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Abstract

With multilingual machine translation (MMT)
models continuing to grow in size and number
of supported languages, it is natural to reuse
and upgrade existing models to save compu-
tation as data becomes available in more lan-
guages. However, adding new languages re-
quires updating the vocabulary, which compli-
cates the reuse of embeddings. The question of
how to reuse existing models while also mak-
ing architectural changes to provide capacity
for both old and new languages has also not
been closely studied. In this work, we intro-
duce three techniques that help speed up effec-
tive learning of the new languages and alleviate
catastrophic forgetting despite vocabulary and
architecture mismatches. Our results show that
by (1) carefully initializing the network, (2) ap-
plying learning rate scaling, and (3) performing
data up-sampling, it is possible to exceed the
performance of a same-sized baseline model
with 30% computation and recover the perfor-
mance of a larger model trained from scratch
with over 50% reduction in computation. Fur-
thermore, our analysis reveals that the intro-
duced techniques help learn the new directions
more effectively and alleviate catastrophic for-
getting at the same time. We hope our work will
guide research into more efficient approaches
to growing languages for these MMT models
and ultimately maximize the reuse of existing
models.

1 Introduction

Research into multilingual machine translation
(MMT) (Aharoni et al., 2019; Fan et al., 2020)
has shifted from a relatively small number of trans-
lation directions (Dong et al., 2015; Firat et al.,
2016; Ha et al., 2016) to much larger scale, recently
reaching up to tens of thousands of translation di-
rections (NLLB Team et al., 2022; Bapna et al.,
2022). Despite the notable increase in the number
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of supported languages, these models still need to
be upgraded as increasing amount of data in new
languages are becoming available. The process of
adding new languages to existing models is an in-
stance of continual learning (Ring, 1994), in which
the models need to effectively learn new tasks (new
translation directions) while not catastrophically
forgetting (French, 1993; McCloskey and Cohen,
1989) the knowledge about tasks from the previous
training stage (original translation directions).

Unlike the most conventional continual learning
setup where the model remains the same as the
initial learning stage, growing languages for MMT
models needs to deal with new parameters. Adding
new languages to existing training data shifts sub-
word token distribution (e.g., tokens from unseen
scripts are added), hence the need to re-train the
tokenizer, which adds new embedding parameters
to the MMT model. Previous studies have shown
the effectiveness of adapting embedding param-
eters to retain performance on old translation di-
rections (Lakew et al., 2018; Escolano et al., 2019;
Garcia et al., 2021). This is usually done by reusing
the embeddings for tokens that overlap between the
old and new vocabularies.

One aspect that has not been extensively ad-
dressed in previous research is how to deal with
other architecture mismatches that may arise during
the continual learning phase. When growing MMT
models to support many additional languages, it
also makes sense to increase the model size overall.
This extra capacity can be used to learn not only
the new directions well but also the old directions
better. It is not obvious, however, how to reuse
the parameters from existing models (i.e., to en-
gage in continual learning) given such architectural
changes. Thus, in addition to dealing with differ-
ent vocabularies, we also investigate how to make
use of previously trained models when scaling up
model size in order to train much more efficiently
than training from scratch.
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Figure 1: Illustration of two architectural mismatches we tackle in this paper. Left: The hidden dimension in the
feed-forward layers is doubled (d′hidden = 2dhidden) during the continual learning stage so that the model becomes
“wider”. Right: Additional layers are inserted at the bottom of encoder and the top of decoder so that the model
becomes “deeper”. Both architectural changes increase capacity and are not well-addressed by previous works.

In this work, we introduce a recipe that helps
significantly reduce the amount of required com-
putation for continually learning new languages
in MMT models. The recipe involves training the
models with a combination of three techniques:
(1) careful initialization of the network (2) apply-
ing learning rate scaling and (3) up-sampling se-
lected language pairs. We validate our method on
settings both with and without architecture mis-
matches (e.g., models becoming wider or deeper as
shown in Figure 1 to have extra capacity for both
old and new directions). We compare our models
with strong same-sized baselines that are trained
on all data from scratch. Our experimental results
show that, without architecture mismatches, it is
possible to outperform the baseline with just 30%
of computation required by the baseline. When
training larger models, less than 50% of the origi-
nal computation is required to match the full per-
formance of the wider baseline model, and less
than 10% of computation is needed to recover over
95% of the corresponding baseline performance.
We further conduct a suite of analysis which shows
that:

• Proper initialization of the parameters before
continual learning is crucial for fast conver-
gence.

• Data up-sampling is vital to achieving good
performance on new language pairs.

• Scaling down the learning rate for reused pa-
rameters helps alleviate catastrophic forget-
ting.

It is our hope that this work will help save compu-
tation for future research into large-scale multilin-
gual machine translation, guide more efficient reuse

of existing models for continual learning, and allow
people to efficiently adapt large publicly-released
MMT models for new languages and datasets.

2 Method

Adding new languages to existing models, espe-
cially languages in new scripts, leads to different
subword tokenization, thus different vocabularies,
which precludes simple fine-tuning with the ex-
act same model on additional data. During the
continual learning stage, we may also want to in-
crease the model size overall to have extra capac-
ity to learn the new languages and improve old
languages at the same time. Therefore, we also
investigate two typical architectural changes com-
monly done to increase the network capacity: (1)
make the model “wider” by expanding the hidden
dimension of the feed-forward layers, and (2) make
the model “deeper” by inserting new layers to both
encoder and decoder. In this section, we delineate
three techniques that we found most effective in
achieving computation reduction for the continual
learning of MMT models.

Proper initialization. While we can copy
weights from the old model1 to the new model,
it is not immediately clear how the new parameters
(e.g., new token embeddings, new feed-forward
weights, new layers) should be initialized and co-
adapted with the old weights such that maximal
knowledge about the old directions is retained. In-
stead of initializing the new parameters randomly,
we find that initializing the new embeddings with
that of <unk> leads to the best performance. When

1The weights that can be directly copied without any modi-
fication include (1) the token embeddings that overlap between
old and new model, (2) same-shaped non-embedding parame-
ters.
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M20 M25@100k Mt25@30k M25@100k
wide Mt25@50k

wide M25@100k
deep Mt25@50k

deep

spBLEU All 33.4 31.6 31.8 32.8 32.8 32.8 32.4
Orig. 33.4 33.4 33.5 34.5 34.25 34.5 33.9
Added - 24.6 25.2 25.9 27.2 26.2 26.2

chrF++ All 76 74 74 75 75 75 75
Orig. 76 76 76 76 76 76 76
Added - 67 69 68 70 68 69

Table 1: While continually learning new languages by bootstrapping from a model trained on 20 languages (M20),
given new embedding parameters (vocabulary mismatch), one can exceed the performance of a baseline model
trained on all languages from scratch (M25@100k) with just 30% computation (Mt25@30k). With architectural
mismatches, employing our method, the wider-model baseline performance (M25wide) and over 98% performance
of a deeper-model baseline (M25@100k

deep ) can be recovered with half of the corresponding baseline computation
(Mt25@50k

wide and Mt25@50k
deep respectively). The “Orig.” row shows performance on old 20 languages and the “Added”

on newly added 5 languages.

the network becomes “wider” in the continual learn-
ing phase, concatenating each old weight matrix
with a noisy version of itself performs better than
other methods we tried. When the network be-
comes “deeper”, initializing new layers with av-
eraged weights of old layers results in slight im-
provement over other naive initialization methods.
For each setup, we compare different initialization
methods in section 4.2.

Data up-sampling. Similar to (Garcia et al.,
2021), we introduce the new tasks by mixing old
and new training data together. Since the main goal
of the continual learning phase is to quickly learn
the new directions, we up-sample the new pairs so
the model gets more learning signals from these
new directions. To increase the transfer across re-
lated language pairs and reduce the chance of catas-
trophically forgetting less represented directions
in the original training data, we also up-sample a
small number of the old low-resource languages
that are from the same language family as the new
languages. We present the effect of up-sampling
these selected directions in section 4.3.

Learning rate scaling. To further mitigate the
frequent catastrophic forgetting problem exhibited
in continual learning (Ring, 1994; Thompson et al.,
2019), we scale the learning rate for individual
parameters depending on whether they are copied
from the old model or not. Based on the assumption
that the model better retains the knowledge about
old tasks if the weights stay close to that of the old
model (Kirkpatrick et al., 2017), we scale down the
learning rate for these old parameters while main-
taining or scaling up the learning rate for the newly

added parameters. In contrast to other methods that
incur extra computation such as Fisher Information
based loss (Thompson et al., 2019), our approach
is simple, straightforward and efficient in alleviat-
ing catastrophic forgetting. We present a deeper
analysis of learning rate scaling in section 4.4 and
section 5.2.

3 Experiments

Languages. We conduct our experiments on 25
languages covering ten language families, four re-
source levels (high, mid, low, and very low) and
four scripts2. To grow the languages atop exist-
ing learned languages, we train the seed model
on 20 languages (40 English-centric directions)
and add 5 new languages (10 English-centric direc-
tions) during the continual learning stage. Mim-
icking the common scenario where newly added
languages are mostly low-resource, we select five
low and very-low resource languages covering four
language families and four scripts as the new lan-
guages to add to the seed model. To verify the
validity of our approach, we also experiment with
two other 20/5 groupings and one 12/13 division of
old/new languages in section 5.13. Table 2 shows
the groups of original and added languages used
in most of our experiments. For all our models,
we train sentencepiece (Kudo, 2018)4 tokeniz-
ers with 64K tokens and a sampling temperature
of 2, on joined (source and target) data from all
language directions available in each setup. This

2We include more details about these languages in Ap-
pendix A Table 9.

3More language grouping details are shown in Table 10
and Table 11 in Appendix A.

4https://github.com/google/sentencepiece
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Original Added

lav rus fin spa xho
lit hin est deu guj

swh mar pol zul∗ npi
ukr mkd ces msa∗ ind
bel bul fra kir∗ kaz

Table 2: The M20 model is trained on the “Original”
languages. Mt25, Mt25wide and Mt25deep bootstrap
from M20 and train on the combination of “Original”
and “Added” languages. We perform data up-sampling
over added data in conjunction with related old low-
resource languages (marked with ∗).

means that tokenizers in the initial training on the
the old languages, were not exposed to unseen lan-
guages. The data we used are subsets of data used
by NLLB Team et al. (2022) without any mined or
back-translated examples.

Models. Our baseline models have a standard 12-
layer encoder and 12-layer decoder Transformer
architecture (Vaswani et al., 2017) with 16 atten-
tion heads, embedding dimension 1024 and hidden
dimension 4096. We refer to the baseline model
trained on 20 languages and 25 languages from
scratch as M20 and M25 respectively. For wider
models, we double the hidden dimension size to
8192; and for deeper models, we insert 6 extra
layers to encoder and decoder each. We refer to
the baseline wide and deep models trained on 25
languages from scratch as M25wide and M25deep re-
spectively, and refer to the models which bootstrap
from the M20 model and trained to support new lan-
guages while remaining the same architecture, us-
ing a wider network, and deeper network as Mt25,
Mt25wide and Mt25deep respectively. All transla-
tion directions were evaluated on FloRes (Goyal
et al., 2022; Guzmán et al., 2019) dev set and use
spBLEU5 dand chrF++ (Popović, 2017) to evaluate
the best checkpoint selected by validation loss with
beam size 4.6

Training details We train baseline models (M25,
M25wide, M25deep) for 100K updates with batch

5https://github.com/facebookresearch/
flores/tree/main/previous_releases/flores101#
spbleu-evaluation

6We use these two metrics instead of BLEU or pre-trained
metrics (Kocmi et al., 2021) because over half of the lan-
guages we use are of mid- to low-resource and Goyal et al.
(2022) show spBLEU treats low-resource languages more
fairly.

All Orig. Added

Mt25 31.8 33.5 25.2
random init all 28.2∗ 29.4∗ 23.4∗

random init new 31.7 33.5 24.9∗

no up-sampling 31.3∗ 33.4 22.6∗

no lr scaling 31.5∗ 33.1∗ 25.1

Mt25wide 32.6 34.1 26.3
random init all 26.7∗ 28.0∗ 21.5∗

random init new 29.9∗ 31.3∗ 24.6∗

no up-sampling 31.9∗ 34.1 23.3∗

no lr scaling 32.3∗ 33.9∗ 26.2∗

Mt25deep 32.2 33.8 25.6
random init all 30.5∗ 31.7∗ 25.7
random init new 32.2 33.9 25.6
no up-sampling 31.2∗ 33.5∗ 22.2∗

no lr scaling 31.6∗ 33.0∗ 26.1

Table 3: Ablation of the effect of not using M20 weights
(random init all), the effect of not carefully initializing
new parameters (random init new), not having data up-
sampling and not applying learning rate scaling across
three scenarios. All numbers are spBLEU scores of
models evaluated after 30K updates. ∗ indicates p-value
of paired T-test against corresponding best model (Mt25,
Mt25wide, Mt25deep) is smaller than 0.05.

size ∼444K tokens peak learning rate 0.003
warmed up with 8000 steps. For the bootstrapped
models, we train Mt25 for 30k updates and
Mt25wide and Mt25deep for 50k updates since there
are more added parameters. We use temperature 1
and prepend encoder/decoder language token at the
beginning of each example. All models are trained
with attention dropout 0.1 and label smoothing with
ϵ = 0.1 (Szegedy et al., 2016). The baseline mod-
els M25, M25wide and M25deep complete training
of 100K updates on 64 GPUs in ∼24h, ∼29.9h,
and ∼29.0h respectively. We do not reset the learn-
ing rate scheduler for the second training phase.7

The data of selected languages are up-sampled by
5 and the learning rate of the old parameters in
Mt25wide is multiplied by 0.5 and in Mt25deep by
0.05 at the beginning while linearly increasing to
0.5. We present the effect of these hyperparameters
in the next section.

7We tried resetting learning scheduler (i.e., learning rate
warms up 8K steps from 0 to 0.003 and then starts to decrease),
small constant learning rate, and not resetting learning rate
scheduler in our preliminary experiments and the last leads to
the best results.
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Main results. Results in Table 1 indicate that by
properly applying the techniques introduced earlier,
it is possible to recover the baseline performance
with significantly less computation. When architec-
ture remains the same during the second learning
phase, better overall performance can be achieved
(31.8 vs. 31.6) after 30% of the updates required
by the baseline model M25. The gains come from
effective learning of both the old and new direc-
tions while the latter seems to be better learned than
the baseline model (25.2 vs. 24.6). While train-
ing into a wider model, applying our techniques
recovers the performance with approximately half
of the M25wide computation. Although we did not
fully recover the performance while training into
a deeper model, over 98% of the baseline perfor-
mance can be achieved using our techniques with
half of the baseline M25deep computation. We find
that the major degradation in Mt25deep comes from
the worse performance on the original directions
(33.9 vs. 34.5) which suggests mitigating catas-
trophic forgetting is harder when expanding the
network by depth than by width.

4 Effect of each technique

4.1 Ablation study
To understand the effect of each introduced tech-
nique, we conduct an ablation study where each
model is trained on the same configuration except
for one essential element (i.e., proper initializa-
tion, learning rate scaling, data up-sampling). As
a naive baseline, while having scaled learning rate
and data upsampling, we include the models where
no weights from the seed M20 model are used
(“random init all”) to compare with a less naive
baseline “random init new” where the M20 weights
are reused and only the newly added parameters
(i.e., new token embeddings in all three models,
new fully-connected layer weights in Mt25wide and
weights of new layers in Mt25deep) are randomly
initialized. To summarize, each configuration in
Table 3 corresponds to the following:

Random init all : All parameters are initialized
randomly while model is trained with data
up-sampling and learning rate scaling.

Random init new : Newly added parameters are
initialized randomly while weights of M20
are copied to the new model. Model is trained
with data up-sampling and learning rate scal-
ing.

No up-sampling : Model weights are properly ini-
tialized and their learning rates are scaled dur-
ing training. No language pair is up-sampled.

No lr scaling : Model weights are properly initial-
ized and low-resource pairs are up-sampled
whereas no learning rate scaling is applied.

Results in Table 3 confirm the contribution of
each of the three introduced techniques in achiev-
ing the desired performance across different set-
tings. Overall, not reusing the M20 weights leads
to worse performance than the baseline by 2∼6
BLEU in different settings. While reusing the old
model’s weights, also having proper initialization
of the new parameters yields better performance
than simply initializing with default normal distri-
bution. The benefit is most obvious when training
into a wider model (29.9 vs. 32.6) compared to
the other two settings. We also observe that data
up-sampling is crucial to achieving good perfor-
mance on the new directions. Not applying up-
sampling degrades around ↓ 3BLEU on new direc-
tions across all settings, while barely or just slightly
hurting the performance on the old directions. On
the other hand, not applying learning rate scaling
harms the performance of old directions across all
settings, which suggests the effectiveness of scaling
the learning rate to mitigate catastrophic forgetting,
about which we include a more detailed analysis
in section 5.2.8 Since learning rate scaling helps
counteract catastrophic forgetting and up-sampling
speeds up learning of the new directions, we dis-
cover that their effectiveness are additive – better
performance can be achieved on both old and new
directions by combining these two techniques.

4.2 Effect of proper initialization
In this section we briefly discuss different varia-
tions we attempted for initializing new parameters
and present the results in Table 4.

Mt25 In the case of having only mismatched vo-
cabularies, we find that dropping the entire old
embedding table ("all emb random") causes large
drop in performance, and that initializing the new
embeddings with that of <unk> leads to slightly
better performance than random initialization.

8The overall differences are small as the results are av-
eraged over 50 directions, however, the paired T-Test shows
statistically significant improvements.

9We did not apply learning rate scaling in this setup and
do not up-sample the old related low-resource languages. All
evaluations are done after 30K updates.
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All Orig. Added

Mt25
all emb random 30.7 32.1 25.1
new random 31.5 33.0 25.5
new <unk> 31.5 33.0 25.7

Mt25wide

new random 31.1 32.3 26.1
linear interp 31.8 33.3 26.0
concat 32.0 33.5 26.1

M20t25deep
random 31.5 32.8 26.3
closest layer 31.6 32.9 26.3
average layer 31.6 32.9 26.7

Table 4: Initializing the new embeddings with that of
<unk>, concatenating the original weight with a noisy
version of itself in Mt25wide and initializing new layer
in encoder/decoder with the averaged encoder/decoder
weights in Mt25deep achieve the best performance.9

Mt25wide A naive method to initialize wider
feed-forward layer projections is to expand the old
weight matrix with a randomly initialized weight
matrix. However, having random additional param-
eters messes up the output of feed-forward layer,
which interferes with the inter-dependency among
layers, thus we also tried concatenating the old
weight matrix with a noisy version of itself (con-
cat10) followed by a normalization operation11 to
keep the output as close to the original projec-
tion output as possible. In addition, rather than
maintaining the old weights in block, we also tried
linearly interpolating the original weight matrices
along the expanded dimension (linear interp). It’s
important that the new parameters in the two pro-
jection matrices in a feed-forward layer match each
other along the hidden dimension axis. Results
indicate that weight concatenation is a simple and
effective way that allows for faster convergence.

Mt25deep Our preliminary experiments show that
inserting new layers at the bottom of the encoder
and at the top of the decoder is more effective than
other attempted scenarios, so we went with this
setup in all our Mt25deep experiments. We tried dif-

10We inject zero-mean Gaussian noise with std = 0.01.
We also tried not adding noise to the new parameters, which
has almost identical performance. To avoid both parts of the
weight matrices learning redundant information, we decide to
add small perturbation to the new parameters.

11We normalize the new weight matrix such that it has
similar Frobenius norm as the old weight matrix.

Up-sampling config. All Orig. Added

α = 1 (No up-sampling) 31.0 33.2 22.2
α = 5 31.5∗ 33.0∗ 25.7∗
α = 10 31.1 32.6∗ 25.5∗

α = 5 + rel. low-resource 31.5∗ 33.1 25.1∗

Table 5: Performance of Mt25 at 30K updates without
applying learning rate scaling. Up-sampling new lan-
guages with a reasonable ratio during continual learning
leads to large gains on these new directions. ∗ indicates
p-value of paired T-test against the baseline (top row) is
smaller than 0.05.

M20 weights 
(M) 

expanded
dimension@0k

@30k

Figure 2: Before the continual learning (@0k), the wider
hidden projection matrix is initialized with a concate-
nation of M20 weights M and a noisy version of itself.
During the continual learning stage, the learning rate for
weights copied from old model is scaled by γ(old), the
rest are scaled by γ(new).

ferent methods of initializing the inserted layers, in-
cluding random initialization, copying parameters
from the closest layer,12 and averaging the weights
across all encoder or decoder layers. Although the
benefit is small, we do perceive that initializing the
new layers with averaged layer weights results in
better performance, especially on new translation
directions (26.7 vs. 26.3).

4.3 Effect of data up-sampling

We multiply the original dataset size of each up-
sampled direction by a value α before comput-
ing the final up-sample ratio. The new directions
thus constitute a larger portion in the new dataset
than if not. We show in Table 5 the effect of the
up-sample factor α. We find that up-sampling
selected languages leads to much better perfor-
mance (+3BLEU) on new directions than without
up-sampling. However, up-sampling the new direc-
tions too much (e.g., α = 10) worsens the perfor-
mance on old directions while not improving the
new directions. In general, we find the up-sampling

12Since we include the new layer at the bottom of the en-
coder and at the top of the decoder, the closest layer means
the first encoder layer and last decoder layer respectively.
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All Orig. Added

γ(old) = 1, γ(new) = 1 32.0 33.5 26.1
γ(old) = 0.5, γ(new) = 5 32.3∗ 33.8∗ 26.2
γ(old) = 0.5, γ(new) = 0.5 31.5∗ 33.3 24.7∗

γ(old) = 0.5, γ(new) = 1 32.1∗ 33.6∗ 26.0
γ(old) = 5, γ(new) = 5 31.9 33.4 26.1

Table 6: Performance of Mt25wide after 30K updates
while applying different learning rate scaling factor
based on notation in Figure 2. These experiments adopt
an earlier setup where the old related low-resource lan-
guages are not up-sampled. ∗ indicates p-value of paired
T-test against the baseline (top row) is smaller than 0.05.

factor α = 5 adopted in previous studies (Garcia
et al., 2021; Berard, 2021) suitable to many other
variants we have attempted in this work. Besides
merely up-sampling the new directions, we also
up-sample the old low-resource directions that be-
long to the same language family as any of the new
directions. Doing so slightly improves the perfor-
mance on old directions whereas causes a drop in
new directions, which further confirms the critical
role of up-sampling in balancing the performance
between the old and new directions.

4.4 Effect of learning rate scaling

As described in section 2, we scale down the learn-
ing rate for old (reused) parameters. In the case
of Mt25, all parameters are updated with a smaller
learning rate than the new token embeddings. In
the wider network, as we have established the effec-
tiveness of using concatenated weights, we apply
different learning rate to each part of the weight
matrices as generically illustrated in Figure 2. In
Mt25deep, the new layers are updated with a larger
learning rate while the rest of the parameters re-
ceive a smaller learning rate. Table 6 suggests that
having a smaller learning rate for old parameters is
more favorable than scaling all parameters by the
same amount ratio. Scaling down the update for
all parameters slows down the learning of the new
directions, whereas scaling up with a larger value
does not improve the performance either. While
already applying smaller update on old parameters,
scaling up the learning rate for the new parameters
can in fact improve both the old and new direc-
tions (the top two rows in Table 6). Overall we
find that learning rate scaling is an effective and
easy-to-implement alternative to previous meth-
ods (Kirkpatrick et al., 2017) in terms of alleviating
catastrophic forgetting.

Mt25 Mt25_v1 Mt25_v2 M12t25

All 32.6 32.7 32.5 32.7
High 35.8 36.0 35.8 35.9
Mid 29.6 29.8 29.7 29.3
Low 31.5 31.2 31.4 31.6
V_Low 19.0 20.0 19.0 20.1

Table 7: Besides the language breakdown shown in
Table 2, we show our approach also generalizes to
other groupings of old and new languages (Mt25_v1,
Mt25_v2 and M12t25), details about which are included
in Appendix A Table 10.

Mt25 Mt25_v1 Mt25_v2

∆BLEU Up ∆BLEU Up ∆BLEU Up

eng-bel -1.2 N 2.0 Y 2.4 Y
eng-guj 1.6 Y 0.9 Y 0.0 N
eng-npi 0.8 Y -0.1 Y -2.3 N
eng-xho 1.3 Y 0.0 N 1.1 Y

bel-eng -1.1 N -0.5 Y -0.7 Y
guj-eng -2.5 Y -2.6 Y -2.2 N
npi-eng -1.6 Y -0.6 Y -1.9 N
xho-eng -1.1 Y -1.3 N -0.7 Y

Table 8: Zoomed in analysis over specific language pairs.
Our approach is more effective in learning eng→xxx di-
rections than xxx→eng directions across different seed-
language setups regardless if the language is up-sampled
(Up=Y) or not (Up=N).

5 Analysis

5.1 How does the choice of seed languages
affect continual learning?

In addition to the core setup described in Table 2,
we also experiment with other settings. We con-
sidered three new setups following the natural sce-
nario where the seed languages are mostly of high-
and mid-resource languages. Two of the new se-
tups still adopt the 20/5 division between old and
new languages, but emphasize different scenarios —
Mt25_v1 covers one mid resource language in the
set of new languages and Mt25_v2 does not add
any new script. The last one instead initializes from
a model trained on 12 high- and mid-resource lan-
guages and adds in 13 new languages.13 We follow
the same configuration used in the previous experi-
ments and train into wider models in the continual
learning phase. Results in Table 7 demonstrate that
our approach successfully generalizes to all the new
settings, as similar performances can be achieved

13For detailed breakdown of these three new settings, we
refer readers to Table 10 and Table 11 in Appendix A
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Figure 3: We measure the drop in spBLEU on origi-
nal directions after substituting overlapped embeddings
in Mt25wide back to M20 model. Applying learning
rate scaling helps alleviate catastrophic forgetting as
spBLEU drops less than without LR scaling.

when models are trained on different choices of
seed languages, even when the number of seed lan-
guages are different. However, we do observe small
differences after zooming in by resource-levels. A
more fine-grained analysis over a few low-resource
languages that cover diverse scripts (bel-Cyrl, guj-
Gujr, npi-Deva, xho-Latn) is presented in Table 8.
In general, regardless of if the language pair is in
the seed language set or not, the eng→xxx direc-
tions are learned faster than xxx→eng directions,
since most of the pairs already exceed the base-
line performance after just 30K updates (compare
the upper part of Table 8 to the lower part). We
also verify the effectiveness of data up-sampling
for eng→xxx directions. Up-sampling these pairs
leads to much better performance than when not
up-sampling (e.g., compare performance of eng-bel
in the three setups).

5.2 How effective is learning rate scaling in
mitigating catastrophic forgetting?

To quantitatively measure the amount of informa-
tion lost after the continual learning phase, we
adopt an evaluation setup akin to (Garcia et al.,
2021), in which the embeddings in M20 that over-
lap with Mt25 are substituted with the correspond-
ing embeddings in Mt25. One can evaluate this
new M20 model with substituted embeddings on
the original 20 languages, and use the drop in sp-
BLEU as a proxy for the amount of knowledge lost
in the embeddings due to catastrophic forgetting. In
Figure 3, we display the spBLEU drop after substi-
tuting the embeddings of a Mt25wide model trained
with and without learning rate scaling. For both

10k 20k 30k
Updates

26

27

28

29

30

31

32

sp
BL

EU

Mt25wide

Mt25wide no lr scaling
Mt25wide no up-sampling

M25wide

M25@100k
wide

Figure 4: Training the M25 from scratch without using
the M20 weights converges significantly slower. Ap-
plying the techniques introduced in this work results in
the largest computation reduction, achieving over 95%
performance with less than 10% baseline computation.

variants, the spBLEU scores drop, indicating that
some information in the embeddings is lost after
training on the new languages. We also find that,
for both models, the decrease in spBLEU is larger
for (very) low-resource languages than high and
mid resource languages, which suggests (very) low-
resource languages are easier to be “forgotten” in
the second training phase, which reinforces our de-
cision of also up-sampling the related low-resource
languages as introduced in section 4.3. Finally, not
applying learning rate scaling leads to much larger
decrease in all directions, which manifests the ef-
fectiveness of scaling down the learning rate for
alleviating catastrophic forgetting.14

5.3 Computation saved
Due to the mismatched vocabularies and architec-
tures, models trained on the combination of new
and old languages are typically re-trained from
scratch after already incurring large computation
on old languages. In this section, we look at how
much computation can be effectively saved with
the approach proposed in this paper. Note that,
for both our methods and the retraining approach,
M20 is already trained, and its computation cost is
excluded from our calculation.

Although results in Table 1 shows that 50% of
the baseline computation is required to recover
the baseline performance, we show in Figure 4
that much computation can be saved if we slightly
slack the target performance. The M25wide model

14Besides probing the effect of learning rate scaling on
embeddings, we also present an analysis on the expanded
feed-forward weights in Appendix C.
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trained from scratch reaches only 78% of the base-
line performance after 10k updates, while mod-
els trained with the combination of our techniques
achieve over 97% of the baseline performance after
the same amount of updates (10% total computa-
tion of training Mt25wide).

6 Related Work

Our work is closely related to prior research on
adapting existing MMT models (Mohammadshahi
et al., 2022) to new languages (Lakew et al., 2019;
Kocmi, 2020). Neubig and Hu (2018) add low-
resource languages to multilingual models by fine-
tuning on low-resource data while regularizing
with related high-resource data. Garcia et al.
(2021) introduce simple vocabulary substitution
for adapting MMT models to new languages with-
out any architectural changes. Another line of
research employs modular approaches, which in-
clude training lightweight adapters (Bapna and Fi-
rat, 2019), language-specific encoder-decoders (Es-
colano et al., 2019, 2021), language specific embed-
dings (Berard, 2021) for learning new languages.
While sometimes escaping the need to train on old
examples, growing the model in a modular fash-
ion (Rusu et al., 2016) requires non-trivial changes
to standard architectures. In contrast, our work
relies on rehearsal mechanism (i.e., also train on
old examples) but does not need to modify network
structures (Robins, 1995).

Our approach is also related to works that focus
on continual learning of MT models for adapting
multiple domains. Thompson et al. (2019); Gu and
Feng (2020) adopt a method derived from Elas-
tic Weight Consolidation (Kirkpatrick et al., 2017)
to alleviate catastrophic forgetting. While most
prior works only investigate two-stage continual
learning, Cao et al. (2021) propose a new frame-
work that extends to multi-stage training to mitigate
catastrophic forgetting (Ring, 1994). The initializa-
tion of the new parameters and embeddings in our
technique is also related to that in (Pfeiffer et al.,
2021), which accommodate multilingual models to
unseen scripts via matrix factorization. Our focus
on the architectural differences between initial and
continual learning phase is also relevant to recent
discoveries that wider networks forget less catas-
trophically (Mirzadeh et al., 2022).

7 Conclusion

We show in this work that it is possible to efficiently
bootstrap from existing models and recover the
baseline performance with much less computation
while vocabularies and architectures can be differ-
ent in the continue learning stage. We highlight
the importance of (1) reusing the existing model
weights and carefully initializing the new param-
eters, (2) applying learning rate scaling, and (3)
performing data up-sampling. Analyses reveal that
scaling down the learning rate for old parameters
helps alleviate catastrophic forgetting, and that data
up-sampling is vital to achieving good performance
on the new directions. We hope our work can help
save computation for research into large-scale mul-
tilingual MT models, and more generally, will help
spur research into continual multitask learning in
the presence of architectural changes.

Limitations

While we explore the under-studied architectural
mismatches for continual learning of MMT models,
we focus exclusively on adding new languages in
bulk, without investigating adding languages one
by one continuously. Furthermore, due to limited
computational resources, we only experimented
with a few typical scenarios where the new lan-
guages are low or very-low resourced. Experiments
on other groupings of old and new languages could
further validate the effectiveness of our approach.
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Figure 5: We measure the amount of change in each
feed-forward layer’s projection weights via Frobenius
norm (∥ · ∥e for encoder layers and ∥ · ∥d for decoder
layers). Notation in this figure follows that in Figure 2.
Scaling down the learning rate for parameters copied
from the old model keeps them close to their initializa-
tion while pushes the newly added parameters farther
away.

A Language details

We present two extra language grouping settings
we have experimented in this section. To verify the
validity of our approach on other language group-
ings, we also experiment with two other settings
as shown in Table 10. In addition to dividing the
old/new languages by 20/5, we also tried a setting
where the seed model is trained on fewer languages
as reported in Table 11.

B Detailed performance of each direction

Table 12 contains the detailed performance of all
translation directions for all models reported in
Table 1.

C Norm Analysis

The analysis in section 5.2 is limited to only mea-
suring the lost information in the embeddings, to
understand how learning rate scaling affects the
weights other than embeddings, one natural ex-
tension is substituting other weights back to M20
as well. However, it leads to much worse perfor-
mance for both variants as the inter-dependency
among layers is impaired in this case. Therefore,
we instead measure the amount that the weights
of each encoder or decoder layer (denoted with
L0, L1, . . . , L11) change in the latent space via the
Frobenius norm. Following the notation in Figure 2,
we measure how much the weight matrices M1 and

M2 have changed from the original weight matrix
M (∥M1 −M∥ and ∥M2 −M∥), as well as how
much they differ from each other (∥M1 − M2∥).
We refer to the Frobenius norm in an encoder or
a decoder layer with ∥ · ∥e and ∥ · ∥d respectively.
The trend in Figure 5 shows that applying learning
rate scaling prevents M1 from deviating too much
from the original weights M and at the same time
pushes the new parameters to space farther from its
initialization. This is in contrast with the smaller
differences when not applying learning rate scal-
ing. The left side of Figure 5 indicates that even
after the continual learning, M1 and M2 stay close
to each other across the encoder layers, it is only
when reaching the last several decoder layers do the
two matrices demonstrate larger differences. Since
we initialize M1 and M2 both based on M , having
larger ∥M1−M2∥ reduces the chance of both parts
learning redundant information i.e., effectively us-
ing the additional parameters.

D Scaling learning rate by Fisher
information

Besides multiplying the learning rate for all old
parameters with the same scaling factor, we also
tried scaling the learning rate based on their Fisher
Information. This is directly inspired by Elastic
Weight Consolidation (Kirkpatrick et al., 2017),
in which extra penalty is incurred when parame-
ters crucial to the old tasks deviate too much from
their original values. We plot the distribution of the
per-token Fisher information of each parameter in
Figure 6 (right). We further experiment with LR
scaling over selected parameters that are supposed
to be important for old tasks (Fisher information
exceeds certain threshold based on Figure 6 (right)).
Results in Table 11 (right) shows that among our
attempted settings, scaling only part of the parame-
ters based on Fisher information does not improve
the overall performance. We conjecture that the
performance could be improved if the Fisher Infor-
mation is calculated on a larger set and that if we
apply a piece-wise threshold function for scaling
the learning rate of different parameters.

E Effect of LR scaling in alleviating
catastrophic forgetting

We include the spBLEU drop on the old languages
after substituting the embeddings of Mt25 back to
M20 in Figure 6.
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Language Language code Language family # bitext Res. level Script

M20 old languages

Latvian lav Baltic 2,288,307 Mid Latn
Lithuanian lit Baltic 2,322,619 Mid Latn
Swahili swh Benue-Congo 1,133,371 Mid Latn
Zulu zul Benue-Congo 656,450 Low Latn
Ukrainian ukr East Slavic 925,922 Low Cyrl
Belarusian bel East Slavic 55,185 V_Low Cyrl
Russian rus East Slavic 13,962,768 High Cyrl
Hindi hin Indo-Iranian 1,032,502 Mid Deva
Marathi mar Indo-Iranian 181,642 Low Deva
Malay msa Malayo-Polynesian 305,469 Low Latn
Macedonian mkd South Slavic 403,742 Low Cyrl
Bulgarian bul South Slavic 2,118,839 Mid Cyrl
Kyrgyz kir Turkic 336,554 Low Cyrl
Finnish fin Uralic 3,764,770 Mid Latn
Estonian est Uralic 2,410,543 Mid Latn
Polish pol West Slavic 3,062,818 Mid Latn
Czech ces West Slavic 23,792,604 High Latn
French fra Western European 20,031,051 High Latn
Spanish spa Western European 16,606,594 High Latn
German deu Western European 10,198,897 High Latn

Mt25 new languages

Xhosa xho Benue-Congo 634,078 Low Latn
Gujarati guj Indo-Iranian 153,985 Low Gujr
Nepali npi Indo-Iranian 72,250 V_Low Deva
Indonesian ind Malayo-Polynesian 771,801 Low Latn
Kazakh kaz Turkic 627,734 Low Cyrl

Table 9: Detailed information about languages used in the main setup of our experiments. Languages having >10M
examples are of high-resource languages, having (1M, 10M] mid-resource languages. The rest are of low-resource
languages, v_low is a subset of low-resource languages that have <100K examples.

Mt25_v1 Original Added

lav ukr∗ msa pol guj
lit rus mkd ces npi

swh hin bul fra est
zul mar∗ fin spa bel
xho ind kaz∗ deu kir

Mt25_v2 Original Added

lav hin mkd pol zul
lit mar bul ces xho

swh guj kaz∗ fra ind
ukr∗ npi fin spa bel
rus msa∗ est deu kir

Table 10: Besides the breakdown between old and new languages as shown in Table 2, Mt25_v1 uses the left
grouping and Mt25_v2 uses the right grouping of languages. ∗ marks the languages that are also up-sampled during
continual learning.
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Original Added

lav est zul mar
lit pol xho guj
swh ces ukr npi
rus fra bel ind
bul spa hin msa
fin deu mkd kaz

kir

All Orig. Added

f=1e-6, γ(old)=0.25 32.3 33.8 26.4
f=1e-6, γ(old)=0.1 32.1 33.7 26.0
f=1e-5, γ(old)=0.25 31.9 33.3 26.2
f=1e-5, γ(old)=0.1 32.1 33.5 26.6
f=1e-5, γ(old)=0.05 31.8 33.3 25.8
f=1e-4, γ(old)=0.25 31.7 33.1 26.1

Table 11: Left: M12t25 starts from a model trained on 12 high- and mid- resource languages and grows to a wider
model to support 13 new low- and very-low- resource languages. None of old languages is up-sampled in the
continual learning stage. Right: Performance of Mt25wide after 30k updates when the learning rate for parameter
whose Fisher information is greater than threshold f is scaled down by the corresponding γ(old) in each row.
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Figure 6: Left: spBLEU drop after substituting the embedding of the learned Mt25 model back to M20 model.
Right: Per token Fisher information calculated over FloRes dev set.
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Lang_pair M25 Mt25 M25wide Mt25(@30k)
wide M25deep Mt25(@30k)

deep

spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++ spBLEU chrF++

bel-eng 18.1 0.74 18.3 0.74 20.1 0.74 19.0 0.74 19.9 0.74 18.5 0.74
bul-eng 40.8 0.81 41.1 0.81 41.7 0.81 41.5 0.81 41.9 0.81 41.0 0.81
ces-eng 42.6 0.81 42.3 0.81 42.9 0.82 42.5 0.81 43.0 0.81 42.0 0.81
deu-eng 44.7 0.82 44.5 0.82 45.3 0.82 45.2 0.82 45.4 0.82 44.5 0.82
eng-bel 11.7 0.59 11.3 0.59 13.2 0.61 12.1 0.59 13.1 0.60 12.1 0.60
eng-bul 39.5 0.78 40.3 0.79 40.5 0.79 40.1 0.78 40.6 0.79 40.3 0.79
eng-ces 38.4 0.76 38.5 0.76 38.4 0.76 38.2 0.76 38.8 0.76 38.4 0.76
eng-deu 39.0 0.79 39.3 0.79 40.1 0.79 39.2 0.78 39.8 0.79 39.3 0.79
eng-est 30.3 0.76 30.1 0.76 32.0 0.77 30.7 0.76 31.5 0.76 30.7 0.76
eng-fin 28.5 0.76 28.5 0.76 30.3 0.76 29.3 0.76 30.7 0.77 29.5 0.76
eng-fra 49.4 0.81 49.4 0.81 48.6 0.81 49.3 0.81 49.1 0.81 49.1 0.81
eng-guj 24.2 0.63 28.3 0.67 25.5 0.64 28.4 0.67 25.3 0.64 28.0 0.66
eng-hin 32.0 0.71 31.5 0.71 33.4 0.72 32.6 0.71 32.7 0.71 32.8 0.71
eng-ind 40.1 0.81 40.0 0.81 41.2 0.81 44.4 0.82 41.4 0.81 43.7 0.82
eng-kaz 14.6 0.58 13.4 0.57 14.8 0.58 18.0 0.61 16.4 0.60 15.6 0.59
eng-kir 18.0 0.61 16.4 0.59 19.1 0.62 20.9 0.63 18.5 0.62 20.4 0.63
eng-lav 32.4 0.75 33.5 0.75 33.6 0.75 34.0 0.75 34.1 0.75 33.6 0.75
eng-lit 28.3 0.73 28.1 0.73 29.5 0.74 28.9 0.74 29.7 0.74 28.6 0.73
eng-mar 16.9 0.62 16.3 0.62 18.2 0.62 17.8 0.63 18.5 0.63 17.3 0.62
eng-mkd 34.9 0.77 35.2 0.77 36.5 0.77 35.8 0.77 35.8 0.77 35.2 0.77
eng-msa 37.2 0.80 32.5 0.79 39.6 0.81 43.3 0.82 39.3 0.80 42.3 0.82
eng-npi 11.3 0.47 17.6 0.59 13.9 0.52 16.4 0.57 13.7 0.52 15.3 0.54
eng-pol 23.5 0.70 23.5 0.70 24.9 0.70 24.2 0.70 24.4 0.70 23.3 0.70
eng-rus 32.4 0.71 32.3 0.70 33.1 0.71 33.2 0.70 33.5 0.71 32.5 0.70
eng-spa 29.8 0.74 28.9 0.74 29.2 0.74 29.6 0.74 30.2 0.74 29.5 0.74
eng-swh 34.4 0.78 34.5 0.78 35.3 0.78 35.2 0.78 35.1 0.78 35.0 0.79
eng-ukr 31.4 0.72 31.7 0.72 33.2 0.72 32.1 0.72 33.5 0.72 32.1 0.72
eng-xho 21.9 0.73 21.7 0.73 22.3 0.73 24.2 0.75 22.9 0.73 23.4 0.74
eng-zul 30.4 0.76 29.1 0.75 31.3 0.76 33.8 0.77 31.3 0.76 33.1 0.77
est-eng 36.8 0.78 36.7 0.78 37.6 0.79 36.3 0.78 37.4 0.79 36.9 0.79
fin-eng 34.5 0.78 35.1 0.78 35.6 0.78 35.1 0.78 35.8 0.78 35.0 0.78
fra-eng 47.0 0.83 47.2 0.83 48.2 0.83 47.9 0.83 48.2 0.83 47.5 0.83
guj-eng 29.9 0.76 29.7 0.76 31.5 0.76 30.7 0.76 31.4 0.76 29.0 0.75
hin-eng 34.9 0.79 35.0 0.79 36.8 0.80 35.7 0.79 36.6 0.79 35.4 0.79
ind-eng 42.2 0.81 41.4 0.81 43.8 0.81 42.8 0.81 43.4 0.81 43.0 0.81
kaz-eng 1.5 0.46 2.8 0.48 1.3 0.47 4.8 0.50 3.1 0.47 3.4 0.47
kir-eng 19.9 0.69 19.4 0.69 20.9 0.70 20.3 0.69 20.7 0.70 19.9 0.69
lav-eng 35.4 0.79 35.4 0.78 36.6 0.79 36.2 0.78 36.7 0.79 35.4 0.79
lit-eng 33.3 0.77 33.0 0.77 34.4 0.77 33.2 0.76 34.0 0.77 33.0 0.77
mar-eng 28.2 0.75 27.9 0.75 30.3 0.76 28.6 0.75 30.2 0.76 28.2 0.75
mkd-eng 41.9 0.81 42.6 0.81 43.8 0.82 42.8 0.81 43.2 0.81 42.9 0.81
msa-eng 43.4 0.81 42.3 0.81 44.2 0.82 44.6 0.82 43.9 0.81 43.8 0.82
npi-eng 29.2 0.75 29.6 0.75 31.7 0.76 29.7 0.75 31.7 0.76 29.6 0.75
pol-eng 31.5 0.77 31.6 0.76 32.4 0.77 31.9 0.76 32.1 0.77 31.6 0.76
rus-eng 36.9 0.79 36.6 0.79 38.1 0.79 37.6 0.79 38.0 0.79 36.9 0.79
spa-eng 33.1 0.79 33.4 0.79 33.7 0.79 33.7 0.79 34.1 0.79 33.5 0.79
swh-eng 40.2 0.79 40.7 0.79 42.0 0.79 40.8 0.79 41.9 0.79 40.6 0.79
ukr-eng 38.6 0.80 39.0 0.80 40.5 0.80 39.6 0.80 40.4 0.80 39.4 0.80
xho-eng 31.4 0.73 31.2 0.73 33.1 0.74 32.4 0.73 32.8 0.74 31.3 0.73
zul-eng 34.8 0.76 34.4 0.76 36.0 0.76 37.1 0.77 36.2 0.76 36.2 0.76

Table 12: Detailed performance of each translation direction for all models shown in Table 1
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