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Abstract
Many automatic speech recognition (ASR) data
sets include a single pre-defined test set con-
sisting of one or more speakers whose speech
never appears in the training set. This “hold-
speaker(s)-out” data partitioning strategy, how-
ever, may not be ideal for data sets in which the
number of speakers is very small. This study
investigates ten different data split methods for
five languages with minimal ASR training re-
sources. We find that (1) model performance
varies greatly depending on which speaker is
selected for testing; (2) the average word er-
ror rate (WER) across all held-out speakers is
comparable not only to the average WER over
multiple random splits but also to any given
individual random split; (3) WER is also gen-
erally comparable when the data is split heuris-
tically or adversarially; (4) utterance duration
and intensity are comparatively more predictive
factors of variability regardless of the data split.
These results suggest that the widely used hold-
speakers-out approach to ASR data partitioning
can yield results that do not reflect model per-
formance on unseen data or speakers. Random
splits can yield more reliable and generalizable
estimates when facing data sparsity.

1 Introduction

Certain model evaluation practices are considered
standard or quite common in natural language
processing (NLP), such as using popular bench-
marks (Bowman et al., 2015), pre-defined data par-
titions (Collins, 2002), or random splits (Gorman
and Bedrick, 2019). All of these practices rely on
metrics calculated over test sets as indices of model
performance. It is not generally acknowledged that
a particular numerical result might be meaningful
only for the specific train/test split that produced
that result. A single aggregated metric does not
necessarily paint the full picture of a model archi-
tecture’s potential (Lewis et al., 2021).

Automatic speech recognition (ASR) provides a
case in point. Given a data set produced by multiple

speakers, the common data partitioning strategy is
“hold speaker(s) out”, namely holding out all utter-
ances from one or more speakers (Panayotov et al.,
2015; Gauthier et al., 2016) as the test set, with the
utterances from the remaining speakers serving as
the training set. Cross-validation is generally not
applied; the speakers in the test set are fixed. In
other words, an ASR system is usually evaluated
with just a single train/test split in which there is no
speaker overlap between the training and test sets.

This common data partitioning strategy might
fare well with a large data set, with recordings of
dozens or hundreds of speakers, where the quantity
of data and the wide array of speakers enable the
training of models that are assumed to be speaker
independent. The same practice, however, is not
ideal for low-resource scenarios, where the number
of speakers is much smaller. With endangered lan-
guages (Meek, 2012) in particular, there is much
less flexibility in deciding how much data and what
kind of utterances to include. Thus, observed ASR
accuracy may depend heavily on which speakers ap-
pear in the test sets rather than being representative
of the model architecture’s general performance.

This study investigates alternative data partition-
ing methods for low-resource ASR. Leveraging
data from five typologically distinct languages, in-
cluding one endangered language, we ask: (1) How
dependent is ASR performance on the identity of
the held-out speaker? (2) Can alternative data par-
titioning strategies yield less variable estimates of
a model’s generalizability? (3) What factors other
than speaker identity contribute to differences in
model performance? (4) How can we operational-
ize lessons learned to improve ASR evaluation for
under-resourced and endangered languages?

2 Related Work

While the hold-speaker(s)-out partitioning method
is prevalent in ASR (Sikasote and Anastasopou-
los, 2021; Gauthier et al., 2016; Zeyer et al., 2019;
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Language Audio data Additional written texts

N of Gender Total utterance Total utterance Total utterance N N
speakers/ duration per duration std. duration range of words of types
sessions speaker/session

Fongbe 27 - 16m12s 7m12s 22m12s 990,146 8,022

Wolof 18 - 63m 18m36s 1h6m36s 601,639 29,147

Swahili 36 - 18m 7m12s 19m12s 31,540,821 471,296

Iban 23 Male: 9 22m12s 19m48s 1h11m24s 2,082,452 36,310
Female: 14

Hupa 17 Female: 1 5m24s 6m 22m48s 41,386 8,800
(verified)

Hupa 34 Female: 1 13m12s 14m24s 1h12s
(coarse)

Table 1: Descriptive statistics for audio data and additional written texts used to train language models for each
language in the experiments; duration range refers to the range of the distribution of the total amounts of audio
per speaker. We note that our counts were derived from the public repositories and may be different from those
originally reported in the papers.

Kipyatkova and Karpov, 2016), there are a num-
ber of exceptions. Laleye et al. (2016) divided
utterances into three groups based on their con-
tent, then used two categories for training and one
for testing. Chiu et al. (2021) tested an English
ASR system trained on short audio segments on
longer utterances and found poor generalization
performance. With five low-resource languages as
the test cases, Morris et al. (2021) re-partitioned
the data where each speaker occurred in both the
training and the test sets; the results showed consid-
erable variability when compared to those derived
from holding out one or a fixed set of speakers.

3 Data descriptions

We used data sets for four widely spoken low-
resource languages, Fongbe (Laleye et al., 2016),
Wolof (Gauthier et al., 2016), Swahili (Gelas et al.,
2012), and Iban (Juan et al., 2014), which were
previously released as ASR corpora. They include
segmented audio with corresponding transcripts,
as well as additional written texts for training the
language model (see Table 1 for details).

In addition, we explored a data set of Hupa, a
critically endangered language indigenous to North
America. The audio recordings for Hupa are the
product of ongoing linguistic fieldwork started in
2005. All the recordings were produced by a single
female elder speaker, which is common for speech
corpora for critically endangered languages, mak-

ing Hupa a unique test bed for our study. Each
transcription typically goes through several stages
of correction and consultation with the elder before
being considered complete; thus some transcrip-
tions have been examined more thoroughly than
others. Based only on differences in transcription
quality, the audio data was divided into two sets,
which we will call “verified” vs. “coarse” data re-
spectively (details are presented in Appendix A.1).

4 Experiments

4.1 Data split methods

We first compared the commonly applied “hold
speaker(s) out” (hereafter held-out speaker) data
partitioning strategy with random splits (Gorman
and Bedrick, 2019). For held-out speaker train-
ing, we set aside the data of one speaker for test-
ing the performance of an acoustic model trained
on the data of the other speakers. This procedure
was repeated for all speakers in the data set. Note
that this data split method was only applicable to
Wolof, Fongbe, and Iban. For Swahili, which lacks
information on speaker identity, and Hupa, which
includes only a single speaker, we adopted what we
refer to as held-out session. Instead of holding out
the data of each speaker, we held out the utterances
from each recording date or fieldwork session.

For random splits, each data set was randomly
divided into train/test sets so that the ratio between
their respective total utterance duration approxi-
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mated 4:1. To arrive at more reasonable compar-
isons with held-out speaker, for the data set(s)
of each language, the number of random splits
matched the number of speakers/sessions in total.

We also explored two alternative data splitting
strategies: heuristic and adversarial splits (Sø-
gaard et al., 2021). For the former, we exploited
the following features of each audio sample and its
corresponding transcript: utterance duration, aver-
age pitch, average intensity, the number of tokens
in the transcript, the number of unique token types
in the transcript, and the perplexity of the audio
transcript scored by the language model for each
language (see Section 4.2). Consider the example
of average pitch. We identified a pitch threshold
such that utterances with an average pitch value
greater than or equal to this threshold would be put
into the test set, and the total duration of these utter-
ances accounted for around 20% of the duration of
the data set. Note that each heuristic split method
partitioned the data into a single train/test set split.

Lastly, for adversarial splits, we first combined
the transcripts of all audio data for a particular data
set, then split the transcripts into train/test sets via
maximizing their Wasserstein distance (Arjovsky
et al., 2017; Søgaard et al., 2021), so that the token
distribution of utterances in the training set is as
divergent or distant as possible from that of utter-
ances in the test set. Each data set was split into
train/test sets at a 4:1 ratio, five times.

4.2 Language and acoustic models
For each language, we used SRILM (Stolcke, 2002)
to build a single trigram language model with
Witten-Bell discounting using the additional writ-
ten texts and excluding the transcripts of the audio
training data. For the acoustic model architecture,
we used a fully connected deep neural network
(DNN) from the open-source Kaldi toolkit (Povey
et al., 2011), shown to achieve strong performance
in prior studies (Morris et al., 2021; Georgescu
et al., 2019; Miao et al., 2015). In particular,
for small corpora, the DNN architecture has been
demonstrated to yield better results than statistical
alternatives (e.g., subspace Gaussian mixture mod-
els) and other neural architectures (e.g., time delay
neural networks) (Morris, 2021). We also found
the DNN to be substantially more accurate than
the endangered language end-to-end recipe (Shi
et al., 2021) in ESPnet (Watanabe et al., 2018).1

1Our experiments using ESPnet and wav2vec 2.0 to fine-
tune from multilingual models yielded inconsistent and weak

Crucially, however, we note that our goal is not
to improve upon current state-of-the-art for low-
resource ASR but rather to examine what data par-
titioning strategies and evaluation methods lead to
reliable estimates in low-resource settings with an
already strong model architecture.

4.3 Regression analysis

To understand which features of the splits con-
tribute to WER variability, we carried out regres-
sion analysis. Given each data split, we first col-
lected the following five heuristics for each utter-
ance in the test set: utterance duration, average
pitch, average intensity, utterance perplexity, and
out-of-vocabulary (OOV) rate. Second, we com-
puted the average value of each of the features for
the training set as a whole. Third, we normalized
the value of each feature for every utterance in the
test set by the average value of the feature derived
from the training set, to account for training set
characteristics as well. This yielded a reasonable
data size for regression modeling for each language
(ranging from 6,248 instances for the verified data
of Hupa to 85,920 instances for Wolof; see Ander-
son et al. (2021)). After repeating these steps for
all data splits, we fit regression models predicting
the WER of every utterance in the test set as a func-
tion of these characteristics, while controlling for
the number of tokens and types in the utterance
and the data split method. When possible, speaker
identity and the specific utterance were included
as random effects, both with random intercept and
slopes for each of the fixed effects. The final re-
gression structure was determined via backward
stepwise regression from the maximal mixed-effect
structure (Barr et al., 2013).

5 Results

We first consider the degree of variability in WER
depending on which speaker is held out. In Fig-
ure 1, for Fongbe, Wolof, and Iban, we see a high
degree of variability. The WER range across held-
out speakers spans from 12.71 for Iban to 54.74
for Fongbe. (See Table 3 in Appendix A.3.) Per-
haps surprisingly, for Swahili and Hupa, where we
held out recording sessions rather than individual
speakers, we also observe great variability in model
performance. The WER range across sessions is
17.59 for Swahili and is above 25 for both data sets

results. The necessary parameter tuning within these architec-
tures is left for future work.
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(a) Fongbe (b) Iban

(c) Wolof (d) Swahili

(e) Hupa (verified) (f) Hupa (coarse)

Figure 1: WER for the various partitioning strategies for the six data sets. A large black dot represents the mean in
each plot. Means for hold-session/speaker-out are comparable in all cases to means over random splits.

of Hupa. Thus it does not appear to be the case
that variability in WER is due entirely to the iden-
tity of the speaker; other factors such as recording
setting or domain could contribute to this variabil-
ity. These observations speak to our original point,
namely that observations from “hold speaker(s) out”
low-resource ASR evaluation are not representative
of the model’s generalizability.

One might suspect that the observed WER vari-
ability across speakers in each data set is (only)
because of the varying amount of audio available
for each speaker. Although there is a relationship
between average WER and the total utterance du-
ration per speaker (when looking at total utterance
duration as a sole predictor in the regression) for
Iban (p < 0.005), this relationship does not hold
for Fongbe (p = 0.75) or Wolof (p = 0.91). While
there is a positive correlation between duration and
WER for the coarse data of Hupa (p < 0.05), this
correlation does not exist for Swahili (p = 0.45)
or for the verified data of Hupa (p = 0.99). This

indicates that the total utterance duration alone is
not enough to yield (high) WER variability across
speakers.

In contrast, results from random splits are much
less variable. While not surprising, this is no-
table in that the average WER when holding out
a speaker or session is comparable to that of ran-
dom splits, or any one random split. Thus a single
random split can alone be enough to provide a rea-
sonable estimate of the performance that would be
derived by averaging over all random splits or over
all possible held-out speakers/sessions. In contrast,
the WER for a model tested on single held-out
speaker/session may not be a reliable estimate of
the WER of that model on any other speaker.

On the other hand, splitting data heuristically
and adversarially, creating test sets that consist of
“more challenging” cases than the training sets,
does not necessarily lead to higher WER. The
results across the data split methods are mostly
comparable except for when utterance duration or
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Language audio Avg. pitch Avg. intensity utterance OOV R2

duration perplexity
Fongbe Coef. 0.17*** 0.13** 0.11*** 0.003*** 0.008*** 0.72

95% CI (0.15, 0.20) (0.11, 0.14) (0.09, 0.13) (0.001, 0.004) (0.007, 0.009)

Wolof Coef. 0.009 0.004 0.01 0.02*** 0.00 0.73
95% CI (-0.01, 0.03) (-0.01, 0.02) (-0.02, 0.04) (0.02, 0.024) (0.00, 0.00)

Swahili Coef. 0.21*** 0.06** -1.65*** 0.00 0.0131*** 0.91
95% CI (0.18, 0.24) (0.02, 0.09) (-1.81, -1.50) (-6.30, 0.00) (0.012, 0.014)

Iban Coef. 2.15*** -0.10 0.58 0.00 -0.002 0.99
95% CI (1.87, 2.43) (-4.20, 0.21) (-2.16, 3.31) (-1.11, 0.00) (-0.01, 0.01)

Hupa Coef. 1.30*** -0.93*** 2.74*** 0.00 0.01*** 0.95
95% CI (1.07, 1.52) (-1.13, -0.73) (2.09, 3.37) (-0.02, 0.01) (0.01, 0.02)

Hupa Coef. 0.13*** 0.04 -0.22** -0.02*** 0.01*** 0.91
95% CI (0.10, 0.16) (-0.01, 0.10) (-0.35, -0.08) (-0.02, -0.01) (0.01, 0.02)

Table 2: Regression results for the data set(s) of each language in our experiments (CI stands for Confidence
Interval); the number of * indicates significance level: * p < 0.05, ** p < 0.01, *** p < 0.001. Note that given the
structure of our regression model, the coefficient value for the same feature is not comparable across the data for
each language (e.g., the coefficient of utterance duration ratio is 0.33 for the Wolof data, and 0.13 for the Swahili
data; nevertheless, this does not mean that utterance duration ratio has a stronger effect for Wolof compared to its
role for Swahili). Rather our goal is simply to see whether a feature potentially influences WER scores when the
effects of other features are controlled for within the context of the data for every language.

perplexity is used as the heuristic in certain cases.
Splitting the data by maximizing transcript distri-
bution distance also yields minimal variability.

The regression analysis (Table 2) further indi-
cates that most of the features we investigated have
significant effects on performance. The ratios of
utterance duration and intensity between the train
and test sets consistently play strong roles in pre-
dicting WER variability. The fact that utterance
duration has an effect on WER when controlling
for the effects of other factors points to the poten-
tial limitation of evaluating models with held-out
speakers in low-resource settings, where speakers
contribute varying amounts of data.

6 Discussion and Conclusion

With data for four widely-spoken low-resource
languages and one critically endangered language
indigenous to North America, our work demon-
strates that there is a real risk of grossly over- or
underestimating the performance of an ASR model
architecture when evaluating on held-out speakers
(and sessions) when only minimal resources are
available. By contrast, random splits provide a
more accurate and less variable estimate of the over-
all performance. Moreover, while cross-validation
is advisable when partitioning by speaker, a single
random split appears to provide an adequate
estimate for expected WER on unseen data.

We note that these findings also hold for data sets
partitioned according to recording session rather
than speaker, suggesting that this phenomenon is
not limited to diversity in speaker characteristics.
This has implications particularly for ASR in sup-
port of endangered language documentation, in
which the number of speakers is few but the record-
ing conditions are highly variable. We propose
that future work on small ASR corpora for under-
resourced languages carry out multiple evaluations
on various data partitioning strategies in order to
present a more complete picture of ASR model
architecture performance.

7 Limitations

Our work has two notable limitations. First, the
limited availability of very small ASR datasets al-
lowed us to explore only five languages. It remains
to be seen how different data splits would inter-
act with a much larger set of languages that have
more diverse typological properties. Second, here
we experimented with a hybrid DNN architecture
within Kaldi rather than more recent end-to-end
approaches (Lin and Mak, 2020; Watanabe et al.,
2018), which require more extensive computing
resources. Resource permitting, we would like to
investigate how different data partitioning strate-
gies would work differently (or not) with different
model architectures.

127



Acknowledgements

We are grateful for the continued support from the
Hupa indigenous community. We would like to
especially thank Mrs. Verdena Parker for her gen-
erous and valuable input for the documentation
work of Hupa throughout the years. In addition,
we thank the anonymous reviewers for their help-
ful feedback. This material is based upon work
supported by the National Science Foundation un-
der Grant #2127309 to the Computing Research
Association for the CIFellows Project, and Grant
#1761562. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation nor
the Computing Research Association.

References
Mark Anderson, Anders Søgaard, and Carlos Gómez-

Rodríguez. 2021. Replicating and extending “Be-
cause their treebanks leak”: Graph isomorphism, co-
variants, and parser performance. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 1090–1098, Online.
Association for Computational Linguistics.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In International conference on machine learning,
pages 214–223. PMLR.

Dale J Barr, Roger Levy, Christoph Scheepers, and
Harry J Tily. 2013. Random effects structure for
confirmatory hypothesis testing: Keep it maximal.
Journal of memory and language, 68(3):255–278.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Hennie Brugman and Albert Russel. 2004. Annotating
multi-media/multi-modal resources with ELAN. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Chung-Cheng Chiu, Arun Narayanan, Wei Han, Rohit
Prabhavalkar, Yu Zhang, Navdeep Jaitly, Ruoming
Pang, Tara N Sainath, Patrick Nguyen, Liangliang
Cao, and Yonghui Wu. 2021. RNN-T models fail to

generalize to out-of-domain audio: Causes and solu-
tions. In 2021 IEEE Spoken Language Technology
Workshop (SLT), pages 873–880. IEEE.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002), pages 1–8. As-
sociation for Computational Linguistics.

Elodie Gauthier, Laurent Besacier, Sylvie Voisin,
Michael Melese, and Uriel Pascal Elingui. 2016. Col-
lecting resources in sub-Saharan African languages
for automatic speech recognition: a case study of
Wolof. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3863–3867, Portorož, Slovenia.
European Language Resources Association (ELRA).

Hadrien Gelas, Laurent Besacier, and Francois Pelle-
grino. 2012. Developments of Swahili resources for
an automatic speech recognition system. In SLTU
- Workshop on Spoken Language Technologies for
Under-Resourced Languages, Cape-Town, Afrique
Du Sud.

Alexandru-Lucian Georgescu, Horia Cucu, and Cor-
neliu Burileanu. 2019. Kaldi-based DNN archi-
tectures for speech recognition in Romanian. In
2019 International Conference on Speech Technology
and Human-Computer Dialogue (SpeD), pages 1–6.
IEEE.

Kyle Gorman and Steven Bedrick. 2019. We need to
talk about standard splits. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2786–2791, Florence, Italy. Asso-
ciation for Computational Linguistics.

Sarah Samson Juan, Laurent Besacier, and Solange
Rossato. 2014. Semi-supervised G2P bootstrapping
and its application to ASR for a very under-resourced
language: Iban. In Proceedings of Workshop for
Spoken Language Technology for Under-resourced
(SLTU).

Irina Kipyatkova and Alexey Karpov. 2016. DNN-based
acoustic modeling for Russian speech recognition
using Kaldi. In International Conference on Speech
and Computer, pages 246–253. Springer.

Frejus A. A. Laleye, Laurent Besacier, Eugene C. Ezin,
and Cina Motamed. 2016. First Automatic Fongbe
Continuous Speech Recognition System: Develop-
ment of Acoustic Models and Language Models. In
Federated Conference on Computer Science and In-
formation Systems.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel.
2021. Question and answer test-train overlap in open-
domain question answering datasets. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 1000–1008, Online. Association for
Computational Linguistics.

128

https://doi.org/10.18653/v1/2021.acl-short.138
https://doi.org/10.18653/v1/2021.acl-short.138
https://doi.org/10.18653/v1/2021.acl-short.138
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
http://www.lrec-conf.org/proceedings/lrec2004/pdf/480.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/480.pdf
https://doi.org/10.3115/1118693.1118694
https://doi.org/10.3115/1118693.1118694
https://doi.org/10.3115/1118693.1118694
https://aclanthology.org/L16-1611
https://aclanthology.org/L16-1611
https://aclanthology.org/L16-1611
https://aclanthology.org/L16-1611
http://hal.inria.fr/hal-00954048
http://hal.inria.fr/hal-00954048
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/2021.eacl-main.86
https://doi.org/10.18653/v1/2021.eacl-main.86


Wei-Wei Lin and Man-Wai Mak. 2020. Wav2Spk: A
Simple DNN Architecture for Learning Speaker Em-
beddings from Waveforms. In The Annual Confer-
ence of the International Speech Communication As-
sociation (Interspeech), pages 3211–3215.

Barbra A Meek. 2012. We are our language: An
ethnography of language revitalization in a Northern
Athabaskan community. University of Arizona Press.

Yajie Miao, Hao Zhang, and Florian Metze. 2015.
Speaker adaptive training of deep neural network
acoustic models using i-vectors. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
23(11):1938–1949.

Ethan Morris. 2021. Automatic Speech Recognition for
Low-Resource and Morphologically Complex Lan-
guages. Master’s thesis, Rochester Institute of Tech-
nology.

Ethan Morris, Robert Jimerson, and Emily
Prud’hommeaux. 2021. One size does not fit
all in resource-constrained ASR. In The Annual Con-
ference of the International Speech Communication
Association (Interspeech), pages 4354–4358.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an ASR
corpus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The Kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech
recognition and understanding, CONF. IEEE Signal
Processing Society.

Jiatong Shi, Jonathan D. Amith, Rey Castillo García,
Esteban Guadalupe Sierra, Kevin Duh, and Shinji
Watanabe. 2021. Leveraging end-to-end ASR for
endangered language documentation: An empirical
study on yolóxochitl Mixtec. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1134–1145, Online. Association for Computa-
tional Linguistics.

Claytone Sikasote and Antonios Anastasopoulos. 2021.
Bembaspeech: A Speech Recognition Corpus for
the Bemba Language. In Proceedings of AfricaNLP,
Online.

Anders Søgaard, Sebastian Ebert, Jasmijn Bastings, and
Katja Filippova. 2021. We need to talk about random
splits. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 1823–1832,
Online. Association for Computational Linguistics.

Andreas Stolcke. 2002. SRILM-an extensible language
modeling toolkit. In Seventh international confer-
ence on spoken language processing.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, Adithya Renduchintala, and Tsubasa
Ochiai. 2018. ESPnet: End-to-End Speech Process-
ing Toolkit. In Proceedings of Interspeech, pages
2207–2211.

Albert Zeyer, Parnia Bahar, Kazuki Irie, Ralf Schlüter,
and Hermann Ney. 2019. A comparison of Trans-
former and LSTM encoder decoder models for ASR.
In 2019 IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), pages 8–15. IEEE.

A Appendix

A.1 Data for Hupa

The majority of the recordings for Hupa feature the
elder telling stories from different genres, includ-
ing traditional stories that explain how the world
we know today came to be, personal anecdotes
from her life, and oral-historical accounts of signif-
icant events in her speech community. Each record-
ing has a time-aligned transcription produced by
a human transcriber using annotation tools (e.g.,
ELAN (Brugman and Russel, 2004)); each tran-
script was rendered in a practical orthography cur-
rently adopted by the speech community.

The verified transcriptions for Hupa are more ac-
curate overall than coarse transcriptions and have
undergone more orthographic normalization. This
includes removing things that are audible in the
recordings but not part of the standardized spelling
(such as word-final epenthetic vowels), and remov-
ing false starts and other speech errors. In a small
number of cases, verified transcriptions might even
contain a word that is different from what was pro-
duced in the original recording, if the elder felt
strongly that she had misspoken. Thus, although
verified transcriptions tend to be more accurate than
coarse ones, in some ways they are less faithful to
the acoustic properties of the original recordings.

A.2 Acoustic models

Except for Swahili and Hupa, acoustic feature trans-
formations for the data of the other languages were
conducted separately for each speaker. In detail,
the recordings were transformed to the standard
13 dimensional mel-frequency cepstral coefficients
(MFCCs), along with their delta- and delta-delta
features. The delta- and delta-delta features are,
respectively, numerical approximations of the first
and second-order derivatives of the MFCCs and
they were computed on a 25ms window with 10ms
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interval apart, allowing for modeling of the trajec-
tories of the audio signals. Linear Discriminant
Analysis and Maximum Likelihood Linear Trans-
form were applied to reduce the dimensionality
of the feature vectors. Speaker Adaptive Training
was adopted to perform speaker and noise normal-
ization in order to make the acoustic model more
attentive to the phonemic variation present in the
audio, rather than being restricted by the data of par-
ticular speakers. With the speaker-normalized fea-
tures, Feature Space Maximum Likelihood Linear
Regression (FMLLR) was employed for speaker-
independent alignment.

The DNN we adopted had six hidden layers with
1024 units in each. Sequence training was per-
formed using the default parameters in Kaldi with
state-level minimum Bayes risk criterion and a per-
utterance Stochastic Gradient Descent weight up-
date. Decoding was carried out with the Kaldi finite
state transducer-based decoder.

A.3 Full WER results
Table 3 includes the full set of WER for every data
partitioning strategy for each of the five languages.
which is represented visually in Figure 1.
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Language Total Split method Threshold N of splits WER WER std. WER range
Fongbe 7h10m held-out speaker - 27 32.55 12.99 54.74

train:5h44m random splits - 27 31.99 1.05 4.90
test:1h26m utterance duration 3.46s 1 40.69 - -

Avg. pitch 144.68hz 1 38.90 - -
Avg. intensity 58.24db 1 43.00 - -
N of tokens 8 1 38.95 - -

N of token types 8 1 40.41 - -
utterance perplexity 301.05 1 53.28 - -
distribution distance - 5 39.74 0.18 0.41

Wolof 18h58m held-out speaker - 18 28.91 5.99 19.74
train:15h11m random splits - 18 28.43 0.36 1.20
test:3h47m utterance duration 5.19s 1 31.37 - -

Avg. pitch 114.43hz 1 28.88 - -
Avg. intensity 74.32db 1 29.87 - -
N of tokens 11 1 28.07 - -

N of token types 11 1 28.85 - -
utterance perplexity 674.09 1 42.63 - -
distribution distance - 5 25.65 0.08 0.19

Swahili 10h58m held-out session - 36 26.31 3.46 17.59
train:8h47m random splits - 36 25.83 0.45 2.09
test:2h11m utterance duration 4.80s 1 26.36

Avg. pitch 172.07hz 1 25.89 - -
Avg. intensity 75.32db 1 24.98 - -
N of tokens 13 1 25.36 - -

N of token types 12 1 25.37
utterance perplexity 1793.95 1 45.98 - -
distribution distance - 5 25.62 0.28 0.57

Iban 8h49m held-out speaker - 23 16.92 3.80 12.71
train:6h49m random splits - 23 14.35 0.57 2.19
test:1h42m utterance duration 15.85s 1 15.73 - -

Avg. pitch 141.33hz 1 14.94 - -
Avg. intensity 74.34db 1 16.47 - -
N of tokens 36 1 13.97 - -

N of token types 31 1 13.90 - -
utterance perplexity 361.55 1 27.02 - -
distribution distance - 5 13.09 0.14 0.36

Hupa 1h35m held-out session - 17 55.73 8.59 31.82
(verified) train:1h16m random splits - 17 55.27 1.50 5.44

test:19m utterance duration 9.71s 1 60.12 - -
Avg. pitch 112.40hz 1 54.35 - -

Avg. intensity 67.04db 1 53.72 - -
N of tokens 16 1 52.17 - -

N of token types 14 1 54.43 - -
utterance perplexity 898.45 1 53.55 - -
distribution distance - 5 55.10 0.47 1.28

Hupa 7h37m held-out session - 34 51.65 5.59 25.25
(coarse) train:6h6m random splits - 34 52.85 1.18 4.63

test:1h31m utterance duration 10.96s 1 56.20 - -
Avg. pitch 113.78hz 1 52.49

Avg. intensity 66.12db 1 53.61
N of tokens 16 1 50.36 - -

N of token types 14 1 50.76 - -
utterance perplexity 933.37 1 50.26 - -
distribution distance - 5 51.39 0.18 0.47

Table 3: WER results for the data set(s) of each language in our experiments; as we are focused on data partitioning
strategy, for all data splits of a given data set, the language model was constant and was trained only on additional
written texts. Note that one might be concerned about how much overlap there is between the test sets (and the
training sets accordingly) yielded from different data partitioning strategies other than using held-out speaker/session;
to address this, for the data set(s) of each language, we used the test set of the first random split as the reference
and computed the proportion of overlapping utterances from the test sets of other data splits (except for held-out
speaker/session); the maximum overlapping ratio across all the data sets was 0.25.
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