
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1564–1572
May 2-6, 2023 ©2023 Association for Computational Linguistics

Towards More Efficient Insertion Transformer
with Fractional Positional Encoding

Zhisong Zhang1∗, Yizhe Zhang2†, Bill Dolan3

1Carnegie Mellon University, 2Apple Inc., 3Microsoft Research
zhisongz@cs.cmu.edu,yizhe.zhang@hotmail.com,billdol@microsoft.com

Abstract

Auto-regressive neural sequence models have
been shown to be effective across text genera-
tion tasks. However, their left-to-right decod-
ing order prevents generation from being par-
allelized. Insertion Transformer (Stern et al.,
2019) is an attractive alternative that allows
outputting multiple tokens in a single gener-
ation step. Nevertheless, due to the incom-
patibility between absolute positional encod-
ing and insertion-based generation schemes, it
needs to refresh the encoding of every token in
the generated partial hypothesis at each step,
which could be costly. We design a novel
reusable positional encoding scheme for Inser-
tion Transformers called Fractional Positional
Encoding (FPE), which allows reusing repre-
sentations calculated in previous steps. Em-
pirical studies on various text generation tasks
demonstrate the effectiveness of FPE, which
leads to floating-point operation reduction and
latency improvements on batched decoding.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have been successfully applied to various text gen-
eration tasks (Gong et al., 2019; Wang et al., 2019;
Ahmad et al., 2020; Zhang et al., 2020a; Lewis
et al., 2020; Brown et al., 2020). Most of these
models utilize a fixed left-to-right auto-regressive
generation strategy, where the strict factorization
means that the model can only generate one token
per step. This makes it difficult to parallelize the
decoding process, while parallel generation may
help to improve decoding efficiency.

Recently, insertion-based sequence-generation
models (Stern et al., 2019; Gu et al., 2019a; Welleck
et al., 2019) have been developed as attractive alter-
natives to the auto-regressive ones by allowing flex-
ible generation order. In particular, the Insertion
Transformer (Stern et al., 2019), which combines

∗Work done during an internship at Microsoft Research.
†Work done at Microsoft Research.

the Transformer architecture and the insertion-
based strategy, can match the performance of an
auto-regressive model while requiring many fewer
decoding steps with parallel generation.

The original Insertion Transformer utilizes ab-
solute positional encoding as in the vanilla auto-
regressive transformer. In the vanilla transformer,
due to its left-to-right generation scheme, tokens’
absolute positions do not change; thus, previous
computation can be reused. However, this property
no longer holds if insertion is allowed, and the In-
sertion Transformer re-encodes all previously gen-
erated tokens at each decoding step, which brings
additional computational overheads.

In this work, we propose a reusable positional en-
coding scheme called Fractional Positional Encod-
ing (FPE) to accelerate the Insertion Transformer.
This scheme dynamically calculates each token’s
positional representations according to its left and
right neighbors at insertion time. In this way, each
token’s positional representations will not change
during the decoding process so that the computa-
tion can be reusable in the same way as the vanilla
transformer, leading to a reduction of computation
for the Insertion Transformer.

We evaluate FPE with a range of text genera-
tion tasks, including machine translation, word re-
ordering, summarization as well as an open-ended
text completion task. We show that the proposed
scheme can reduce floating point operations of the
insertion-based model while maintaining compara-
ble performance to the vanilla transformer.

Our implementation is available at https://
github.com/zzsfornlp/zgen1/.

2 Insertion Transformer

Insertion Transformer (Stern et al., 2019) generates
the target sequences via a series of insertion oper-
ations. This provides a flexible scheme that can
enable different generation orders as well as paral-
lel generation. We focus on the parallel-generation

1564

https://github.com/zzsfornlp/zgen1/
https://github.com/zzsfornlp/zgen1/


0 1 2

0 1 2 3

L2R INS w/ ABS

0 1 2

0 21 43

INS w/ REL

-1 +1 +2 +3

INS w/ FPE

0 0.50.25 10.75

0 0.5 1

f f

Figure 1: Illustrations of different positional encoding schemes. Black (or red) nodes denote the tokens that
already exist in the previous step, while the newly generated ones are in blue. In ABS, the positional embeddings
in previous steps may be non-reusable since absolute positions may change (marked as red). Representations can
be made reusable by using REL or our proposed FPE. (Note that the fractional numbers in the FPE figure are only
for better illustration, in practice, we adopt embeddings calculated by a learnable linear function.)

variant that inserts multiple tokens at each step.
While the left-to-right scheme can only append one
token at each step, the insertion-based scheme can
add multiple tokens at different slots, thus poten-
tially enabling more efficient generation.

3 Positional Encoding

Figure 1 provides an overview of different posi-
tional encoding schemes that we explore. The
vanilla left-to-right (L2R) Transformer model
(Vaswani et al., 2017) adopts a simple absolute po-
sitional encoding scheme by assigning left-to-right
increasing indexes to each token. This naturally fits
the left-to-right generation procedure and allows
the previously calculated hidden representations
to be reusable. However, in the insertion-based
generation, since tokens can be inserted before pre-
viously generated tokens, the absolute position of
a token may change. Therefore, if still using the
absolute positional encoding (ABS), the previously
calculated hidden layers cannot be reused and the
Insertion Transformer needs to re-encode all the ex-
isting tokens at each step. This yields computation
overhead, which may offset the computation gain
from parallelization.

To solve this problem, alternative positional en-
coding schemes are required. Relative positional
encoding (REL; Shaw et al., 2018) is an example,
which has been adopted for insertion-based mod-
els (Lu et al., 2022). Here, each token records its
relative positional information at its insertion time.
Though this scheme alleviates encoding absolute
positions and allows reusing, it requires complex
modifications in the attention calculations.

In this work, we design fractional positional
encoding (FPE), which is a simpler alternative
scheme that only modifies the input embeddings.
We still give each token a positional embedding p,
which is dynamically calculated along the gener-

ation process. Whenever a new token wnew is in-
serted between two existing tokens wleft and wright,
its positional representations will be calculated
with a function f applying to its current left and
right neighbors: pnew = f(pleft,pright). In this
way, we will have the “fractional”-styled positions.
The positional representations of all the tokens will
not change throughout the decoding process, and
re-encoding is no longer needed.

We specify the FPE representations p to have the
same dimension as the model size and add them to
the input embeddings as in the vanilla transformer.
We further specify two randomly-initialized embed-
dings pB and pE for the beginning- and ending-
of sequence tokens, respectively. The function f is
modeled by a linear layer1 which takes the concate-
nation of the two neighbors’ positional embeddings
and outputs a new vector of the model size. At train-
ing time, all these FPE-related parameters are tuned
along with other parameters in the model. The lin-
ear layer is lightweight compared to the transformer
layers, thus introducing negligible cost.

4 Experiments

4.1 Settings

We explore a variety of generation tasks, includ-
ing machine translation, word reordering, summa-
rization, as well as an open-ended text completion
task. We use WMT14 En-De (Bojar et al., 2014)
for machine translation, sentences in WikiText-103
(Wiki103; Merity et al., 2016) for word reordering,
XSUM (Narayan et al., 2018) for summarization
and paragraphs in Wiki103 for completion. In the
text completion task, the model is required to com-
plete each paragraph according to the existing con-

1We start with the simple linear layer and find it works
reasonably well. We also tried some other methods such
as adding non-linearity activation but did not find obvious
benefits. Therefore, we adopt this simple method.

1565



Task Model Evaluation ↑ #Step #Len Latency ↓

Translation
(WMT14 EN-DE)

L2R 27.72 28.4 22.1 230.1
ABS 27.45 5.7 21.5 100.3
REL 27.40 5.5 21.5 105.0
FPE 27.47 5.6 21.4 97.2

Text Reordering
(Wiki-103)

L2R 52.82 27.9 24.8 224.7
ABS 50.69 6.8 24.2 113.9
REL 52.63 6.0 24.6 120.7
FPE 52.52 6.0 24.8 105.9

Summarization
(XSUM)

L2R 31.33/11.65/25.32 21.3 19.7 206.9
ABS 32.09/11.39/25.68 6.7 24.3 114.9
REL 31.90/11.66/25.80 6.2 22.9 125.2
FPE 31.78/11.57/25.67 6.2 22.7 114.4

Text Completion
(Wiki-103)

L2R 3.87/8.48/14.54 55.6 48.9 468.0
ABS 1.19/7.66/12.90 9.5 49.4 141.9
REL 1.69/8.41/13.23 8.1 54.7 161.0
FPE 1.61/8.26/13.47 8.0 52.3 129.9

Table 1: Main results of comparing an auto-regressive left-to-right (L2R) model and three insertion models with
absolute (ABS), relative (REL), and fractional (FPE) positional encoding. “Evaluation” denotes automatic eval-
uation metrics: BLEU for MT and reordering, R-1/R-2/R-L for summarization, and BLEU/METEOR/R-L for
completion. “#Step” and “#Len” indicate the average decoding steps and output lengths, respectively. “Latency”
denotes the actual average decoding time (ms) per instance with single-instance decoding.

1K 2K 3K 4K 5K 6K
Batch Size (Tokens)

4

6

8

10

La
te

nc
y 

(m
s)

Translation

L2R
ABS
REL
FPE

Figure 2: Latency of MT models with different decod-
ing batch sizes (source tokens). Results with single-
instance decoding are not shown here since since its
latency is much higher.

text. All the decoding experiments are performed
with one V100 GPU. Please refer to Appendix A
and B for more dataset and experimental details.

4.2 Results

We compare our method (FPE) with the vanilla
transformer (L2R), and two other insertion-based
models with absolute (ABS) and relative (REL)
positional encoding. The main results are shown
in Table 1. For automatic performance evaluations,
the three insertion-based transformer models (ABS,
REL, and FPE) achieve similar results. Compared
with L2R, the insertion models’ performance is
competitive on MT, reordering, and summarization
tasks, while being behind on the open-ended text

Batch-size 1K 2K 3K 4K 5K 6K

L2R 10.3 5.9 4.2 3.3 3.0 3.0
ABS 5.4 4.5 4.4 4.3 4.4 4.6
REL 4.7 3.4 3.0 2.8 2.8 2.8
FPE 4.4 3.2 2.8 2.6 2.6 2.5

Table 2: Latency of MT models (milliseconds per in-
stance) with different decoding batch sizes (source to-
kens). This table shows the detailed numbers corre-
sponding to those in Figure 2.

completion task. This is presumably due to the con-
ditional independence assumption in the parallel
generation steps. This issue is beyond the scope of
this paper, so we leave it to future work.

For efficiency, insertion-based models can gen-
erate target sequences with much fewer decoding
steps, leading to latency reduction where the in-
sertion models can achieve around 2x speedups
compared to L2R in single-instance mode.

4.3 Batched Decoding

We further explore batched decoding, which is usu-
ally adopted to speed up the computation via data
parallelism. The latency of MT models against
different batch sizes can be found in Figure 2 and
Table 2, from which we observe that:

• ABS becomes less efficient when decoding in
batches, probably due to the extra computations2

2We further measure the floating point operations (FLOPs)

1566



[1,10) [10,20) [20,30) [30,40) >=40
Source Length (Tokens)

0

2

4

6

La
te

nc
y 

(m
s)

L2R
ABS
REL
FPE

Figure 3: Latency breakdowns on source sequence
lengths for the MT task with batched decoding (6K).

brought by re-encoding. Though this does not
affect its efficiency in the single-instance mode
where GPU’s computational capacity may not
be fulfilled yet, in batched decoding the extra
re-encoding computations greatly dampen its ef-
ficiency improvements.

• FPE and REL are faster than L2R for relatively
small batch sizes. While the batch size becomes
larger, the efficiency gain becomes less obvious.
Presumably, more complex indexing operations
in the insertion-based schemes do not utilize
GPUs as fully as L2R. We leave this optimization
to future work.

• REL behaves similarly to FPE, but is consistently
around 10% slower, probably due to the extra
relative positional computations in attentions.

The patterns in other tasks are similar to MT and
are shown in Appendix C.

Note that many previous works consider only
single-instance or batched decoding mode when
measuring efficiency, while we examine both to in-
clude a spectrum of real scenarios covering various
device memory capacities and querying patterns.
While the L2R model and the original Insertion
Transformer (w/ ABS) only excel at one end, FPE
could help to make the model efficient for both
scenarios, potentially benefiting more use cases.

4.4 Length Breakdown

We further perform an ablated speed analysis by
breaking down the instances by sequence length.
Here, we investigate the task of machine translation
and split the instances into different bins according

for decoding an instance following the method of Elbayad
et al. (2020) and find that the ABS-based model requires much
larger FLOPs than other models. For example, on the MT
models, FLOPs per instance is 8.69B for ABS, while FPE
only requires 4.65B (REL needs 4.68B).

to source lengths. The breakdown results with a
batch size of 6K are shown in Figure 3. The trends
are generally similar to the overall results. ABS
is not quite efficient for batched decoding and can
be even slower than L2R. Though the utilization
of FPE does not provide obvious efficiency im-
provements on short sentences, it brings benefits
for generating longer sequences. It can achieve a
1.7x speedup over L2R for sentences that are longer
than 40 tokens, even with a large batch size. Sim-
ilar to the overall trend, FPE is consistently more
efficient than REL, yet being simpler.

5 Related work

Generation Order. Previous works have been
exploring relaxing the output dependencies
and allowing parallel generation. The Non-
Autoregressive Transformer (NAT) (Gu et al.,
2018) enables the decoder to generate target se-
quences in one or several decoding steps (Gu et al.,
2018; Gu and Kong, 2021; Lee et al., 2018; Gu
et al., 2019b; Ghazvininejad et al., 2019). Most
of these models require predicting target length
and generating multiple consecutive tokens at once.
The generation is sometimes not fluent, as mul-
tiple tokens may compete for the same meaning.
The insertion-based methods (Stern et al., 2019;
Gu et al., 2019a; Welleck et al., 2019; Chan et al.,
2020; Zhang et al., 2020b) also change the stan-
dard left-to-right generation by allowing dynami-
cally inserting tokens for the generation process.
This provides a good balance between generation
fluency and efficiency, and does not require pre-
dicting target lengths first. In this work, we follow
this insertion-based generation scheme and further
improve its efficiency. In addition to efficiency,
allowing flexible generation order is another mo-
tivation to study non-L2R generation schemes. A
good generation order may bring performance ben-
efits (Ford et al., 2018; Jiang and Bansal, 2021).

Reusable Positional Encoding. In insertion-
based models, the absolute positional encoding
can be non-reusable since an inserted token will
change the absolute positions of its following to-
kens. Alternative schemes are required to enable
reusable encoding. Relative positional encoding
(Shaw et al., 2018) is utilized for the insertion-
based generation in some recent work (Gu et al.,
2019a; Lu et al., 2022) to avoid the re-encoding
of the previously generated tokens. However, it
requires modifications to the inner attention mech-

1567



anism of the Transformer, while our FPE scheme
is a simpler alternative that only modifies the in-
put. In a similar spirit to our scheme, Shiv and
Quirk (2019) explore a tree-based positional en-
coding strategy. Our scheme is different in that in
the insertion-based generation, each node has two
parent nodes, yielding a graph structure rather than
a tree.

6 Conclusion

In this work, we investigate the re-encoding issue
that sometimes hinders the Insertion Transformer
from receiving its computation gain and propose a
Fractional Positional Encoding scheme that is nat-
urally compatible with the insertion-based genera-
tion scheme to solve this issue. With experiments
on various tasks, we show that this simple scheme
eliminates the need of re-encoding the previously
generated tokens and obtains a promising balance
between efficiency and performance.

Limitations

This work has several limitations. First, we mainly
rely upon the architecture and decoding strategy
of the Insertion Transformer, which only allows
the generation of one token between two neigh-
boring tokens at one step. It would be interest-
ing to consider more flexible generation schemes.
It would also be interesting to compare our mod-
els with other (semi) non-autoregressive models,
which we leave to future work. Moreover, we fol-
low the best-performing binary tree training objec-
tive of the Insertion Transformer, which in some
way sacrifices the flexibility of the generation order.
It would be interesting to explore the application
of the proposed positional encoding scheme with
more flexible generation orders. It would also be
interesting to explore the impacts of using larger
pre-trained models and investigate how it interacts
with the insertion-based scheme. Finally, on the
open-ended generation task, the insertion-based
method still performs worse than the left-to-right
one, which requires further investigation since the
output dependencies would need more careful mod-
eling in the open-ended scenarios.

Broader Impact

This work focuses on improving for the natural
language processing (NLP) and general artificial
intelligence (AI) research community. Our work

can be leveraged to improve natural language gen-
eration (NLG) models, including but not limited
to text editing, conversational agents, and question
answering systems. The broader impact and the
risks of this work are summarized as following:
• This work can facilitate research in the NLG
tasks in a generic manner, to potentially accelerate
generations in applications like machine translation,
text summarization, and virtual assistants.
• This work is a fundamental research work that
focuses on technical improvement, thus we have
NOT imposed additional aggressive filtering tech-
niques to the text data we used, beyond what has
been performed to the original dataset from their
sources. The text data we used may have offensive-
ness/toxicity/fairness/bias issues that we haven’t
been able to identify, as those are not the main
focus of this work.
• Given the above potential risk, due to the nature
of natural language generative models, we note that
the generations or outputs of this work, though not
likely, may reflect gender and other historical bi-
ases implicit in the data. Under rare circumstances,
the generations may exhibit a mild extent of unethi-
cal, biased, or offensive attitudes. These are known
issues with current state-of-the-art text generation
models. We would hope that a faster generation sys-
tem as what we present can enable more iterations
of further mitigation strategies to inappropriate and
hallucinated generations.
• This work aims to advance AI technology in
an environmental-friendly manner. Our proposed
method can potentially reduce carbon footprints
produced by AI models.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007,
Online. Association for Computational Linguistics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

1568

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302


Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

William Chan, Mitchell Stern, Jamie Kiros, and Jakob
Uszkoreit. 2020. An empirical study of generation
order for machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5764–5773,
Online. Association for Computational Linguistics.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In Interna-
tional Conference on Learning Representations.

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi,
and George Dahl. 2018. The importance of genera-
tion order in language modeling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2942–2946, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Li Gong, Josep Crego, and Jean Senellart. 2019. En-
hanced transformer model for data-to-text genera-
tion. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 148–156, Hong
Kong. Association for Computational Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In ICLR.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Compu-
tational Linguistics: ACL-IJCNLP 2021, pages 120–
133, Online. Association for Computational Linguis-
tics.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019a.
Insertion-based decoding with automatically in-
ferred generation order. Transactions of the Asso-
ciation for Computational Linguistics, 7:661–676.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019b.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Yichen Jiang and Mohit Bansal. 2021. Learning and
analyzing generation order for undirected sequence
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 3513–3523,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173–
1182, Brussels, Belgium. Association for Computa-
tional Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Sidi Lu, Tao Meng, and Nanyun Peng. 2022. In-
snet: An efficient, flexible, and performant insertion-
based text generation model. In Advances in Neural
Information Processing Systems.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

1569

https://doi.org/10.18653/v1/2020.emnlp-main.464
https://doi.org/10.18653/v1/2020.emnlp-main.464
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/10.18653/v1/D18-1324
https://doi.org/10.18653/v1/D18-1324
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-5615
https://doi.org/10.18653/v1/D19-5615
https://doi.org/10.18653/v1/D19-5615
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.1162/tacl_a_00292
https://doi.org/10.1162/tacl_a_00292
https://proceedings.neurips.cc/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2021.findings-emnlp.298
https://doi.org/10.18653/v1/2021.findings-emnlp.298
https://doi.org/10.18653/v1/2021.findings-emnlp.298
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387


Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Vighnesh Shiv and Chris Quirk. 2019. Novel posi-
tional encodings to enable tree-based transformers.
Advances in Neural Information Processing Systems,
32:12081–12091.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In In-
ternational Conference on Machine Learning, pages
5976–5985. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In International Conference on Ma-
chine Learning, pages 6716–6726. PMLR.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020a. DIALOGPT : Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 270–
278, Online. Association for Computational Linguis-
tics.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe
Gan, Chris Brockett, and Bill Dolan. 2020b.
POINTER: Constrained progressive text generation
via insertion-based generative pre-training. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 8649–8670, Online. Association for Compu-
tational Linguistics.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in non-
autoregressive machine translation. In International
Conference on Learning Representations.

1570

https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.emnlp-main.698
https://doi.org/10.18653/v1/2020.emnlp-main.698
https://openreview.net/forum?id=BygFVAEKDH
https://openreview.net/forum?id=BygFVAEKDH


A Dataset details

We provide more details of the datasets utilized in
this work:
• WMT14 (En-De). For machine translation,
we utilize the widely used WMT 2014 English-
German translation dataset (Bojar et al., 2014),
with newstest2013 as the development and new-
stest2014 as the test set. Following previous work
(Stern et al., 2019; Chan et al., 2020), we ap-
ply sequence-level knowledge distillation (Hinton
et al., 2015; Kim and Rush, 2016) from a left-to-
right autoregressive model, which has been found
helpful to reduce data complexity and improve the
performance of NAT models (Zhou et al., 2020).
•Wiki103(S). For word reordering, we take text
sequences from the WikiText-103 dataset (Merity
et al., 2016). Here, we focus on the task at the
Sentence level and thus perform sentence-splitting
and treat each sentence as an individual sequence.
• XSUM. For summarization, we utilize the
XSUM dataset (Narayan et al., 2018), where the
targets are short, one-sentence news summaries
for news articles. This task does not favor the ex-
tractive strategies and provides a good test bed for
abstractive generation-based models. Following
previous work (Liu and Lapata, 2019), We truncate
the input documents to 512 tokens.
• Wiki103(P). For paragraph completion, we
again utilize the WikiText-103 dataset, but at the
Paragraph level this time. We take paragraphs that
contain four to seven sentences. For each para-
graph, we take the last two sentences as the target
and the previous ones are used as the source inputs.

Table 3 summarizes the statistics of the datasets.

B Experimental settings

We mainly follow the settings of the original Inser-
tion Transformer (Stern et al., 2019). To further
encourage generations in fewer steps, we adopt the
Binary Tree training loss. For the REL-based in-
sertion model, we include the relative positional
encoding by modifying attentions following (Shaw
et al., 2018). For other hyper-parameter settings,
we mainly follow the common practice. We adopt
slightly different settings for constrained and open-
ended tasks, which are described in the following.

For the source-constrained tasks (MT, reorder-
ing, and summarization), we take the Transformer-
base architecture (Vaswani et al., 2017) (6 layers,
8 heads per layer, 512 model dimensions) and the
full model contains around 66M parameters. The

Datasets #Seq.(train/dev/test) Src-Len Trg-Len

WMT14 4.0M/3.0K/3.0K 26.1 24.8
Wiki103(S) 1.8M/3.8K/4.1K 25.7 25.7

XSUM 204K/11.3K/11.3K 328.5 23.3
Wiki103(P) 349K/0.8K/0.8K 79.9 50.6

Table 3: Statistics of the datasets utilized in this work.
Here, “#Seq.” denotes the number of instances (se-
quences) in each split, “Src-Len” indicates the average
number of words in the source, and “Trg-Len” shows
the average number of words in the target.

models are trained by the Adam optimizer (Kingma
and Ba, 2015), with the same learning rate schedul-
ing scheme of (Vaswani et al., 2017). We train
the models for a maximum of 300K steps for ma-
chine translation and 100K steps for reordering and
summarization. The models are validated on the
development set every 1K steps and we average
the five checkpoints that obtain the best results to
obtain the final model. We take standard evalua-
tion metrics for the corresponding tasks: BLEU3

(Papineni et al., 2002) for machine translation and
word reordering, ROUGE4 (Lin, 2004) for summa-
rization. Unless otherwise specified, we utilize a
beam size of 4 in decoding. Following Stern et al.
(2019) and Chan et al. (2020), we select an EOS
penalty ∈ {0, 0.5, 1, ..., 5} according to the results
on the development set.

For the open-ended paragraph completion task,
we adopt similar schemes, but with a difference of
employing pre-trained models, which we find help-
ful in preliminary experiments. Due to limitation
of computational resources, we adopt a relatively
small model: the distilled version5 (Sanh et al.,
2019) of RoBERTa (Liu et al., 2019) (6 layers,
12 heads per layer, 768 model dimensions). The
full model contains around 140M parameters. We
adopt similar training schemes to the constrained
cases and the models are trained for 300K steps.
Since there are no reliable automatic evaluation
metrics for this task, we simply average the fi-
nal five checkpoints as the final model. For the
open-ended task, we find that using greedy or beam
search sometimes leads to outputs with severe rep-
etition problems, we thus apply sampling, specif-

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

4https://github.com/google-research/
google-research/tree/master/rouge

5https://huggingface.co/
distilroberta-base

1571

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://huggingface.co/distilroberta-base
https://huggingface.co/distilroberta-base


1K 2K 3K 4K 5K 6K
Batch Size (Tokens)

2

4

6

La
te

nc
y 

(m
s)

Reordering

L2R
ABS
REL
FPE

5K 10K 15K 20K 25K 30K
Batch Size (Tokens)

5

10

15

20

La
te

nc
y 

(m
s)

Summarization

L2R
ABS
REL
FPE

1K 2K 3K 4K 5K 6K
Batch Size (Tokens)

20

40

60

La
te

nc
y 

(m
s)

Completion

L2R
ABS
REL
FPE

Figure 4: Latency of the models with different decod-
ing batch sizes (source tokens) for more tasks.

ically, nucleus sampling with p=0.95 (Holtzman
et al., 2020) in decoding.

All the models are trained with four V100 GPUs
and tested with one V100 GPU. The training takes
one to three days depending on the tasks.

C Additional Results

In Figure 4, we further show the batched-decoding
latency of different models on more tasks. The
patterns are generally similar to those in Figure 2
of the MT task.

1572


