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Abstract
Acquiring factual knowledge with Pretrained
Language Models (PLMs) has attracted increas-
ing attention, showing promising performance
in many knowledge-intensive tasks. Their good
performance has led the community to believe
that the models do possess a modicum of rea-
soning competence rather than merely memo-
rising the knowledge. In this paper, we conduct
a comprehensive evaluation of the learnable
deductive (also known as explicit) reasoning
capability of PLMs. Through a series of con-
trolled experiments, we posit two main findings.
(i) PLMs inadequately generalise learned logic
rules and perform inconsistently against simple
adversarial surface form edits. (ii) While the
deductive reasoning fine-tuning of PLMs does
improve their performance on reasoning over
unseen knowledge facts, it results in catastroph-
ically forgetting the previously learnt knowl-
edge. Our main results suggest that PLMs can-
not yet perform reliable deductive reasoning,
demonstrating the importance of controlled ex-
aminations and probing of PLMs’ deductive
reasoning abilities; we reach beyond (mislead-
ing) task performance, revealing that PLMs are
still far from robust reasoning capabilities, even
for simple deductive tasks.

1 Introduction

Pretrained Language Models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have orchestrated tremendous progress
in NLP across a large variety of downstream ap-
plications. For knowledge-intensive tasks in par-
ticular, these large-scale PLMs are surprisingly
good at memorising factual knowledge presented
in pretraining corpora (Petroni et al., 2019; Jiang
et al., 2020b) and infusing knowledge from exter-
nal sources (Wang et al., 2021a; Zhou et al., 2022,
among others), demonstrating their effectiveness
in learning and capturing knowledge.
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Figure 1: Training and inference for deductive reason-
ing. Given the explicit premises (a), the input BERT
model is trained to get transformed into a reasoner R-
BERT model by deductively predicting a previously
unseen conclusion (b). This inference process requires
R-BERT to understand factual knowledge and interpret
rules (e.g. taxonomic relations), intervening directly in
the deduction process.

Automatic reasoning, a systematic process of de-
riving previously unknown conclusions from given
formal representations of knowledge (Lenat et al.,
1990; Newell and Simon, 1956), has been a long-
standing goal of AI research. In the NLP commu-
nity, a modern view of this problem (Clark et al.,
2020), where the formal representations of knowl-
edge are substituted by the natural language state-
ments, has recently received increasing attention,1

yielding multiple exploratory research directions:
mathematical reasoning (Rabe et al., 2021), sym-
bolic reasoning (Yang and Deng, 2021), and com-

1Following Clark et al. (2020), we also define natural lan-
guage rules as linguistic expressions of conjunctive impli-
cations, condition[∧condition]∗ → conclusion, with the
semantics of logic programs with negations (Apt et al., 1988).
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monsense reasoning (Li et al., 2019). Impressive
signs of progress have been reported in teaching
PLMs to gain reasoning ability rather than just
memorising knowledge facts (Kassner et al., 2020;
Talmor et al., 2020), suggesting that PLMs could
serve as effective reasoners for identifying analo-
gies and inferring facts not explicitly/directly seen
in the data (Kassner et al., 2020; Ushio et al., 2021).

In particular, deductive reasoning2 is one of the
most promising directions (Sanyal et al., 2022; Tal-
mor et al., 2020; Li et al., 2019). By definition,
deduction yields valid conclusions, which must be
true given that their premises are true (Johnson-
Laird, 1999). In the NLP community, given all
the premises in natural language statements, some
large-scale PLMs have shown to be able to deduc-
tively draw appropriate conclusions under proper
training schemes (Clark et al., 2020; Talmor et al.,
2020). Figure 1 shows an example of the training
and inference processes of deductive reasoning.

Despite promising applications of PLMs, some
recent studies have pointed out that they could only
perform a shallow level of reasoning on textual
data (Helwe et al., 2021). Indeed, PLMs can be
easily affected by mispriming (Misra et al., 2020)
and still hardly differentiate between positive and
negative statements (i.e., the so-called negation is-
sue) (Ettinger, 2020). However, given that some ev-
idence suggests that PLMs can learn factual knowl-
edge beyond mere rote memorisation (Heinzerling
and Inui, 2021) and their limitations (Helwe et al.,
2021), it is natural to ask, “Can the current PLMs
potentially serve as reliable deductive reasoners
over factual knowledge?” To answer it, as the main
contribution of this work, we conduct a compre-
hensive experimental study on testing the learnable
deductive reasoning capability of the PLMs.

In particular, we test various reasoning training
approaches on two knowledge reasoning datasets.
Our experimental results indicate that such deduc-
tive reasoning training of the PLMs (e.g., BERT
and RoBERTa) yields strong results on the stan-
dard benchmarks, but it inadequately generalises
learned logic rules to unseen cases. That is, they
perform inconsistently against simple surface form
perturbations (e.g., simple synonym substitution,
paraphrasing or negation insertion), advocating a
careful rethinking of the details behind the seem-
ingly flawless empirical performance of deduc-

2This type of reasoning is also often referred to as explicit
reasoning in the literature (Broome, 2013; Aditya et al., 2018).

tive reasoning using the PLMs. We hope our
work will inspire further research on probing and
improving the deductive reasoning capabilities
of the PLMs. Our code and data are available
online at https://github.com/cambridgeltl/
deductive_reasoning_probing.

2 Related Work

Knowledge Probing, Infusing, and Editing
with PLMs. PLMs appear to memorise (world)
knowledge facts during pretraining, and such cap-
tured knowledge is useful for knowledge-intensive
tasks (Petroni et al., 2019, 2021). A body of re-
cent research has aimed to (i) understand how
much knowledge PLMs store, i.e., knowledge
probing (Petroni et al., 2019; Meng et al., 2022);
(ii) how to inject external knowledge into them,
i.e., knowledge infusing (Wang et al., 2021b; Meng
et al., 2021); and (iii) how to edit the stored knowl-
edge, i.e. knowledge editing (De Cao et al., 2021).
In particular, De Cao et al. (2021) have shown that
it is possible to modify a single knowledge fact
without affecting all the other stored knowledge.
However, some empirical evidence suggests that
existing PLMs generalise poorly to unseen sen-
tences and are easily misled (Kassner and Schütze,
2020).3 Moreover, this body of research focuses
only on investigating how to recall or expose the
factual and commonsense knowledge that has been
encoded in the PLMs, rather than exploring their
capabilities of deriving previously unknown knowl-
edge via deductive reasoning, as done in this work.

Knowledge Reasoning with PLMs. In re-
cent years, PLMs have also achieved impressive
progress in knowledge reasoning (Helwe et al.,
2021). For example, PLMs can infer a conclusion
from a set of knowledge statements and rules (Tal-
mor et al., 2020; Clark et al., 2020), with both the
knowledge and the rules being mentioned explicitly
and linguistically in the model input. Some gener-
ative PLMs, such as T5 (Raffel et al., 2020), are
even able to generate natural language proofs that
support implications over logical rules expressed
in natural language (Tafjord et al., 2021). In par-
ticular, some large PLMs, such as LaMDA (Thop-
pilan et al., 2022), have been shown to be able
to conduct multi-step reasoning under the chain

3For instance, if we add the talk token into the statement
“Birds can [MASK].” (i.e. “Talk. Birds can [MASK].”), the
PLM might be misled by the added token and predict talk
rather than the originally predicted fly token (Kassner and
Schütze, 2020).
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of thought prompting (Wei et al., 2022) or proper
simple prompting template (Kojima et al., 2022).
Although the generated ‘reasoning’ statements po-
tentially benefit some downstream tasks, there is
currently no evidence that the statements are gener-
ated via deductive reasoning, rather than obtained
via pure memorisation. Generative reasoning mod-
els are difficult to evaluate since this requires huge
effort of manual assessment (Bostrom et al., 2021).

Although some research has demonstrated that
PLMs can learn to effectively perform inference
which involves taxonomic and world knowledge,
chaining, and counting (Talmor et al., 2020), pre-
liminary experiments on a single test set in more re-
cent research have revealed that fine-tuning PLMs
for editing knowledge might negatively affect the
previously acquired knowledge (De Cao et al.,
2021). Our work performs systematic and con-
trolled examinations of the deductive reasoning ca-
pabilities of PLMs and reaches beyond (sometimes
misleading) task performance.

3 Deductive Reasoning

What is Deductive Reasoning? Psychologists de-
fine reasoning as a process of thought that yields
a conclusion from precepts, thoughts, or asser-
tions (Johnson-Laird, 1999). Three main schools
describe what people may compute to derive this
conclusion: relying on factual knowledge (Ander-
son, 2014; Newell, 1990), formal rules (Braine,
1998; Braine and O’Brien, 1991), mental mod-
els (Johnson-Laird, 1983), or some mixture of
them (Falmagne and Gonsalves, 1995). Our experi-
mental study focuses on a ‘computational’ aspect of
reasoning — namely, whether computational PLMs
for reasoning inadequately generalise learned logic
rules and perform inconsistently against simple ad-
versarial reasoning examples.

We investigate deductive reasoning in the con-
text of NLP and neural PLMs. In particular, the
goal of this deductive reasoning task is to train a
PLM (e.g. BERT) over some reasoning examples
(each with a set of premises and a conclusion) to
become a potential reasoner (e.g. R-BERT as illus-
trated in Figure 1). Then, the trained reasoner can
be used to infer deductive conclusions consistently
over explicit premises, where the derived conclu-
sions are usually unseen during the PLM pretrain-
ing/training. This inference process requires the
underlying PLMs to understand factual knowledge
and interpret rules intervening in the deduction pro-
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Figure 2: Different reasoning training approaches.

cess. In this paper, we only focus on the encoder-
based PLMs (e.g. BERT and RoBERTa) as they
can be evaluated under more controllable condi-
tions and scrutinised via automatic evaluation. In
particular, we investigate two task formulations of
the deductive reasoning training: 1) classification-
based and 2) prompt-based reasoning, as follows.

3.1 Classification-based Reasoning
The classification-based approach formulates the
deductive reasoning task as a sequence classifica-
tion task. Let D = {D(1),D(2), · · · ,D(n)} be a rea-
soning dataset, where n is the number of examples.
Each example D(i) ∈ D contains a set of premises
P(i) = {p(i)

1 ,p
(i)
2 . . .p

(i)
j }, a hypothesis h(i), and

a binary label l(i) ∈ {0, 1}. A classification-based
reasoner takes the input of P(i) and h(i), then out-
puts a binary label l(i) indicating the faithfulness
of h(i), given that P(i) is hypothetically factual.

The goal of the classification-based reasoning
training is to build a statistical model param-
eterised by θ to characterise Pθ(l

(i)|h(i),P(i)).
Those PLMs built on the transformer encoder ar-
chitecture, such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), can be used as
the backbone of such a classification-based rea-
soner. Figure 2(a) shows an example of using the
BERT model to train a classification-based rea-
soner (CLS-BERT). In particular, given a training
example D(i) = {l(i),h(i),P(i)}, the BERT model
is trained to predict the hypothesis label by encod-
ing [h(i);P(i)] and computing Pθ(l

(i)|h(i),P(i)).
To do so, the contextualised representation of the
‘[CLS]’ token is subsequently projected down to
two logits and passed through a softmax layer to
form a Bernoulli distribution indicating that a hy-
pothesis is true or false.

3.2 Prompt-based Reasoning
Deductive reasoning can also be approached as a
cloze-completion task by formulating a valid con-
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clusion as a cloze test. Specifically, given a rea-
soning example, i.e., D(i) with its premises P(i),
and a cloze prompt c(i) (e.g. “A [MASK] can fly”),
instead of predicting a binary label, this cloze-
completion task is to predict the masked token a(i)

(e.g. raven) to the cloze question c(i).

The BERT-based models have been widely used
in the prompt-based reasoning tasks (Helwe et al.,
2021; Liu et al., 2022), by concatenating the
premises and the prompt as input and predicting the
masked token based on the bidirectional context.
In general, there are two training objectives for the
prompt-based reasoning task, i.e., the mask lan-
guage modelling (MLM) and task-specific (cloze-
filling) objectives. For MLM, the given PLMs are
trained over the reasoning examples using their
original pretraining MLM objective to impose de-
ductive reasoning ability; see Figure 2(b) for an
example of the BERT reasoner MLM-BERT. For
the cloze-filling objective, the PLMs are trained
with a task-specific cloze filling objective. As il-
lustrated in Figure 2(c), Cloze-BERT is trained to
predict the masked token in the cloze prompt, by
computing the probability Pθ(a

(i)|c(i),P(i)). We
note that, unlike the original pretraining MLM ob-
jective where 15% tokens of the input are masked
randomly, the cloze-filling objective only masks
the answer token a(i) in the cloze prompt c(i).

This prompt-based reasoning task matches the
mask-filling nature of BERT. In this way, we can
probe the native reasoning ability of BERT without
any further fine-tuning and evaluate the contribu-
tion of reasoning training to the PLMs’ reasoning
ability. Foreshadowing, our experimental results in
Section 5 indicate that reasoning training impacts
the model both positively and negatively.

4 Experiments and Results

Recent PLMs have shown surprisingly near-perfect
performance in deductive reasoning (Zhou et al.,
2020). However, we argue that high performance
does not mean PLMs have mastered reasoning
skills. To validate this, we run controlled exper-
iments to examine whether PLM-based reasoners
genuinely understand the natural language con-
text, produce conclusions robustly against lexical
and syntactic variance in surface forms, and apply
learned rules to unseen cases.

4.1 Datasets

Two datasets are used to examine the PLM-based
reasoners, namely, the Leap of Thought (LoT)
dataset (Talmor et al., 2020) and the WikiData
(WD) dataset (Vrandecic and Krötzsch, 2014).

LoT was originally proposed for conducting the
classification-based reasoning experiments for de-
ductive reasoning (Talmor et al., 2020) and has
been used as a standard (and sole) benchmark to
probe the deductive reasoning capabilities of PLMs
(Tafjord et al., 2021; Helwe et al., 2021). This
dataset is automatically generated by prompting
knowledge graphs, including ConceptNet (Speer
et al., 2017), WordNet (Fellbaum, 1998) and Wiki-
Data (Vrandecic and Krötzsch, 2014). LoT con-
tains 30,906 training instances and 1,289 instances
for each validation and testing set. Each data point
in LoT also contains a set of distractors that are
similar but irrelevant to deriving the conclusion.

For the prompt-based reasoning task, we can
reformulate the LoT dataset to fit our cloze-
completion task. Instead of having a set of premises
P , a hypothesis h, and a binary label l, we rewrite
the hypothesis in LoT into a cloze c and the answer
a (e.g. A raven can fly. → A [MASK] can fly.).
Note that we only generate those cloze questions
on the positive examples. Consequently, the results
across these two tasks are not directly comparable.

The WD dataset is an auxiliary reasoning dataset
which we generated and extracted from Wiki-
data5m (Wang et al., 2021b). Similar to previous
work (Petroni et al., 2019; Talmor et al., 2020),
we converted a set of knowledge graph triples
into linguistic statements using manually designed
prompts. The full description of the dataset con-
struction is provided in Appendix C. The final WD
dataset contains 4,124 training instances, 413 vali-
dation instances, and 314 test instances. WD only
contains positive examples: therefore, we only use
this dataset for the cloze-completion task.

4.2 Adversarial Probing

Previous work demonstrates that PLMs can achieve
near-perfect empirically results in reasoning tasks.
For example, RoBERTa-based models record a
near-perfect accuracy of 99.7% in the deductive
reasoning task on LoT (Talmor et al., 2020). How-
ever, another recent study shows that in some natu-
ral language inference benchmarks, PLMs are still
not robust to the negation examples (Hossain et al.,
2020), while humans can handle negations with
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Perturbation Premises Conclusion Valid

Original A bird can fly. A raven is a bird. A raven can fly. ✓

Paraphrasing A bird is able to fly. A raven is a bird species. A raven can fly. ✓

Synonym Substitution A fowl can fly. A raven is a fowl. A raven can fly. ✓

Negation A bird can fly. A raven is a bird. A raven cannot fly. ✗

Retained knowledge A bird can live up to 100 years. – ✓

Table 1: Examples of different perturbations strategies that were used to create the adversarial dataset (see §4.2).

ease. In order to systematically probe PLMs’ de-
ductive reasoning capabilities, we design controlled
experiments over three different adversarial test
settings by generating different surface form per-
turbations, negation of the original examples, and
creating additional retained knowledge anchors.
Table 1 shows some different adversarial examples.

Surface Form Perturbations. The theory of men-
tal models postulates that deductive reasoning is
based on manipulations of mental models repre-
senting situations. In other words, envisaging the
situations and making a deduction can be viewed as
a semantic process (Johnson-Laird, 1999; Polk and
Newell, 1995). On the other hand, previous works
demonstrate that, instead of learning interpretable
meaning representations and generalising across
different surface forms, PLMs tend to learn arte-
facts in the training data, e.g., higher-order word
co-occurrence statistics (Sinha et al., 2021).

As both LoT and WD datasets are prompted
from knowledge graphs, the lexical and syntactical
variance of the dataset is minimal, with imaginable
artefacts. To examine if the PLM-based reasoner
could consistently perform reasoning against lin-
guistic diversity and variability (in terms of both
the token-level and the syntactic-level diversity),
we employ two types of surface form perturbations
to the data items from the original datasets:

• Synonym Substitution: In order to investi-
gate to what extent the PLM-based reasoners
would be sensitive to the token-level semantic
diversity in terms of deriving their conclusions,
we employ synonym substitution (Dhole et al.,
2021) to the premises P . Synonym substitution
does not modify the syntactic structures and the
premises’ semantics, preserving all the original
input’s structural information. In our setting, a
word is replaced by a uniform-randomly selected
synonym based on WordNet (Fellbaum, 1998)
with a probability of 50%.

• Paraphrasing: To further investigate the
PLM-based reasoners’ robustness on sentence-
level semantic variability, we paraphrase the
premises P with two paraphrasing systems:
(i) PEGASUS, an end-to-end model fine-tuned
for paraphrasing (Zhang et al., 2020) (ii) Syntac-
tically Diverse Paraphrasing (SD-Paraphrasing),
a two-step framework that incorporates neural
syntactic preordering for better diversity (Goyal
and Durrett, 2020).

Negated Examples. Understanding negation is
often considered as the first test case in natural lan-
guage understanding tasks (Ettinger, 2020; Khem-
lani et al., 2012; Schon et al., 2021). To exam-
ine whether PLMs can handle negation in the
deductive reasoning task, we construct a set of
negated samples by negating the hypothesis h or
the cloze prompt c while keeping the premises
P unchanged (Hosseini et al., 2021). For the
classification-based reasoning task, the label of
the negated hypothesis is then also flipped. For
the cloze-completion task, since the answer for the
original query will unlikely be the same answer for
the negated queries, predicting the original answer
would be regarded as a wrong prediction.

Anchors of Retained Knowledge. Prior work has
shown that PLMs are prone to forgetting previously
learnt knowledge when fine-tuning with new knowl-
edge data (De Cao et al., 2021), the so-called catas-
trophic forgetting issue (Kirkpatrick et al., 2017;
de Masson d'Autume et al., 2019). It is thus natural
to also probe whether deductive reasoning training
still retains the knowledge already stored in the
original PLM. In this work, in order to measure to
which extent PLMs retain the knowledge acquired
during pretraining, we introduce a set of ‘retained
knowledge statements’ or anchors for each dataset.
There are two criteria for such anchors: (i) they
are semantically close to the conclusions in our test
data, (ii) they do not meet the conditions of the
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premises for a reasoning replacement.4 Ideally, the
reasoning training should not affect the prediction
of PLMs when reasoning over these anchors.

We create such a set of anchors for both LoT and
WD, and investigate the behaviour of the reasoning
models over these anchors based on the prompt-
based reasoning task. In particular, these anchors
should be real-world textual statements that con-
tain the target word (to meet criterion (i) above),
but their newly composed sentences (by the rea-
soning replacement) are unlikely true statements
(to meet criterion (ii) above). To this end, we use
the BM25 algorithm (Sparck Jones et al., 2000)
to retrieve the top 10 sentences for each ‘reason-
ing’ target word from the Wikipedia corpus.5 Then,
we construct the anchor sentences based on these
top 10 retrieved sentences by replacing their target
words with their hyponym/hypernym words. The
final anchors are selected from these top 10 sen-
tences only when the newly created sentences do
not likely exist in the entire Wikipedia corpus (i.e.
their top-1 similar sentence should have less than
a BM25 score of 50). Ideally, this set of retrained
knowledge statements is relevant but should not be
affected by the reasoning training.

4.3 Evaluation

Following previous work (Talmor et al., 2020), the
evaluation metric for classification-based reason-
ing is accuracy. For prompt-based reasoning, we
calculate top K recall (R@K) by measuring what
fraction of the correct answers are retrieved in the
top K predictions. For the negation examples, we
report the top K error rate (E@K) because a re-
trieved answer a and the negated cloze question ¬c
would compose a fallacy.

In the following, we report our findings and nu-
merical results based on the BERT-based reasoners
(in particular bert-base-uncased), but we note
that other PLMs (such as RoBERTa) of various
sizes observe the same performance trends and
result in the same findings and conclusions. Ap-
pendix B provides results for other PLMs.

4Taking the premise (a) of Figure 1 as an example, the
‘bird’ token in the statement ‘A bird can fly.’ was replaced by
its hyponym ‘raven’ after reasoning training. However, in the
anchor statement ‘The bird species is decreasing.’, the ‘bird’
token should not be replaced by ‘raven’.

5ElasticSearch: https://github.com/elastic/elasticsearch.

Model R@1 R@5 R@10

Dataset: LoT

Pretrained 13.15 59.18 70.96
MLM-BERT 98.36 98.36 98.36
Cloze-BERT 99.73 100 100

Dataset: WD

Pretrained 27.07 64.97 72.93
MLM-BERT 99.04 99.36 99.36
Cloze-BERT 100 100 100

Table 2: Recall of the correct answer in the top K pre-
dictions (R@K) from the BERT model before and after
deductive prompt-based reasoning fine-tuning. Both
MLM-BERT and Cloze-BERT achieve (near-)perfect
R@1 scores after fine-tuning.

5 Results and Discussion

We evaluate the impact of reasoning training on
the PLMs and investigate their robustness against
three well-known issues of PLMs: utilising arte-
facts from data, incapability of modelling negation,
and catastrophic forgetting. We further conduct
qualitative analysis to understand the inference er-
rors introduced by deductive reasoning training.

5.1 Deductive Reasoning Training

Finding 1 All the deductive reasoning training ap-
proaches significantly improve PLMs’ reasoning
capabilities, achieving near-perfect deductive rea-
soning performance on both the reasoning test sets.

Table 2 reveals that the prompt-based reasoners
achieve near-perfect performance on both datasets,
regardless of the reasoning training method. In par-
ticular, on LoT dataset the R@1 score of BERT has
increased from 13.15% to 98.36% and 99.73% af-
ter the MLM reasoning training (i.e. MLM-BERT)
and the cloze reasoning training (i.e. Cloze-BERT)
respectively, which are in line with previously re-
ported result (Talmor et al., 2020). The near-perfect
trends are observed in the classification-based rea-
soning models, where CLS-BERT also achieves
a high accuracy score of 94.72% after reasoning
training (Table 5).6 In sum, while the off-the-shelf
BERT model already demonstrates a decent level
of empirical performance, conducting reasoning
training on the pretrained BERT achieves strong or
even near-perfect performance on both datasets.
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Adversarial Probing LoT WD

Pretrained MLM-BERT Cloze-BERT Pretrained MLM-BERT Cloze-BERT

Original 13.15 98.36 99.73 27.07 99.04 100.00

+ Pegasus-Paraphrasing 11.79 (↓1.36) 64.66 (↓33.70) 50.96 (↓48.77) 16.88 (↓10.19) 49.36 (↓49.68) 51.27 (↓48.73)
+ SD-Paraphrasing 5.75 (↓7.40) 9.32 (↓89.04) 0.55 (↓99.18) 16.56 (↓10.51) 27.39 (↓71.65) 31.21 (↓68.79)
+ Syn. Substitution 20.00 (↑6.85) 64.38 (↓33.98) 64.66 (↓35.07) 15.29 (↓11.78) 61.78 (↓37.26) 62.42 (↓37.58)

Table 3: R@1 scores on test sets obtained via applying various surface form perturbations from Section 4.2.

Examples BERT MLM-BERT Cloze-BERT
A holly is not music. A holly is part of a forest.
A plant is an actor. A music is not an actor.
A holly is a plant. A bluebottle is an organism.
A marigold is not an angiosperm.
A holly is not an important food source.
A <MASK> is not an actor.

musician (0.1213) ✓ holly (0.7168) ✗ holly (0.9999) ✗

A perry is not a tree. A tree is not capable of burn.
Alcohol is capable of burn. A perry is an alcohol.
A <MASK> is not capable of burn.

tree (0.5244) ✓ person (0.0300) ✗ perry (0.9999) ✗

Table 4: Examples of top 1 predictions from the set of negated examples based on LoT test set. The wrong
predictions are in red, and the reasonable predictions are in green. Some other key-related entities are in the same
colour. The numbers in the parentheses are the respective probabilities of each prediction after the softmax layer.

Adversarial Probing LoT

CLS-BERT

Original 94.72

+ Pegasus-Paraphrasing 83.86 (↓10.86)
+ SD-Paraphrasing 71.14 (↓23.58)
+ Syn. Substitution 84.48 (↓10.24)
+ Negation 9.34 (↓85.49)

Table 5: Accuracy scores on test sets obtained via apply-
ing various surface form perturbations from Section 4.2.

5.2 Surface Form Perturbations

Finding 2 Surface form perturbations drastically
decrease PLMs’ reasoning performance.

A natural follow-up question to ask is to what ex-
tent the aforementioned near-perfect numbers re-
ally reflect the model’s reasoning abilities. We thus
perform surface form perturbations to add lexical
and syntactic variance to the test datasets and probe
the model against such variations.

Table 3 demonstrates the performances of the
MLM-BERT and Cloze-BERT reasoners, as well
as the vanilla pretrained BERT language model,
on our controlled test sets generated by different

6Note that we cannot obtain the performance of original
BERT since the classification head has not been trained yet.

perturbation approaches. We can observe that the
scores for both reasoners decrease substantially
(>30%) even when applying simple synonym sub-
stitution, which only adds lexical variance to the
prompt-generated query. In contrast, the pretrained
BERT language model is less vulnerable to such
an issue. This finding aligns with the hypothesis
that PLMs tend to memorise word co-occurrence
statistics (Sinha et al., 2021).7

We also observe from Table 3 that the R@1 per-
formances of all reasoners decrease strongly when
applying either the Pegasus-Paraphrasing or SD-
Paraphrasing methods to the premises. In particular,
the drops are especially pronounced with the SD-
Paraphrasing method, which is designed exactly to
generate syntactically very diverse paraphrases. On
the other hand, we see from Table 5 that similar per-
formance degradation trends can be observed in the
classification-based reasoning task. These results
illustrate that current PLMs perform inconsistently
against various surface form perturbations, suggest-
ing that future work should look into the creation
of more robust reasoners that should be resilient to
lexical, syntactic, and semantic variability.

7The comparison of large models (e.g. bert-large) can
be found in Appendix B, which indicates the similar trends.
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Figure 3: Results (E@1 scores, lower is better) on the
test set comprising negated examples; before versus
after deductive-reasoning training.

5.3 Negated Examples

Finding 3 All reasoners cannot distinguish be-
tween negated and non-negated examples.

Figure 3 reveals that the error rate E@1 scores (the
lower, the better)8 for all reasoners on the set of
negated examples largely increase after reasoning
training. The original off-the-shelf BERT model
achieves E@1 of 18.63% on LoT and 14.33% on
the WD dataset. However, after reasoning train-
ing, the error rate of MLM-BERT significantly in-
creases to 98.36% (LoT) and 98.73% (WD). Cloze-
BERT’s performance is even worse, with E@1
scores of 99.73% (LoT) and 100% (WD), suggest-
ing a clear case of overfitting to word co-occurrence
and other artefacts in the training sets. Moreover,
the accuracy score on negated LoT examples is only
9.34%, while a random baseline would score 50%.
In sum, these scores indicate that the PLM-based
reasoners cannot distinguish between negated and
non-negated examples, and their performance on
negated examples substantially worsens after rea-
soning training due to task-specific overfitting.

A quick error analysis, provided in Table 4,
further points to the issues with negated exam-
ples. The first example shows that the off-the-shelf
BERT model makes a reasonable guess, semanti-
cally related to an entity mentioned in the premises.
This guess is similar to a human guess from the
same premises. However, after reasoning training,
both MLM-BERT and Cloze-BERT make wrong
predictions, and Cloze-BERT is extremely confi-

8E@1 only denotes a specific type of error: the model
makes a wrong prediction due to negation being added, i.e.
the negation error. However, many other types of errors that
a model can make a wrong prediction, but they are not our
focus and thus not measured. In other words, (1 - E@1) is not
equivalent to accuracy.
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Figure 4: Results (R@1 scores, higher is better) on
the test set comprising anchors of retained knowledge;
before versus after deductive-reasoning training.

dent in its wrong predictions.

5.4 Anchors of Retained Knowledge
Finding 4 Previously learnt knowledge is not fully
retained after reasoning training, and the trained
reasoners (catastrophically) forget it.

Figure 4 shows that performance on the anchors
deteriorates substantially after reasoning training.
On LoT, MLM-BERT ‘forgets’ ∼77% of the previ-
ously learnt knowledge, achieving only 23.34% on
R@1. Cloze-BERT performs even worse, scoring
only 6.27% R@1. The drops are slightly lower but
still substantial on WD: MLM-BERT retains 65.7%
and Cloze-BERT retains 41.32% of the previously
stored knowledge. This result indicates that rea-
soning training yields the well-known phenomenon
of catastrophic forgetting: this effect seems even
more pronounced with Cloze-BERT, which relies
on a very task-specific objective that might result
in overfitting the task data.

Furthermore, Table 6 displays several qualitative
examples where the predictions in green refer to
the correct predictions based on human judgement.
Notice that in the last example, even though the pre-
dictions from the two trained reasoners are correct,
the probabilities are much lower.

Several strategies might help mitigate catas-
trophic forgetting. A promising direction is en-
capsulating lightweight adapter modules (Houlsby
et al., 2019; Pfeiffer et al., 2020b; Ansell et al.,
2021) within the underlying PLM, where all the
‘deductive reasoning capability’ will be stored
solely in the adapter modules, leaving the original
PLM intact (Pfeiffer et al., 2020a). Other similar
parameter-efficient and modular methods include
prefix tuning (Li and Liang, 2021) or sparse masks
(Sung et al., 2021; Ansell et al., 2022). Their main
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Examples BERT MLM-BERT Cloze-BERT

a flea is a parasitic <MASK>. insect (0.2006) ✓ substance (0.1950) ✗ drone (0.0193) ✗

vapour density is a unitless <MASK>. quantity (0.3494) ✓ quantity (0.2197) ✓ volume (0.0412) ✗

both sexes have a throat <MASK>. pouch (0.5169) ✓ ##lid (0.3606) ✗ hollow (0.0135) ✗

firefox is a web <MASK>. browser (0.9144) ✓ browser (0.8861) ✓ browser (0.3243) ✓

Table 6: Examples of top 1 predictions from the set of Anchors of Retained Knowledge based on LoT. A wrong
prediction is in red, and a reasonable prediction (aligning with human judgement) is in green. The numbers in the
parentheses are the respective probabilities of each prediction after the softmax layer.

premise is to separate knowledge extraction and
composition, preserving previously learnt knowl-
edge during reasoning training. We leave reasoning
training with such methods for future research.

6 Conclusion

In this paper, we probed into the deductive rea-
soning capabilities of PLMs and conducted com-
prehensive controlled experiments to examine and
compare various deductive reasoning training ap-
proaches. Our experimental results showed that
current PLM-based deductive reasoners suffer from
several issues: 1) they rely on artefacts from the
training data, 2) they are incapable of modelling
negation in deductive reasoning, and 3) they for-
get knowledge acquired during pretraining when
they get specialised into deductive reasoners. In
particular, our experimental study demonstrated
that models are vulnerable to multiple adversarial
methods, including simple surface form perturba-
tions such as synonym substitution or paraphrasing.
While the PLMs trained for deductive reasoning
achieve seemingly perfect empirical results in dif-
ferent reasoning datasets, they cannot yet systemat-
ically generalise to other deductive reasoning exam-
ples. Consequently, our study also calls for further,
more rigorous examinations of future PLM-based
models’ deductive reasoning abilities.
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Limitations

Despite the thorough experiments on standard and
popular PLMs of various sizes, this study explores
only encoder-based models. Some generation-
based models under other Transformer architec-

tures, such as encoder-decoder (T5) or decoder-
only (GPT-3), were also deployed in the reasoning
tasks (Bostrom et al., 2021; Wei et al., 2022). We
do not probe those groups of models here due to
the difficult of evaluation and we leave them for
future research.

Further, for prompt-based reasoning, the current
reasoners only support and have been evaluated on
single-token prediction in a single language (i.e.
English). Several prior works have demonstrated
that conducting multi-token prediction is consid-
erably more difficult (Jiang et al., 2020a), which
would pose an additional challenge to the PLMs in
deductive reasoning tasks. One avenue of future
work should also extend the scope of analyses to
multilingual and multi-token prediction.

In addition, we note that better evaluation re-
sources that could address paraphrases and word
senses, especially for mask-filling tasks, are still
lacking. This limitation is particularly significant in
our setting. For example, in addition to the single-
token answer in the evaluation datasets we used,
there are some other feasible answers (e.g. syn-
onyms) for the same query, which should also be
considered a correct prediction. However, such
answers are ignored by the current standard evalua-
tion protocols. As a result, there is a certain level
of unavoidable noise in the evaluation process.

Finally, introducing a reasoning dataset is highly
challenging and appreciated by the community.
Leap-of-thought is to our knowledge the only ex-
isting dataset that is suitable for our deductive rea-
soning evaluation. To solidify our conclusions,
we further constructed an auxiliary dataset (WD)
following a similar procedure to LoT. Although
our data construction method is commonly used to
extract reasoning examples, such an automatic pro-
cedure, unfortunately, inevitably reflects the quality
and errors (e.g. nonsensical statements) from our
source (WikiData). To reduce such noisy examples,
we have conducted multiple rounds of filtering (see
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Appendix for the filtering process) and manually
removed as many meaningless relations as we can,
given that manually verifying each reasoning ex-
ample is a highly labour-intensive task.
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Vulić. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1778–1796.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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lier, and Muhao Chen. 2022. Prix-LM: Pretraining
for multilingual knowledge base construction. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5412–
5424.

1459

https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/pdf/2111.12038.pdf
https://arxiv.org/pdf/2111.12038.pdf
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.014
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.014
https://doi.org/10.18653/v1/2022.acl-long.371
https://doi.org/10.18653/v1/2022.acl-long.371


A Experimental Details

Table 7 lists our model hyperparameters. Among
these models, MLM-BERT and Cloze-BERT were
implemented using the HuggingFace transform-
ers package (Wolf et al., 2020). We implement
CLS-BERT via the SBERT repository (Reimers
and Gurevych, 2019), which is built on top of the
HuggingFace repository (Wolf et al., 2020). Unless
mentioned otherwise, all the hyperparameters are
set to the default values provided in the Hugging-
Face and SBERT repositories.

Hyper-parameter Value

MLM-BERT and Cloze-BERT

batch_size 2
max_sequence_length 512
training_epoch 3

CLS-BERT

batch_size 64
max_sequence_length 128
training_epoch 20

Table 7: Model hyper-parameters.

B Evaluation Results for PLMs

Table 8 supplements the main paper by provid-
ing additional results with classification-based rea-
soners, where the reasoners start from different
PLMs: distil-bert, bert-base, bert-large,
roberta-base, and roberta-large. These re-
sults corroborate the main findings presented in
the main paper; see Section 5. Larger models do
perform slightly better than their smaller variants
on average. However, the results also demonstrate
that different models, regardless of their size, suffer
from exactly the same issues, discussed in the main
paper.

Table 9 and Table 10 demonstrate performance
over adversarial test sets for prompt-based reason-
ers (1. MLM-based, 2. Cloze-based). The findings
from these tables align with the findings from the
main results presented in Section 5.

C WD Dataset Construction Pipeline

We construct the WD dataset following the pipeline
shown in Figure 5, and outlined in what follows.

Source Data. We choose the Wikidata5m
dataset (Wang et al., 2021b) as the knowledge
source for WD. Wikidata5m is a million-scale

knowledge graph dataset created upon Wiki-
data (Vrandecic and Krötzsch, 2014). This dataset
comprises 20 million triples, describing relevant
and important knowledge statements about real-
world entities.

WD Dataset

Filtering

Prompting

Wikidata5m Dataset

Figure 5: Data construction pipeline for the WD dataset.
This WD dataset is extracted and derived from Wiki-
Data5m (Wang et al., 2021b). Following the previous
pipeline (Petroni et al., 2019), we convert a set of knowl-
edge graph triples into linguistic statements using man-
ually designed prompts.

Prompting. We manually select a set of relations
based on their frequency and design their corre-
sponding prompts shown in Table 11. Given a
taxonomic relation, such as is_a with relation ID
P31, we sample a relevant taxonomic-knowledge
graph triple: ⟨raven, is_a, bird⟩. We then retrieve
other relevant triples about the subject and the ob-
ject, for example, ⟨bird, is_capable_of, fly⟩ and
⟨raven, is_capable_of, fly⟩. Next, we use our
predefined prompts to convert the knowledge graph
triples to textual knowledge statements: A bird can
fly, A bird is a raven and A raven can fly. Fur-
thermore, these prompted statements assemble an
inference instance in the WD dataset: if A bird
can fly and A bird is a raven, then A raven can fly.
In our cloze-completion task setting, we mask the
object of the taxonomic triple (e.g. raven) in the
conclusion statement to form a cloze question (A
[MASK] can fly). Therefore, raven is the correct
answer to this question.

Filtering. We filter those constructed inference
instances with the following properties: (i) We
only choose examples with answers being a sin-
gle masked token, and these answers should be
included in the BERT vocabulary. (ii) For all in-
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Adversarial Probing LoT
distilbert-based-uncased bert-base-uncased bert-large-uncased roberta-base roberta-large

Original 90.22 94.72 98.76 92.71 99.38
+ Pegasus-Paraphrasing 77.27 (↓12.95) 83.86 (↓10.86) 84.40 (↓14.35) 80.84 (↓11.87) 87.20 (↓12.18)
+ SD-Paraphrasing 66.56 (↓23.66) 71.14 (↓23.58) 73.39 (↓25.39) 75.95 (↓16.76) 78.97 (↓20.40)
+ Syn. Substitution 81.46 (↓8.76) 84.48 (↓10.24) 93.33 (↓5.43) 80.76 (↓11.95) 94.26 (↓5.12)
+ Negation 18.86 (↓71.37) 9.34 (↓85.49) 2.58 (↓96.28) 19.40 (↓73.31) 35.85 (↓63.53)

Table 8: Accuracy on different LoT adversarial test sets for classification-based reasoners with various back-boned
PLMs.

Adversarial Probing LoT WD
MLM-DISTILBERT MLM-BERT MLM-BERT-LARGE MLM-DISTILBERT MLM-BERT MLM-BERT-LARGE

Original 99.45 98.36 99.45 99.36 99.04 98.09
+ Pegasus-Paraphrasing 76.71 (↓22.74) 64.66 (↓33.7) 60.27 (↓39.18) 56.05 (↓43.31) 49.36 (↓49.68) 52.23 (↓45.86)
+ SD-Paraphrasing 24.66 (↓74.79) 9.32 (↓89.04) 4.93 (↓94.52) 28.66 (↓70.7) 27.39 (↓71.65) 33.12 (↓64.97)
+ Syn. Substitution 64.11 (↓35.34) 64.38 (↓33.98) 64.93 (↓34.52) 62.1 (↓37.26) 61.78 (↓37.26) 60.19 (↓37.9)
+ Negation (E@1 ↓) 97.53 98.36 95.89 99.36 98.73 98.41
Retained Knowledge 25.86 23.34 26.67 58.33 65.7 56.61

Table 9: Top 1 recall (R@1) on adversarial test sets for various prompt-based reasoners with MLM training. The
numbers for the negated examples indicate the top 1 error rates (the lower, the better).

Adversarial Probing LoT WD
Cloze-DISTILBERT Cloze-BERT Cloze-BERT-LARGE Cloze-DISTILBERT Cloze-BERT Cloze-BERT-LARGE

Original 100 99.73 98.63 100 100 100
+ Pegasus-Paraphrasing 57.81 (↓42.19) 50.96 (↓48.77) 47.4 (↓51.23) 57.01 (↓42.99) 51.27 (↓48.73) 56.37 (↓43.63)
+ SD-Paraphrasing 2.74 (↓97.26) 0.55 (↓99.18) 0.82 (↓97.81) 37.26 (↓62.74) 31.21 (↓68.79) 46.82 (↓53.18)
+ Syn. Substitution 64.66 (↓35.34) 64.66 (↓35.07) 63.84 (↓34.79) 62.74 (↓37.26) 62.42 (↓37.58) 62.74 (↓37.26)
+ Negation (E@1 ↓) 100 99.73 98.63 100 100 99.68
Retained Knowledge 11.79 6.27 1.45 35.61 41.32 16.95

Table 10: Top 1 recall (R@1) on adversarial test sets for various prompt-based reasoners with Cloze-filling training.
The numbers for the negated examples indicate the top 1 error rates (the lower, the better).

ference instances, the maximum number of oc-
currences of a single answer is 50 to balance the
dataset and avoid excessive repetition.

Final WD Dataset. The final WD dataset
contains 4,851 instances, which are randomly
split into 4,124/413/314 instances for train-
ing/validation/testing while keeping that the an-
swers of the testing set should not appear in the
training/validation sets. This is to ensure that
trained reasoners need to draw conclusions via con-
ducting deductive reasoning rather than via memo-
risation.
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Relation ID Prompt

P31 [X] is a [Y] .
P136 [X] is a genre of [Y] .
P179 [X] is part of the [Y] series .
P279 [X] is a subclass of [Y] .
P527 [X] consists of [Y] .
P1269 [X] is a topic of [Y] .
P17 [X] is hosted in [Y] .
P39 [X] holds a [Y] position .
P101 [X] is a subject of [Y] .
P106 [X] is a [Y] by profession .
P140 The religion of [X] is [Y] .
P144 [X] is based on [Y] .
P180 [X] is a painting of [Y] .
P276 [X] is located at [Y] .
P306 [X] runs on [Y] operating system .
P355 [X] owns [Y] .
P360 [X] is a list of [Y] .
P400 [Y] is a platform of [X] .
P404 The game mode of [X] is [Y] .
P462 The color of [X] is [Y] .
P463 [X] is a member of [Y] .
P737 [X] is influenced by [Y] .
P749 [Y] owns [X] .
P1303 [X] plays [Y] .
P1343 [X] is written about in [Y] .

Table 11: Manually written prompts for generating the
WD dataset. Given a triple ⟨[X], R_ID, [Y ]⟩, the tex-
tual knowledge statement (e.g. premises) is written
based on the above prompts. R_ID is the unique rela-
tion ID in the Wikidata5m dataset. Gray entries (first
six rows) denote taxonomic relations.
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