
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 298–306

May 2-4, 2023 ©2023 Association for Computational Linguistics

ALLECS: A Lightweight Language Error Correction System

Muhammad Reza Qorib, Geonsik Moon, and Hwee Tou Ng
Department of Computer Science, National University of Singapore

mrqorib@comp.nus.edu.sg, moon97@nus.edu.sg, nght@comp.nus.edu.sg

Abstract

In this paper, we present ALLECS, a
lightweight web application to serve grammati-
cal error correction (GEC) systems so that they
can be easily used by the general public. We de-
sign ALLECS to be accessible to as many users
as possible, including users who have a slow
Internet connection and who use mobile phones
as their main devices to connect to the Internet.
ALLECS provides three state-of-the-art base
GEC systems using two approaches (sequence-
to-sequence generation and sequence tagging),
as well as two state-of-the-art GEC system com-
bination methods using two approaches (edit-
based and text-based). ALLECS can be ac-
cessed at https://sterling8.d2.comp.nus.
edu.sg/gec-demo/1.

1 Introduction

English has become the de facto language for inter-
national discourse, spoken by approximately more
than 1.4 billion speakers, with almost 75% of them
being non-native speakers (Eberhard et al., 2022).
As the number of English-as-a-second-language
(ESL) and English-as-a-foreign-language (EFL)
speakers keeps increasing, the need for automated
tools to assist ESL and EFL speakers in learning
and writing English also increases in tandem.

Grammatical Error Correction (GEC) is a task
that aims to automatically detect and correct er-
rors that are present in a text, including grammati-
cal errors, orthographic errors, misspellings, word
choice errors, etc. (Ng et al., 2014; Bryant et al.,
2022). GEC tools have a wide range of applica-
tions, including helping native speakers to correct
their occasional mistakes, assisting language learn-
ers (Knutsson et al., 2003; Chollampatt et al., 2016;
Nadejde and Tetreault, 2019; Katinskaia and Yan-
garber, 2021), and improving the quality of other

1The source code and a video demonstration of ALLECS
can be accessed at https://github.com/nusnlp/ALLECS.

natural language processing (NLP) tasks (Yin et al.,
2020; Liao et al., 2022).

GEC experienced significant progress in the last
decade thanks to the HOO (Dale and Kilgarriff,
2011), CoNLL-2013 (Ng et al., 2013), CoNLL-
2014 (Ng et al., 2014), and BEA-2019 (Bryant
et al., 2019) shared tasks. Qorib and Ng (2022)
reported that state-of-the-art GEC systems have ex-
ceeded human-level performance based on the stan-
dard evaluation metric, F0.5 score. With the rapid
progress in GEC, different approaches emerged to
achieve state-of-the-art performance, including sys-
tem combination (Qorib et al., 2022), sequence tag-
ging (Lai et al., 2022), and sequence-to-sequence
generation (Rothe et al., 2021). Even though many
GEC systems publicly publish their source code
along with their trained models, these systems can
typically only be run through a command-line in-
terface on a highly capable computing resource.
Command-line interface is not easy to navigate for
non-technical people and few people have access
to a capable computing resource. These factors
become a formidable barrier for the general public
to benefit from the research progress of GEC.

In this paper, we present ALLECS (A
Lightweight Language Error Correction System), a
simple system to release GEC models to the general
public with a lightweight web-based interface. Our
web interface only requires 2.5 KB of data transfer
overhead for each run. This means that ALLECS
can be readily used by users in developing coun-
tries with slow Internet connections (Delaporte and
Bahia, 2020). Furthermore, we use a responsive
design for the web interface, allowing it to be run
comfortably on devices with various screen dimen-
sions and sizes. This allows users to use the system
through a mobile phone, which is the dominant
device type to connect to the Internet in developing
countries (Glushkova et al., 2019). Usability is im-
portant for people living in developing countries,
as they are the ones who can benefit the most from

298

https://sterling8.d2.comp.nus.edu.sg/gec-demo/
https://sterling8.d2.comp.nus.edu.sg/gec-demo/
https://github.com/nusnlp/ALLECS


Figure 1: The user interface of ALLECS

a GEC system.

ALLECS can easily host GEC systems using dif-
ferent approaches, including system combination.
Currently, ALLECS hosts two sequence-tagging
base models, one sequence-to-sequence generation
base model, and two combination methods. We
briefly explain the base systems we use in AL-
LECS in Section 3. ALLECS also easily allows
the addition of other base models. To the best of
our knowledge, ALLECS is the first web applica-
tion with a graphical user interface for GEC system
combination methods.

2 System Overview

The interface of ALLECS consists of five compo-
nents, which are base model selection, combination
method selection, output mode, input text box, and
output text box. The user interface of ALLECS is
shown in Figure 1.

2.1 Base model selection

The user first needs to choose the base model(s). If
the user chooses more than one base model, AL-
LECS will run a system combination method based
on the combination method selected, as described
in the next section. ALLECS includes three state-
of-the-art GEC systems as the base models: GEC-
ToR Roberta (Omelianchuk et al., 2020), GECToR
XLNet (Omelianchuk et al., 2020), and T5-Large
(Rothe et al., 2021). We describe the base systems
in more detail in Section 3.

2.2 Combination method selection

Next, the user needs to choose the combination
method. If the user only chooses one base sys-
tem, the selected combination method is ignored.
ALLECS includes two state-of-the-art system com-
bination methods, ESC (Qorib et al., 2022) and
MEMT (Heafield and Lavie, 2010). We describe
the system combination methods in more detail in
Section 3.

2.3 Output mode

Users can choose to highlight the corrections by se-
lecting the “Highlight corrections” box. If the user
chooses to highlight the corrections, text spans in
the output text that are different from the input text
are highlighted in blue and a simple explanation of
each correction can be displayed by clicking a high-
lighted text span. The appearance of highlighted
corrections can be seen in Figure 2. Displaying
corrections with simple explanations can help lan-
guage learners to understand their mistakes better.
We extracted the corrections with their edit types
using ERRANT (Bryant et al., 2017).

2.4 Input text box

The user needs to put the text he wants to correct
in the input text box and clicks the run button. The
corrected text will then be displayed in the output
text box. Most recent GEC base systems expect the
input to be a single sentence tokenized with SpaCy
(Honnibal et al., 2020) version 1.9, following the
requirement from the BEA-2019 shared task. As
such, an input text needs to be segmented into sen-
tences and then tokenized with SpaCy before each

299



Figure 2: Text spans displayed in blue are the corrections made by the GEC system. A vertical blue bar without
any text inside denotes text deletion. When a blue highlight or a blue bar is clicked, a simple explanation of the
correction is shown.

sentence is given as the input to the GEC model.
To retain the text structure, it is first split by line
before segmented into sentences. This way, we
can keep the information on which line a sentence
should be printed. To segment a text into sentences,
we follow the practice used in the NUCLE corpus
(Dahlmeier et al., 2013) by using the nltk Punkt
tokenizer (Bird and Loper, 2004; Kiss and Strunk,
2006).

2.5 Output text box

After a text is entered into the input text box and
the “Run” button is clicked, the corrected text will
appear in the output text box. As the base GEC
systems are expected to work on tokenized input
and output, the output text needs to be detokenized
to look more natural. Since SpaCy does not have a
detokenizer and the document context of the origi-
nal input may no longer be relevant after a sentence
is corrected, we use Moses (Koehn et al., 2007) to
detokenize a sentence. We found that Moses can
detokenize a sentence that is tokenized by SpaCy
reasonably well, only missing some cases like the
detokenization of “is n’t” and “are n’t” and remov-
ing spaces around hyphens. For these missed cases,
we create simple rules to apply string replacement
after Moses detokenization. Detokenization is not
applied if the user chooses to highlight the correc-
tions because the highlights need some room to
make them clearly visible.

3 GEC Base Systems and Combination
Methods

In ALLECS, we provide three base systems
and two system combination methods. The
base systems we provide come from two ap-
proaches, sequence-to-sequence generation (T5-
Large) and sequence tagging (GECToR). The com-
bination methods we provide also come from
two approaches, edit-based (ESC) and text-based
(MEMT) combination. The performance of the
base systems and the combination methods on the
BEA-2019 development set, CoNLL-2014 test set,
and BEA-2019 test set is presented in Table 1. The
scores of the base systems are presented in the top
part of the table while the scores of the combination
methods when combining the three base systems
are presented in the bottom part.

3.1 T5-Large

T5 (Text-To-Text Transfer Transformer) (Raffel
et al., 2020) is a large transformer model trained
with a unified framework that converts all text-
based language tasks into a text-to-text format. T5
is a sequence-to-sequence model with an architec-
ture similar to the original Transformer (Vaswani
et al., 2017).

Rothe et al. (2021) adapt T5 for grammatical
error correction by fine-tuning the model on a
new dataset they released, cLang-8. The cLang-8
dataset is made from re-labeling the Lang-8 dataset
(Mizumoto et al., 2011; Tajiri et al., 2012), using a
large model that is pre-trained with 50 billion doc-

300



BEA-2019 Dev CoNLL-2014 BEA-2019 Test
Model P R F0.5 P R F0.5 P R F0.5
1. T5-Large 60.38 44.04 56.21 72.84 51.62 67.30 74.30 66.75 72.66
2. GECToR XLNet 66.00 34.14 55.62 77.49 40.15 65.34 79.20 53.90 72.40
3. GECToR Roberta 62.37 35.52 54.18 73.91 41.66 64.00 77.20 55.10 71.50
ESC 72.24 37.29 60.84 81.72 42.04 68.74 85.71 57.45 78.04
MEMT 61.82 44.02 57.19 70.64 50.20 65.32 75.41 66.44 73.42

Table 1: The top rows report the performance of the GEC systems that are provided as the base systems in
ALLECS, while the bottom rows report the performance of the GEC system combination methods that are provided
in ALLECS when combining the three base systems above.

uments from 101 languages and trained with the
BEA-2019 training data. See (Rothe et al., 2021)
for more details.

The T5 authors released the code2 to train the
GEC model but not their trained model. We use
their original code to train the GEC base model
using their hyper-parameter values3.

3.2 GECToR

GECToR models GEC as a sequence tagging task
by defining a set of token transformations. They
defined two types of token transformations: basic
transformations and g-transformations. The ba-
sic transformations include the keep, delete, and
token-dependent append and replace transforma-
tions. The g-transformations are task-specific trans-
formations such as merging two words, changing
the verb form, changing the noun number, etc.

GECToR was built by fine-tuning a large pre-
trained model in three rounds of training. In the
first round, they trained the model on 9M sentence
pairs of synthetic data. In the last two rounds, the
model is further trained on the BEA-2019 training
data. At inference time, GECToR runs iteratively
for a number of rounds. This helps to increase both
precision and recall of the corrections. Despite
running the inference multiple times, GECToR’s
inference speed is up to 10 times faster compared to
models using the sequence-to-sequence approach.
See (Omelianchuk et al., 2020) for more details.

In ALLECS, we use the XLNet and Roberta ver-
sions of GECToR, as the ensemble of these models
produces the highest scores. We use the original
source code and model weights4 in ALLECS.

2https://github.com/google-research/
text-to-text-transfer-transformer/

3https://github.com/google-research-datasets/
clang8/issues/3#issuecomment-913682092

4https://github.com/grammarly/gector/tree/
fea1532608

3.3 ESC
ESC is a system combination method that formu-
lates the combination task as binary classification.
ESC takes the union of all edits from the base sys-
tems and generates the features for each edit based
on its edit type and inclusion in the base systems.
ESC uses logistic regression to predict the probabil-
ity that an edit is correct, and filters the edits based
on a threshold and a greedy selection method.

At the time of writing, ESC is the highest-
scoring GEC system on the CoNLL-2014 test
set and the BEA-2019 test set, by combining
T5-Large (Rothe et al., 2021), GECToR XLNet
(Omelianchuk et al., 2020), GECToR Roberta
(Omelianchuk et al., 2020), Riken & Tohoku (Kiy-
ono et al., 2019), UEDIN-MS (Grundkiewicz et al.,
2019), and Kakao&Bain (Choe et al., 2019). In
ALLECS, for simplicity, we only provide the top
three base systems since the performance of the
ensemble of these three systems is still highly com-
petitive with other state-of-the-art systems. We use
ESC’s original code5 but slightly modify it to take
inputs stored in memory rather than reading them
from files. We then train the ensemble model for
all possible base system configurations.

3.4 MEMT
MEMT is a system combination method that com-
bines the base models’ outputs by first aligning
them and generating all possible candidate sen-
tences based on the token alignment. Candidate
generation has some constraints, such as no repe-
tition, weak monotonicity, and completeness. For
each candidate sentence, MEMT generates the fea-
tures based on the language model score, n-gram
similarity to each base model’s output, and the
sentence length. MEMT then learns the weights
to score the features and uses the trained weights

5https://github.com/nusnlp/esc

301

https://github.com/google-research/text-to-text-transfer-transformer/
https://github.com/google-research/text-to-text-transfer-transformer/
https://github.com/google-research-datasets/clang8/issues/3#issuecomment-913682092
https://github.com/google-research-datasets/clang8/issues/3#issuecomment-913682092
https://github.com/grammarly/gector/tree/fea1532608
https://github.com/grammarly/gector/tree/fea1532608
https://github.com/nusnlp/esc


to find the highest-scoring candidate sentence via
beam search during inference.

MEMT was originally designed for combin-
ing machine translation models, but Susanto et al.
(2014) have demonstrated that MEMT can effec-
tively combine GEC models as well. In ALLECS,
we use MEMT’s original code6 and train the en-
semble model for all possible base system configu-
rations.

4 System Design and Implementation

To make ALLECS more modular, we design it
to have two parts: the web interface (front-end)
and the base models’ API (back-end). The web
interface accepts a user’s input text and handles
the pre-processing and post-processing, while the
base models’ API focuses on generating a corrected
sentence from the pre-processed input. This sep-
aration allows the base models’ API to run on a
GPU-powered server while the web interface runs
on a CPU-focused server. However, both parts can
also be run on the same server.

As Python has become the dominant program-
ming language of choice for most NLP research
projects, we develop ALLECS in Python. This
makes ALLECS highly extensible such that it can
be used to host new GEC systems in the future.
The separation between the front-end and back-
end parts also allows ALLECS to host other base
models that are written in a different program-
ming language or use different library dependen-
cies. This also allows the web interface to work
with other closed-source GEC models, as long as a
GEC model provides an API to generate a corrected
sentence.

We describe the process flow of ALLECS in
Figure 3. All inputs are first split by line and seg-
mented into sentences. The line index for each
sentence is recorded to retain the text structure in
the output. Then, the web interface tokenizes the
sentences and combines them into mini-batches to
be sent to the base models’ API. If the user chooses
to highlight the corrections or combine multiple
base models with ESC, the web interface will also
use ERRANT to parse the input sentences. Af-
ter receiving the output sentences from each base
model, the interface will then parse the base mod-
els’ outputs using ERRANT if the user chooses to
highlight corrections or use ESC. If not, the outputs
are sent to MEMT if the user chooses to combine

6https://github.com/kpu/memt

the models with MEMT. Otherwise, the output sen-
tences are directly detokenized. Detokenization
also applies to the combination method’s output if
the user selects more than one base model.

The correction speed of ALLECS is fast. Run-
ning on an NVIDIA Titan X GPU server with 12GB
memory, GECToR Roberta can correct text at a
speed of 723 words per second, GECToR XLNet at
640 words per second, and T5-Large at 37 words
per second. Using ESC to combine base systems
only adds a small amount of overhead. For exam-
ple, using ESC to combine GECToR Roberta and
T5-Large can correct text at a speed of 32 words
per second, marginally slower than using T5-Large
alone.

Figure 3: The process flow of ALLECS.

4.1 Web interface

We use flask version 2.0.37 and Bootstrap version
58 frameworks to develop the web interface. Boot-
strap is a lightweight CSS and JavaScript frame-
work that helps developers to design an interface
with accessibility in mind, building a responsive
layout and conforming with Web Content Acces-
sibility Guideline (WCAG) 2.1. We design the
web interface to only use colors with a contrast
ratio above 4.5:19. The web interface also works
well when zoomed to 200%10 and can be used with

7https://flask.palletsprojects.com/en/2.0.x/
8https://getbootstrap.com/docs/5.0/

getting-started/introduction/
9Conforming to WCAG 2.1 minimum contrast recommen-

dation https://w3.org/TR/WCAG/#contrast-minimum
10Conforming to WCAG 2.1 resize text recommendation

https://www.w3.org/TR/WCAG/#resize-text

302

https://github.com/kpu/memt
https://flask.palletsprojects.com/en/2.0.x/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://w3.org/TR/WCAG/#contrast-minimum
https://www.w3.org/TR/WCAG/#resize-text


different screen dimensions and sizes11. With the
responsive design, the position of the output box is
moved to the bottom of the input box when opened
from a screen with smaller size or with vertical
orientation, such as on mobile phones, as shown in
Figure 4.

Figure 4: The interface layout on a vertical screen such
as a mobile phone.

4.2 Base models’ API
The base models’ API hosts all base systems in
ALLECS. The base models’ API first loads each
base system on different GPUs at start time. This
approach makes the application persistently uses
a large amount of GPU memory but allows much
faster inference. We build the base models’ API
using flask version 2.0.3 and flask RESTful version
0.3.912 frameworks. The base models’ API serves
an API with the HTTP POST request method, ex-
pecting a JSON that contains a list of sentences
on the keyword “text_input_list”, and returns a
JSON that contains a list of corrected sentences
with the same length as the input list, on the key-
word “text_output_list”. Adding new base systems
to ALLECS only requires changing a few lines of
code.

5 Related Work

There are some ready-to-use web services for cor-
recting English text such as services from Gram-

11Conforming to WCAG 2.1 orientation recommendation
https://www.w3.org/TR/WCAG/#orientation

12https://flask-restful.readthedocs.io/en/
latest/

marly13 and John Snow Labs14, but those web ser-
vices are not open-source. Thus, they are not cus-
tomizable for deploying different GEC systems.
In this section, we will discuss the comparison
of ALLECS to other open-source English correc-
tion tools, namely GECko+ (Calò et al., 2021) and
MiSS (Li et al., 2021).

5.1 GECko+

GECko+ (Calò et al., 2021) is a grammatical and
discourse correction tool that combines a sentence-
level GEC model, GECToR XLNet, and a sentence
ordering model (Prabhumoye et al., 2020). When a
user inputs a text into the system, it segments the
text into sentences and corrects the sentences with
GECToR before re-ordering them by the sentence
ordering model.

Compared to ALLECS, GECko+ lacks the op-
tions of choosing the GEC base models and using
system combination methods. It is also unclear how
easy it is to extend GECko+ to other GEC systems.
ALLECS does not include a sentence re-ordering
model because it focuses on grammatical error cor-
rection, and re-ordering sentences can confuse the
user and makes it harder for the user to learn from
the corrections.

5.2 MiSS

MiSS (Li et al., 2021) is a comprehensive tool for
machine translation that includes grammatical error
correction as a feature. The main machine transla-
tion features of MiSS include: basic machine trans-
lation, simultaneous machine translation, and back-
translation for quality evaluation. For the GEC
part, it uses GECToR XLNet for English GEC and
GECToR with BERT-chinese and BERT-japanese
models for Chinese and Japanese GEC respectively.

Compared to ALLECS, MiSS also lacks the op-
tions of choosing the GEC base models and using
system combination methods. It is also unclear how
easy it is to extend MiSS to other GEC systems.

6 Conclusion

We have presented ALLECS, a web-based applica-
tion for GEC that can be easily used by the general
public. We design ALLECS to be accessible to as
many users as possible, including users who have
a slow Internet connection and who use mobile

13https://www.grammarly.com/
14https://demo.johnsnowlabs.com/public/T5_

LINGUISTIC/

303

https://www.w3.org/TR/WCAG/#orientation
https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/
https://www.grammarly.com/
https://demo.johnsnowlabs.com/public/T5_LINGUISTIC/
https://demo.johnsnowlabs.com/public/T5_LINGUISTIC/


phones as their main devices to connect to the Inter-
net. In ALLECS, we provide three base GEC sys-
tems using two types of approaches, sequence-to-
sequence generation and sequence tagging, as well
as two GEC system combination methods from
two types of approaches, edit-based and text-based
combination. ALLECS is separated into two parts
to make the application modular and easily extensi-
ble to other base GEC systems.

Limitations

ALLECS is currently limited to English GEC sys-
tems, but it can be extended to other languages
by incorporating base GEC models for other lan-
guages and modifying the pre-processing and post-
processing steps.

Acknowledgements

This research is supported by the National Re-
search Foundation, Singapore under its AI Sin-
gapore Programme (AISG Award No: AISG-
RP-2019-014). The computational work for this
article was partially performed on resources of
the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

References
Steven Bird and Edward Loper. 2004. NLTK: The natu-

ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceed-
ings of the Fourteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
52–75.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted
Briscoe. 2022. Grammatical error correction:
A survey of the state of the art. arXiv.
https://arxiv.org/abs/2211.05166.

Eduardo Calò, Léo Jacqmin, Thibo Rosemplatt,
Maxime Amblard, Miguel Couceiro, and Ajinkya
Kulkarni. 2021. GECko+: a grammatical and dis-
course error correction tool. In Actes de la 28e Con-
férence sur le Traitement Automatique des Langues

Naturelles. Volume 3 : Démonstrations, pages 8–11.
ATALA.

Yo Joong Choe, Jiyeon Ham, Kyubyong Park, and Yeoil
Yoon. 2019. A neural grammatical error correction
system built on better pre-training and sequential
transfer learning. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 213–227.

Shamil Chollampatt, Duc Tam Hoang, and Hwee Tou
Ng. 2016. Adapting grammatical error correction
based on the native language of writers with neural
network joint models. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1901–1911.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 22–31.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation, pages 242–249.

Anne Delaporte and Kalvin Bahia. 2020. The state of
mobile internet connectivity 2022. Technical report,
GSM Association.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2022. Ethnologue: Languages of the world.

Svetlana Glushkova, Denis Belotserkovich, Natalia
Morgunova, and Yulia V. Yuzhakova. 2019. The
role of smartphones and the internet in developing
countries. Revista ESPACIOS, 40(27):10–18.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 252–263.

Kenneth Heafield and Alon Lavie. 2010. CMU multi-
engine machine translation for WMT 2010. In Pro-
ceedings of the Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR, pages 301–
306.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spacy: Industrial-
strength natural language processing in python.

Anisia Katinskaia and Roman Yangarber. 2021. Assess-
ing grammatical correctness in language learning. In
Proceedings of the 16th Workshop on Innovative Use
of NLP for Building Educational Applications, pages
135–146.

Tibor Kiss and Jan Strunk. 2006. Unsupervised multi-
lingual sentence boundary detection. Computational
Linguistics, 32(4):485–525.

304

https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.48550/ARXIV.2211.05166
https://doi.org/10.48550/ARXIV.2211.05166
https://aclanthology.org/2021.jeptalnrecital-demo.3
https://aclanthology.org/2021.jeptalnrecital-demo.3
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/D16-1195
https://doi.org/10.18653/v1/D16-1195
https://doi.org/10.18653/v1/D16-1195
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
https://aclanthology.org/W11-2838
https://aclanthology.org/W11-2838
https://www.gsma.com/r/wp-content/uploads/2022/10/The-State-of-Mobile-Internet-Connectivity-Report-2022.pdf?utm_source=website&utm_medium=download-button&utm_campaign=somic22
https://www.gsma.com/r/wp-content/uploads/2022/10/The-State-of-Mobile-Internet-Connectivity-Report-2022.pdf?utm_source=website&utm_medium=download-button&utm_campaign=somic22
https://www.ethnologue.com/guides/most-spoken-languages
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://aclanthology.org/W10-1744
https://aclanthology.org/W10-1744
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://aclanthology.org/2021.bea-1.15
https://aclanthology.org/2021.bea-1.15
https://doi.org/10.1162/coli.2006.32.4.485
https://doi.org/10.1162/coli.2006.32.4.485


Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error cor-
rection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1236–1242.

Ola Knutsson, Teresa Cerrato Pargman, and Kerstin
Severinson Eklundh. 2003. Transforming grammar
checking technology into a learning environment for
second language writing. In Proceedings of the HLT-
NAACL 03 Workshop on Building Educational Appli-
cations Using Natural Language Processing, pages
38–45.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180.

Shaopeng Lai, Qingyu Zhou, Jiali Zeng, Zhongli Li,
Chao Li, Yunbo Cao, and Jinsong Su. 2022. Type-
driven multi-turn corrections for grammatical error
correction. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 3225–3236.

Zuchao Li, Kevin Parnow, Masao Utiyama, Eiichiro
Sumita, and Hai Zhao. 2021. MiSS: An assistant for
multi-style simultaneous translation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 1–10.

Junwei Liao, Sefik Emre Eskimez, Liyang Lu, Yu Shi,
Ming Gong, Linjun Shou, Hong Qu, and Michael
Zeng. 2022. Improving readability for automatic
speech recognition transcription. ACM Transactions
on Asian and Low-Resource Language Information
Processing.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Nagata,
and Yuji Matsumoto. 2011. Mining revision log of
language learning SNS for automated Japanese error
correction of second language learners. In Proceed-
ings of 5th International Joint Conference on Natural
Language Processing, pages 147–155.

Maria Nadejde and Joel Tetreault. 2019. Personalizing
grammatical error correction: Adaptation to profi-
ciency level and L1. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
pages 27–33.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task on
grammatical error correction. In Proceedings of the

Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170.

Shrimai Prabhumoye, Ruslan Salakhutdinov, and
Alan W Black. 2020. Topological sort for sentence
ordering. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2783–2792.

Muhammad Reza Qorib, Seung-Hoon Na, and
Hwee Tou Ng. 2022. Frustratingly easy system com-
bination for grammatical error correction. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1964–1974.

Muhammad Reza Qorib and Hwee Tou Ng. 2022.
Grammatical error correction: Are we there yet? In
Proceedings of the 29th International Conference on
Computational Linguistics, pages 2794–2800.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
702–707.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical error
correction. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 951–962.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 198–202.

305

https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://aclanthology.org/W03-0206
https://aclanthology.org/W03-0206
https://aclanthology.org/W03-0206
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/2022.findings-acl.254
https://doi.org/10.18653/v1/2022.findings-acl.254
https://doi.org/10.18653/v1/2022.findings-acl.254
https://doi.org/10.18653/v1/2021.emnlp-demo.1
https://doi.org/10.18653/v1/2021.emnlp-demo.1
https://doi.org/10.1145/3557894
https://doi.org/10.1145/3557894
https://aclanthology.org/I11-1017
https://aclanthology.org/I11-1017
https://aclanthology.org/I11-1017
https://doi.org/10.18653/v1/D19-5504
https://doi.org/10.18653/v1/D19-5504
https://doi.org/10.18653/v1/D19-5504
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.acl-main.248
https://doi.org/10.18653/v1/2020.acl-main.248
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
https://aclanthology.org/2022.coling-1.246
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.3115/v1/D14-1102
https://doi.org/10.3115/v1/D14-1102
https://aclanthology.org/P12-2039
https://aclanthology.org/P12-2039


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Fan Yin, Quanyu Long, Tao Meng, and Kai-Wei Chang.
2020. On the robustness of language encoders
against grammatical errors. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3386–3403.

306

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.310
https://doi.org/10.18653/v1/2020.acl-main.310

