
sentence length. MEMT then learns the weights
to score the features and uses the trained weights

5https://github.com/nusnlp/esc
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to find the highest-scoring candidate sentence via
beam search during inference.

MEMT was originally designed for combin-
ing machine translation models, but Susanto et al.
(2014) have demonstrated that MEMT can effec-
tively combine GEC models as well. In ALLECS,
we use MEMT’s original code6 and train the en-
semble model for all possible base system configu-
rations.

4 System Design and Implementation

To make ALLECS more modular, we design it
to have two parts: the web interface (front-end)
and the base models’ API (back-end). The web
interface accepts a user’s input text and handles
the pre-processing and post-processing, while the
base models’ API focuses on generating a corrected
sentence from the pre-processed input. This sep-
aration allows the base models’ API to run on a
GPU-powered server while the web interface runs
on a CPU-focused server. However, both parts can
also be run on the same server.

As Python has become the dominant program-
ming language of choice for most NLP research
projects, we develop ALLECS in Python. This
makes ALLECS highly extensible such that it can
be used to host new GEC systems in the future.
The separation between the front-end and back-
end parts also allows ALLECS to host other base
models that are written in a different program-
ming language or use different library dependen-
cies. This also allows the web interface to work
with other closed-source GEC models, as long as a
GEC model provides an API to generate a corrected
sentence.

We describe the process flow of ALLECS in
Figure 3. All inputs are first split by line and seg-
mented into sentences. The line index for each
sentence is recorded to retain the text structure in
the output. Then, the web interface tokenizes the
sentences and combines them into mini-batches to
be sent to the base models’ API. If the user chooses
to highlight the corrections or combine multiple
base models with ESC, the web interface will also
use ERRANT to parse the input sentences. Af-
ter receiving the output sentences from each base
model, the interface will then parse the base mod-
els’ outputs using ERRANT if the user chooses to
highlight corrections or use ESC. If not, the outputs
are sent to MEMT if the user chooses to combine

6https://github.com/kpu/memt

the models with MEMT. Otherwise, the output sen-
tences are directly detokenized. Detokenization
also applies to the combination method’s output if
the user selects more than one base model.

The correction speed of ALLECS is fast. Run-
ning on an NVIDIA Titan X GPU server with 12GB
memory, GECToR Roberta can correct text at a
speed of 723 words per second, GECToR XLNet at
640 words per second, and T5-Large at 37 words
per second. Using ESC to combine base systems
only adds a small amount of overhead. For exam-
ple, using ESC to combine GECToR Roberta and
T5-Large can correct text at a speed of 32 words
per second, marginally slower than using T5-Large
alone.

Figure 3: The process flow of ALLECS.

4.1 Web interface

We use flask version 2.0.37 and Bootstrap version
58 frameworks to develop the web interface. Boot-
strap is a lightweight CSS and JavaScript frame-
work that helps developers to design an interface
with accessibility in mind, building a responsive
layout and conforming with Web Content Acces-
sibility Guideline (WCAG) 2.1. We design the
web interface to only use colors with a contrast
ratio above 4.5:19. The web interface also works
well when zoomed to 200%10 and can be used with

7https://flask.palletsprojects.com/en/2.0.x/
8https://getbootstrap.com/docs/5.0/

getting-started/introduction/
9Conforming to WCAG 2.1 minimum contrast recommen-

dation https://w3.org/TR/WCAG/#contrast-minimum
10Conforming to WCAG 2.1 resize text recommendation

https://www.w3.org/TR/WCAG/#resize-text
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different screen dimensions and sizes11. With the
responsive design, the position of the output box is
moved to the bottom of the input box when opened
from a screen with smaller size or with vertical
orientation, such as on mobile phones, as shown in
Figure 4.

Figure 4: The interface layout on a vertical screen such
as a mobile phone.

4.2 Base models’ API
The base models’ API hosts all base systems in
ALLECS. The base models’ API first loads each
base system on different GPUs at start time. This
approach makes the application persistently uses
a large amount of GPU memory but allows much
faster inference. We build the base models’ API
using flask version 2.0.3 and flask RESTful version
0.3.912 frameworks. The base models’ API serves
an API with the HTTP POST request method, ex-
pecting a JSON that contains a list of sentences
on the keyword “text_input_list”, and returns a
JSON that contains a list of corrected sentences
with the same length as the input list, on the key-
word “text_output_list”. Adding new base systems
to ALLECS only requires changing a few lines of
code.

5 Related Work

There are some ready-to-use web services for cor-
recting English text such as services from Gram-

11Conforming to WCAG 2.1 orientation recommendation
https://www.w3.org/TR/WCAG/#orientation

12https://flask-restful.readthedocs.io/en/
latest/

marly13 and John Snow Labs14, but those web ser-
vices are not open-source. Thus, they are not cus-
tomizable for deploying different GEC systems.
In this section, we will discuss the comparison
of ALLECS to other open-source English correc-
tion tools, namely GECko+ (Calò et al., 2021) and
MiSS (Li et al., 2021).

5.1 GECko+

GECko+ (Calò et al., 2021) is a grammatical and
discourse correction tool that combines a sentence-
level GEC model, GECToR XLNet, and a sentence
ordering model (Prabhumoye et al., 2020). When a
user inputs a text into the system, it segments the
text into sentences and corrects the sentences with
GECToR before re-ordering them by the sentence
ordering model.

Compared to ALLECS, GECko+ lacks the op-
tions of choosing the GEC base models and using
system combination methods. It is also unclear how
easy it is to extend GECko+ to other GEC systems.
ALLECS does not include a sentence re-ordering
model because it focuses on grammatical error cor-
rection, and re-ordering sentences can confuse the
user and makes it harder for the user to learn from
the corrections.

5.2 MiSS

MiSS (Li et al., 2021) is a comprehensive tool for
machine translation that includes grammatical error
correction as a feature. The main machine transla-
tion features of MiSS include: basic machine trans-
lation, simultaneous machine translation, and back-
translation for quality evaluation. For the GEC
part, it uses GECToR XLNet for English GEC and
GECToR with BERT-chinese and BERT-japanese
models for Chinese and Japanese GEC respectively.

Compared to ALLECS, MiSS also lacks the op-
tions of choosing the GEC base models and using
system combination methods. It is also unclear how
easy it is to extend MiSS to other GEC systems.

6 Conclusion

We have presented ALLECS, a web-based applica-
tion for GEC that can be easily used by the general
public. We design ALLECS to be accessible to as
many users as possible, including users who have
a slow Internet connection and who use mobile

13https://www.grammarly.com/
14https://demo.johnsnowlabs.com/public/T5_

LINGUISTIC/
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phones as their main devices to connect to the Inter-
net. In ALLECS, we provide three base GEC sys-
tems using two types of approaches, sequence-to-
sequence generation and sequence tagging, as well
as two GEC system combination methods from
two types of approaches, edit-based and text-based
combination. ALLECS is separated into two parts
to make the application modular and easily extensi-
ble to other base GEC systems.

Limitations

ALLECS is currently limited to English GEC sys-
tems, but it can be extended to other languages
by incorporating base GEC models for other lan-
guages and modifying the pre-processing and post-
processing steps.
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