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Abstract

Recent geometric-based approaches have been
shown to efficiently model complex logical
queries (including the intersection operation)
over Knowledge Graphs based on the natu-
ral representation of Venn diagram. Existing
geometric-based models (using points, boxes
embeddings), however, cannot handle the log-
ical negation operation. Further, those using
cones embeddings are limited to representing
queries by two-dimensional shapes, which re-
duced their effectiveness in capturing entities
query relations for correct answers. To over-
come this challenge, we propose unbounded
cylinder embeddings (namely CylE), which is
a novel geometric-based model based on three-
dimensional shapes. Our approach can han-
dle a complete set of basic first-order logic op-
erations (conjunctions, disjunctions and nega-
tions). CylE considers queries as Cartesian
products of unbounded sector-cylinders and
consider a set of nearest boxes corresponds to
the set of answer entities. Precisely, the con-
junctions can be represented via the intersec-
tions of unbounded sector-cylinders. Trans-
forming queries to Disjunctive Normal Form
can handle queries with disjunctions. The
negations can be represented by consider-
ing the closure of complement for an arbi-
trary unbounded sector-cylinder. Empirical
results show that the performance of multi-
hop reasoning task using CylE significantly in-
creases over state-of-the-art geometric-based
query embedding models for queries without
negation. For queries with negation operations,
though the performance is on a par with the
best performing geometric-based model, CylE
significantly outperforms a recent distribution-
based model.

1 Introduction

Multi-hop Reasoning (MHR) on Knowledge
Graphs (KGs) is a primary task in answering
queries over large-scale knowledge graphs. Queries
can be represented using First-Order-Logic (FOL)

connectives (Brachman and Levesque, 2004), in-
volving these operations: existential quantification
(∃), conjunction (∧), disjunction (∨) and negation
(¬). MHR involves learning to answer these FOL
queries, which has recently received attention from
several studies (Hamilton et al., 2018; Ren et al.,
2020; Ren and Leskovec, 2020). A common ap-
proach is to first transform the FOL query into a
computation graph (see Figure 1), where nodes rep-
resent entity constants or variables and edges map
to predicates and logical operations. Representing
queries in this way enables the learning process to
traverse paths of KGs via the computation graph, so
as to find a set of answers for a given query. How-
ever, large-scale KGs (Bollacker et al., 2008; Vran-
dečić and Krötzsch, 2014; Lehmann et al., 2015;
Speer et al., 2017; Fellbaum, 2010; Mitchell et al.,
2018) are often incomplete and noisy, which makes
explicit query mechanism, such as graph traversal
incapable of returning correct answers to a query.

Motivated by the challenge above, we aim to
reason about incomplete KGs using MHR (Lin
et al., 2018; Zhang et al., 2021a). To achieve MHR,
recent studies have proposed several query embed-
ding (QE) methods based on geometry (Hamilton
et al., 2018; Ren et al., 2020; Zhang et al., 2021b)
and probability distribution representations (Ren
and Leskovec, 2020; Choudhary et al., 2021a).
A common approach of QE in the literature is
to project the FOL queries into an embedding
space, allowing a model to learn the embeddings
of queries and entities. Answering these queries
is equivalent to finding the similarity between
the embedded queries and the embedded entities.
Geometric-based models using cone embeddings
ConE (Zhang et al., 2021b) are shown to be su-
perior over the others, especially the ability of
handling negations. ConE represents queries as
Cartesian product of sector-cones in an embed-
ding space. ConE projects target entities as lines
and queries as areas of sector-cones. Intuitively,
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Figure 1: (Left): An example of a computation graph for a FOL query (rewritten from a natural query). (Right):
The intuition of CylE is to model anchor and target entities as perpendicular boxes regarding the base of sector-
cylinders. Each edge of the computation graph transforms the entity with its relation into the sector-cylinder
embedding via projection, intersection or complement operations; then outputting an embedded query.

if the line is inside the area, the corresponding
entity is considered as a match to the query. Nev-
ertheless, cone embeddings are limited to the 2D
space in a flat plane, to represent the query and
entity embeddings. For example, one entity in a
cluster of the sub-topic /movie/action and one in
another /movie/documentary can be in the sector-
cone region for those labels in the topic /movie
(see Figure 2(a)). Answering a query regarding the
/movie/action can return irrelevant entities from the
/movie/documentary. In multi-dimensional space,
entities assigned to multiple labels can be achieved
using multi-dimensional classification (Read et al.,
2013). In the 3D space, for instance, apart from the
xy-plane, semantics of entities can be additionally
classified by different levels of degree in the height
segment (along the z-axis).

In this paper, we propose to expand the two di-
mension sector-cone embeddings into the three di-
mension coordinate system. We represent queries
by augmenting the shape of the sector-cones to
be similar as unbounded sector-cylinders (shortly
called sector-cylinders) in an embedding space,
compared to closed sector-cylinders in a nor-
mal situation (see examples of unbounded sector-
cylinders, their intersection or union in Figure 2
and further definitions in Section 4.1). In short, we
name this approach Cylinder Embeddings (CylE).
Answering a query is similar to finding entities
that are subsets of the sector-cylinders representing
queries. We investigate whether there is any im-
provement in answering correctly any query struc-
tures, using CylE over other approaches. Our ap-
proach can handle the conjunction as we notice
that the intersection of sector-cylinders (along the
z-axis) can be a sector-cylinder. Since the union of
sector-cylinders is no longer a sector-cylinder, we

first transform queries to Disjunctive Normal Form
(DNF), which enables CylE to handle disjunction.
With regard to the negation operation, we con-
sider the closure-complement of sector-cylinders
to model this operation. Our contributions are: (1)
introducing the first 3D geometric-based approach
to model the QE for MHR to the best of our knowl-
edge, (2) enabling the model to handle a complete
set of the basic FOL queries (existential quantifica-
tion, conjunction, disjunction and negation) and (3)
demonstrating that CylE significantly outperforms
state-of-the-art (SOTA) geometric-based models
for non-negation queries and is on par for queries
with negations by empirical results.

2 Related works

Multi-hop Reasoning for logical query Stud-
ies in MHR employed approaches such as (dis-
tributions (Ren and Leskovec, 2020; Choudhary
et al., 2021a; Huang et al., 2022), geometric
shapes (Hamilton et al., 2018; Ren et al., 2020;
Zhang et al., 2021b), fuzzy logic (Chen et al., 2022;
Arakelyan et al., 2021)), others using count-min
sketch (Sun et al., 2020) and neural-symbolic ap-
proach (Zhu et al., 2022), to achieve the common
goal of learning representation of queries, i.e. query
embeddings. The primary difference in these ap-
proaches is based on how queries are represented.
For example, distribution-based models use Beta
distributions (Ren and Leskovec, 2020) or Mul-
tivariate Gaussian distributions (Choudhary et al.,
2021a). In geometric shapes, Hamilton et al. (2018)
represented queries as point embeddings, Ren et al.
(2020) then furthered this using box embeddings,
and Bai et al. (2022) made an improvement by in-
troducing ‘particle’ embeddings (a set of points
using multiple vectors). Zhang et al. (2021b) have
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made the geometric approach more expressive us-
ing cone embeddings. Another difference is the
ability to model a complete set of logical opera-
tions (Brachman and Levesque, 2004) (conjunction,
disjunction and negation). Several methods (Ren
and Leskovec, 2020; Zhang et al., 2021b; Bai et al.,
2022; Chen et al., 2022) have achieved a coverage
of all operations including the negation, compared
to others (Hamilton et al., 2018; Ren et al., 2020;
Choudhary et al., 2021a) without negation.

Reasoning about KGs using geometric shapes
Historically, these approaches received attention
since the introduction of translation-based meth-
ods (Bordes et al., 2013), rotation (Sun et al., 2019;
Zhang et al., 2020) and 3D-rotation (Gao et al.,
2020) for learning knowledge graph embeddings.
Inspired by a Poincaré ball, other studies (Nickel
and Kiela, 2017; Balažević et al., 2019) proposed
hyperbolic space (non-Euclidean geometry). A
common task of these studies is KGs completion.
However, furthering it to MHR task poses a chal-
lenge because of the complex structures of queries
(see Figure 3). Using geometric shapes for the
MHR task (point Hamilton et al. (2018); Bai et al.
(2022), box Ren et al. (2020), hyperbolic Choud-
hary et al. (2021b) and cone embeddings Zhang
et al. (2021b)) have increasingly gained popularity.
Cone embeddings were also mentioned in (Ganea
et al., 2018), but not for the MHR task. Since exist-
ing geometric-based methods of cone embeddings
rely on 2D shapes, we extend the representation
learning for this geometric family to 3D shapes for
the MHR task. Other studies (e.g. spherical text
embeddings (Meng et al., 2019)) learned word em-
beddings for document clustering and classification
tasks, but still not for the MHR task.

3 Preliminaries

3.1 Knowledge Graphs

Given a set of vertices (entities) V and a set of edges
(relations or predicates) E , we define a knowl-
edge graph (G) as a set of triples. Each triple is
(vs, e, vo), where (vs, vo ∈ V) and (e ∈ E) is a
vertex subject, a vertex object and an edge respec-
tively. Assuming (r ∈ R) denotes each element in
a set of relation functions (R), where (r) – associ-
ated with (e) – is a binary function r : V × V →
{True,False} that denotes an asymmetric direction
of relation from (vs) to (vo), and vice versa. A
symmetric direction of relation (non-directional re-

lation) is r : V × V → {True,True}. Notice that
there are two sets involving in edges/relations: (E)
for edge instances and (R) for relation functions.

3.2 First-Order Logic queries
There are four basic logical operations involving in
the interpretation of FOL queries1: conjunction (∧),
disjunction (∨), negation (¬) and existential quan-
tification (∃). We adopt definitions and notations
of BetaE (Ren and Leskovec, 2020) to assume that
a FOL query consists of three folds: (1) a constant
anchor entity set (Va ⊆ V), (2) existentially quan-
tified bound variables (V1, . . . , Vk) and (3) a target
entity variable (V?) to respond a certain query. A
FOL query can be written in Disjunctive Normal
Form (DNF) as a combination of disjunctions of
conjunctive queries (ci) in the following:

q[V?] = V? · ∃V1, . . . , Vk : c1 ∨ c2 ∨ . . . cn,
where ci = ei1 ∧ ei2 · · · ∧ eim, in-
cluding at least one literal eij =
r(va, V ) or ¬r(va, V ) or r(V ′, V ) or ¬r(V ′, V ),
and (va ∈ Va) while V ∈ {V?, V1, . . . , Vk},
V ′ ∈ {V1, . . . , Vk} and V ′ 6= V . Finding the an-
swer entities of a query (q) is similar to searching
for an answer set JqK ⊆ V , where v ∈ JqK if and
only if q[v] is True.

3.3 Query Decomposition
We adopt the definitions of FOL query decompo-
sition in Zhang et al. (2021b) using a computation
graph, including vertices and edges (see an exam-
ple in Figure 1). Each intermediate vertex is a set
of entities and each edge demonstrates relational
projection or logical operations over entity sets:

• Relation Traversal → Projection: Given
a set of entities S ⊂ V and a relation
function r ∈ R, estimate adjacent entities
∪v∈SA(v, r), where A(v, r) ≡ {v′ ∈ V :
r(v, v′) = True}.

• Negation → Complement: Given a set of
entities S ⊂ V , estimate S where S ≡ V\S.

• Conjunction→ Intersection: Given a num-
ber of sets of entities {S1,S2, . . . ,Sn}, com-
pute the intersection ∩ni=1Si of these sets.

• Disjunction→Union: Given a number of en-
tity sets {S1, . . . ,Sn}, find the union ∪ni=1Si.

1Universal quantification (∀) rarely appears in the real
world (Ren and Leskovec, 2020), this operation is therefore
not considered.
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Figure 2: An overview of cone and cylinder embeddings with projection, logical operations (intersection, union,
complement) and distance. The color dot line represents the semantic center axis. (c) Intersection between a sector-
cylinder (red semantic center) and another higher sector-sector (royal blue semantic center) is the sector-cylinder
having green semantic center. (d) Union of three sector-cylinders (having red, purple and royal blue semantic
center axis) are in green regions. (f) Distance is from the green sector-cylinder (of an embedded query) to a purple
target box (of an embedded target entity); di, do, dh denotes the inside, outside and height distance.

4 Cylinder embeddings

We first provide a background of parameterizing
cylinder (Section 4.1) and modeling cylinder em-
beddings for conjunctive queries (Section 4.2).
Next, we show the cylinder embeddings process
with logical operators (Section 4.3), then provide
an optimization method (Section 4.4).

4.1 Cylinder definitions and
parameterization

We define an unbounded sector-cylinder (without
parameterizing radius) as having only two bounds
for its body: the upper bound and the lower bound
with an intersection as a height (see Figure 2(a)).
We call the angle between the two bounds aperture,
which has a range in [0, 2π]. In short, we call an
unbounded sector-cylinder a sector-cylinder or a
cylinder based on their apertures. Notice that a
sector-cylinder becomes a cylinder when the aper-
ture is zero. We use three variables for parameteri-
zation (the first two for the sector-cylinder’s base
adapt from ConE): (1) the semantic center axis
θax ∈ [−π, π) is the angle between the positive
x-axis and the symmetric axis, (2) θap ∈ [0, 2π] is
the aperture and (3) θhe ∈ (−π, π) is the height.

Note that the base of cylinders and cones share
similarity in properties (semantic axis and aper-
ture), which can be illustrated in the same plane,
such as xy-plane. Thus, the base of cylinders in
our study inherit some definitions and propositions
from cones. These are a cone, a convex cone (Boyd
et al., 2004), a closure-complement of a cone and
a sector-cone. Each of these, which is defined by
ConE (Zhang et al., 2021b), is a set in 2D space.
Further, sector-cylinder’s base has the same propo-
sition as the sector-cone: “always axially symmet-
ric” which has been proven in ConE.

Precisely, we define (K) as a space consisting

of all (θax, θap, θhe). An arbitrary sector-cylinder
S0 is as: S0 = (θax, θap, θhe) ∈ K. Then, a d-
ary Cartesian product of sector-cylinders, called
S, is a product of each sector-cylinder Si=1→d (or
each element of S is a d-dimensional vector in Kd):
S = S1 × S2 · · · × Sd or be rewritten as follows:

S : =
(
(θ1ax, θ

1
ap, θ

1
he), . . . , (θ

d
ax, θ

d
ap, θ

d
he)
)

= (θax,θap,θhe) ⊂ Kd. (4.1)

4.2 Cylinder embeddings for conjunctive
queries and entities

In this section, we describe query embeddings for
conjunctive queries. Note that disjunctive queries
can be transformed to DNF form as a set of con-
junctive queries (as mentioned in Section 3.2). We
model the embedding region (Vq) for the answer
set JqK of the query (q) (see Section 3.3) using
a Cartesian product of sector-cylinders (as men-
tioned in Section 4.1) as: Vq = (θax,θap,θhe),
where embedding of semantic center axis is θax ∈
[−π, π)d, embedding of aperture is θap ∈ [0, 2π]d

and embedding of height is θhe ∈ (−π, π)d; and
(d) denotes the dimension of the embedding space
(see Eq. (4.1)).

Next, an arbitrary entity (v ∈ V) is represented
by a Cartesian product of cylinders having zero
apertures. The corresponding embedding (v) is as:
v = (θax,0,θhe). The intuition is to embed the
anchor or target entity into one similar as a perpen-
dicular box with regard to a base of the cylinder,
Precisely, all elements of the d-dimensional vector
(θap) is equal to zero.

4.3 Cylinder embeddings with logical
operators

We describe the process of modeling relational pro-
jection (projection module) and modeling logical
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operators (intersection, complement, union mod-
ule), to embed the FOL queries in the following:

Projection module: This module aims to learn
the projection operation (see Section 3.3), which
outputs the adjacent entities (of an anchor entity)
linking to a given relation. To this end, we maps the
embedding region of an entity set (Vq) to another
(V′q) (see Figure 2(b)) via a mapping function (f):

f : Kd → Kd,Vq → V′q.

We use a shallow neural network to approximately
represent the mapping function f(x). Overall,
(Vq) is a summation of the embeddings of entity
set (V) and a relation (r) as: Vq = V + r; where
the representation of each relation (r) is sector-
cylinder embeddings. Then, a composition func-
tion f(Vq) has a scaling of chunking function g(x)
and a multilayer perceptron (MLP) network:

f(Vq) = g(MLP([Vq])),

where MLP : R3d → R3d, and the function g(x)
is to split a three-dimensional vector into three
d-vectors for semantic center axis, aperture and
height embeddings. In addition, there is a scaling
operation, adapt from Zhang et al. (2021b), involv-
ing in the function g(x) to scale the semantic center
axis, the aperture and the height embeddings into
their normal ranges (as mentioned in Section 4.2):

[f(x)]i =





θ′iax = π tanh(λ1xi), if i ≤ d,
θ′i−dap = π tanh(λ2xi) + π, if i > d,

θ′ihe = 2π(sigmoid(λ3xi)− 0.5),

where [f(x)]i is the i-th element of f(x);
(λ1, λ2, λ3) are the scaling hyper-parameters.

Intersection module: This module aims to learn
the conjunction operation (see Section 3.3). As-
suming a conjunction of conjunctive queries (qi)
associates with a query (q), its answer is JqK =
∩ki=1JqiK. Notice that entities in the set JqK share
semantic similarity with one another, as the con-
junction of conjunctive queries based on sector-
cylinder embeddings are conjunctive queries (see
Figure 2 (c)). Supposing V∩q = (θax,θap,θhe)
and Vi,q = (θi,ax,θi,ap,θi,he) are embedding re-
gion of JqK and JqiK respectively. To obtain the
V∩q, we then take the summation w.r.t. the number
of conjunctive queries (of the Hadamard product
� betweenAi and Vi,q), which is shown below:

V∩q =
∑k

iAi �Vi,q,

whereA ∈ Rk×d is an attention matrix defined by:

Ai×d =
exp

(
MLP([Vq])i

)

∑n
j exp

(
MLP([Vq])j

) ,

where (k) is the number of involving conjunctive
queries and [Vq]i ∈ R3d is a concatenation of
(θi,ax,θi,ap,θi,he) for the i-th conjunctive query
and MLP : R3d → Rd. As mentioned in Ren et al.
(2020), using attention mechanism is important in
comparison to other approaches (e.g. averaging,
deep sets Zaheer et al. (2017)). Note that our ap-
proach is to approximately model the conjunction
operation. Further, this approach is different than
that in cone embeddings which required an inter-
mediate process (Zhang et al., 2021b): to convert
the semantic center axis to points on the unit circle,
then to map these points back to angles to recover
the semantic center axis.

Complement module: This module aims to rep-
resent the negation operation (see Section 3.3), by
finding the complementary set of JqK (or V\JqK):
J¬qK. Supposing Vq = (θax,θap,θhe) and
V¬q = (θ′ax,θ

′
ap,θ

′
he) are sector-cylinder embed-

dings region of JqK and J¬qK respectively. From a
geometric aspect, the closure-complement is close
to the set of sector-cylinders (see Figure 2(e)).
Thus, the sum of apertures of (Vq) and (V¬q)
should be close to 2π. Assuming semantic cen-
ter of (V¬q) should be opposite to those in (Vq)
while the height of (V¬q) should be equivalent to
those in (Vq) as follows:

[θ′ax]i =

{
[θax]i − π, if [θax]i ≥ 0,

[θax]i + π, if [θax]i < 0,

[θ′ap]i = 2π − [θap]i,

[θ′he]i = [θhe]i.

Note that the height variable cannot be involved in
this module, as the negation should be closed with-
out this variable. Since the negation is not closed
w.r.t. entities as long as keeping the same height for
(V¬q) and (Vq), this can be a bottleneck of nega-
tion queries under the three dimension space. This
can be addressed by designing closed negation for
both queries and entities; however, we leave this
direction for future work.

Union module: This module aims to represent
the disjunction operation (see Section 3.3). Assum-
ing a disjunction of conjunctive queries (qi) asso-
ciates with a query (q), the aim of this operation is
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to represent its answer: JqK = ∪ki=1JqiK. We face a
challenge as the union of sector-cylinders having
different height is no longer a sector-cylinder, or
the union over sector-cylinders is not closed (see
Figure 2(d)). As mentioned by Ren et al. (2020),
there is an issue of non-scalability when modeling
directly the disjunction. To address this issue, we
adapt a technique of Ren et al. (2020) by trans-
forming queries into a DNF (Davey and Priestley,
2002) (e.g. disjunction of conjunctive queries). The
union operation in DNF is moved to the last step
of converted computation graphs, which contain
conjunctive queries (see Section 3.2). Thus, we can
apply the other logical operations (as mentioned
in above modules) to have a set of embeddings of
these conjunctive queries. The answer entities are
those nearest to any embeddings of these conjunc-
tive queries (see further details of estimating the
aggregated distance score in Eq. (4.2)).

4.4 Optimization method

Distance score: We define a distance score
d(v;V) between the embedded region entity v =
(θ′ax,0,θ

′
he) and the embedded region query V =

(θax,θap,θhe). Inspired by Ren et al. (2020) and
Zhang et al. (2021b), we adapt two types of this dis-
tance: (1) dcon (for those conjunctive queries) and
(2) ddis (for those disjunctive queries). In terms of
estimating (dcon), there are three terms: an outside
distance (do), an inside distance (di) and a height
distance (dh) as follows:

dcon(v;V) = do(v;V) + λdi(v;V) + dh(v;V),

where the hyper-parameter λ ∈ (0, 1) is to en-
courage the expected entity (v) to be inside the
embedded region (V). Intuitively, (v) is close to
the upper or lower bound of (V) when (λ) is close
to zero or one. The three distances contributing to
the (dcon) for conjunctive queries are defined by:

do =
∣∣∣
∣∣∣min{dl, du}

∣∣∣
∣∣∣
1
, di =

∣∣∣
∣∣∣min{dax, dap}

∣∣∣
∣∣∣
1
,

dh =
∣∣∣
∣∣∣θ′he − θhe

∣∣∣
∣∣∣
1
,

where (dl = |1 − cos(θ′ax − θl)|) denotes the
outside distance between the semantic center axis
of the entity and the lower bound of the query,
(du = |1 − cos(θ′ax − θu)|) denotes the out-
side distance between the semantic center axis
of the entity and the upper bound of the query;
(dax = |1 − cos(θ′ax − θax)|) denotes the inside

distance between the semantic center axis of the en-
tity and that of the query, (dap = |1− cos(θap/2)|)
denotes the inside distance between the semantic
center axis and either of the two bounds of the
query (see Figure 2(f) for an example to estimate
these distances). Further, (θl = θax − θap

2 ) is the
lower bound and (θu = θax +

θap
2 ) is the upper

bound of the embedded query, the notation || · ||1
is the L1 norm. The higher value of the cosine
function is, the less distance is. Notice that the
maximum of this function is equivalent to one, we
therefore subtract one from this, to ensure the min-
imum distance to be close to zero. Next, we adapt
the DNF technique of Ren et al. (2020) to estimate
(ddis) by obtaining the minimum distance between
a target entity and each conjunctive query:

ddis(v;V) = min{dcon(v;Vi)}i:1→n. (4.2)

Training objective function: To optimize the
training loss, we follow the objective function (L)
from Ren and Leskovec (2020), L = − log σ(γ −
d(v;V))− 1

n

∑n
i log σ(d(v

′;V)− γ) is a summa-
tion of two terms: (1) a positive loss is to minimize
the distance d(v;V) between a positive embed-
ded entity (v ∈ JqK) and an embedded query and
(2) a negative sampling loss is to maximize the dis-
tance d(v′;V) between negative embedded entities
(v′i:1→n /∈ JqK) and an embedded query; where (n)
is the number of negative sampling entities, σ(x)
denotes the sigmoid activation function and the
hyper-parameter (γ) is a pre-fixed positive margin.

5 Experiments

5.1 Experimental designs

For benchmarking, we follow experimental designs
(datasets, query structures, training and evalua-
tion protocol) of Multi-hop Reasoning (MHR) task
from (Ren and Leskovec, 2020).

Datasets: We use benchmarking datasets for
the MHR task: FB15k (Bollacker et al., 2008),
FB15k-237 (Toutanova and Chen, 2015) and
NELL995 (Xiong et al., 2017). Using the same
pre-processing steps as BetaE (Ren and Leskovec,
2020), we split each dataset into the training, val-
idation, and test set. The aim of MHR task is to
obtain non-trivial answers, which cannot be discov-
ered by directly traversing the incomplete KGs, for
each arbitrary FOL query. Please see Appendix A.1
for further details of these datasets.
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Figure 3: (Left) & (Middle): query structures are involved in the training process. (Left), (Middle) & (Right):
all queries are involved in the evaluation process; p is projection, i is intersection, n is negation and u is union.

Dataset Model 1p 2p 3p 2i 3i ip pi 2u up AVG

FB15k

GQE 53.9 15.5 11.1 40.2 52.4 19.4 27.5 22.3 11.7 28.2
Q2B 70.5 23.0 15.1 61.2 71.8 28.7 41.8 37.7 19.0 40.1

BetaE 65.1 25.7 24.7 55.8 66.5 28.1 43.9 40.1 25.2 41.6
ConE (d = 800) 73.3 33.8 29.2 64.4 73.7 35.7 50.9 55.7 31.4 49.8

CylE (d = 512) 78.5 34.6 29.2 65.5 74.5 37.9 52.2 57.9 31.6 51.3
CylE (d = 800) 78.8 37.0 30.9 66.9 75.7 40.8 53.8 59.4 33.5 53.0

FB15k-237

GQE 35.2 7.4 5.5 23.6 35.7 10.9 16.7 8.4 5.8 16.6
Q2B 41.3 9.9 7.2 31.1 45.4 13.3 21.9 11.9 8.1 21.1

BetaE 39.0 10.9 10.0 28.8 42.5 12.6 22.4 12.4 9.7 20.9
ConE (d = 800) 41.8 12.8 11.0 32.6 47.3 14.0 25.5 14.5 10.8 23.4

CylE (d = 512) 42.5 13.0 11.0 34.4 48.4 15.0 26.3 15.2 11.2 24.1
CylE (d = 800) 42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 24.5

NELL995

GQE 33.1 12.1 9.9 27.3 35.1 14.5 18.5 8.5 9.0 18.7
Q2B 42.7 14.5 11.7 34.7 45.8 17.4 23.2 12.0 10.7 23.6

BetaE 53.0 13.0 11.4 37.6 47.5 14.3 24.1 12.2 8.5 24.6
ConE (d = 800) 53.1 16.1 13.9 40.0 50.8 17.5 26.3 15.3 11.3 27.2

CylE (d = 512) 56.5 17.5 15.6 41.4 51.2 19.6 27.2 15.7 12.3 28.5
CylE (d = 800) 55.7 17.5 15.1 40.7 51.1 19.1 27.1 15.4 12.2 28.2

Table 1: The average MRR (%) results in different query structures without negation (∃, ∧, ∨) using these datasets:
FB15k, FB15k-237 and NELL995. The results of baselines (GQE, Q2B, BetaE, ConE) are taken from (Zhang et al.,
2021b). Query structures with union operations (2u/up) are in DNF forms.

Queries: We adopt FOL query structures of (Ren
and Leskovec, 2020) for the training, valida-
tion and test process. In terms of the train-
ing, there are five structures without negation
(1p/2p/3p/2i/3i) and five structures with nega-
tion (2in/3in/inp/pni/pin). With regard to the
evaluation process, we not only use the same query
structures as those in the training process, we also
use unseen structures (ip/pi/2u/up), which have
not been involved in the training process, to evalu-
ate the ability of generalization for the model.

Training and evaluation protocol: In terms the
training process, we use Adam optimizer (Kingma
and Ba, 2015). We follow the similar hyper-
parameter settings of (Zhang et al., 2021b) to ini-
tialize the model, but search for the most effective
combination of these hyper-parameters in the situ-
ation of cylinder embeddings (see more details in

Appendix A.2). With regard to the evaluation pro-
cess, we adopt the evaluation protocol of (Ren and
Leskovec, 2020). There are three involving KGs:
the training KG (Gtrain for training edges), the
validation KG (Gvalid for training and validation
edges) and the test KG (Gtest for training, valida-
tion and test edges) (see Appendix A.1). Specifi-
cally, given a test query (q) of incomplete KGs, our
aim is to find non-trivial answers JqKtest\JqKvalid
(JqKvalid\JqKtrain). We use the same metric Mean
Reciprocal Rank (MRR) as described in (Ren
et al., 2020; Ren and Leskovec, 2020; Zhang et al.,
2021b) to evaluate the performance of Multi-hop
Reasoning. Suppose (Q) is a set of JqKtest\JqKvalid,
for each non-trivial answer (v ∈ Q), we rank (v)
against non-answer entities V\JqKtest (where v is as-
sociated with the rank r). We estimate the MRR as
follows: MRR = 1

|Q|
∑|Q|

v∈Q
1
r . The higher MRR
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is, the better performance of the model is.

Baselines: There are four baseline models: GQE
(Hamilton et al., 2018), Query2Box/Q2B (Ren
et al., 2020), BetaE (Ren and Leskovec, 2020)
and ConE (Zhang et al., 2021b). We obtain the
recent results of these models from Zhang et al.
(2021b), which are slightly higher than those re-
ported by Ren and Leskovec (2020). We not only
use the same embedding dimension d = 800 as
ConE for fair comparisons, but we also run experi-
ments using d = 512 for the sensitivity analysis2.

5.2 Results

We report our main results of Multi-hop Reason-
ing using CylE regarding FOL queries with and
without negation. Specifically, we compare the
performance of CylE with these baselines: GQE,
Q2B, BetaE and ConE using the same benchmark-
ing datasets as mentioned above. We obtain the
average results of five experiments for each dataset
when the embedding dimension d = 800 (see Ap-
pendix B.1 for error bars of these results). For the
sensitivity analysis with d = 512, we obtain results
of an experiment for each dataset.

Modeling queries without negation: Table 1
demonstrates the average performance of Multi-
hop Reasoning using CylE regarding existential
positive first-order (EPFO) queries (a subset of
FOL queries without negation), compared to base-
lines. Overall, CylE significantly outperforms all
baselines. In comparison with the SOTA model
ConE (d = 800), the average performance for all
query structures (AVG) of CylE gains around 6.4%,
4.7% and 3.7% using the dataset FB15k, FB15k-
237 and NELL995 respectively. More specifically,
CylE achieves the highest improvement regarding
ip queries, by nearly 14.3%, 12.1% and 9.1% us-
ing these datasets. In comparison with the previous
model BETA, the AVG of CylE (d = 800) is also
considerably higher, by around 27.4%, 17.2% and
14.6%, observed in the three datasets.

In terms of using the DNF technique, notice that
the performance of answering those queries with
unions (2u) only is significantly lower than those of
queries with intersections (2i), by a large margin.
We consistently observed this point in the three
datasets. This can be due the limitation of repre-
senting union queries using the DNF technique,
where it is challenging to expect an answer entity,

2Source code is available at https://github.com/nlp-tlp/cyle

for example, to be nearest to all conjunctive queries
in the DNF form (see Eq. (4.2)). We also report
the results for query structures regarding the union
operation using De Morgan’s (DM) law. Since
there might be a problem of inconsistency with
the real set union (as discussed in (Zhang et al.,
2021b)), the results for union operation using DNF
(2u/up) are higher than those using DM law (see
Section 5.3 for further details).

Modeling queries with negation: Table 2
shows the average performance of Multi-hop Rea-
soning using CylE regarding query with negation,
compared to baselines. Although ConE achieves
the highest performance in average using the three
datasets, the AVG of CylE (d = 800) is close to
those in ConE. In comparison with the previous
model BetaE, the AVG of CylE outperforms signif-
icantly. This increasing trend is similar to that in
the ConE. Note that handling queries with negation
are still challenging in all models (BetaE, ConE
and CylE) since the AVG are significantly lower
than those in queries without negation operations.
This challenge may be due to a high uncertainty in
the large number of answers for negation queries.

Dataset Model 2in 3in inp pin pni AVG

FB15k
BetaE 14.3 14.7 11.5 6.5 12.4 11.8

ConE (d = 800) 17.9 18.7 12.5 9.8 15.1 14.8

CylE (d = 512) 15.6 15.9 13.3 7.5 13.6 13.2
CylE (d = 800) 15.7 16.3 13.7 7.8 13.9 13.5

FB15k-237
BetaE 5.1 7.9 7.4 3.6 3.4 5.4

ConE (d = 800) 5.4 8.6 7.8 4.0 3.6 5.9

CylE (d = 512) 4.8 8.3 8.1 3.6 3.4 5.7
CylE (d = 800) 4.9 8.3 8.2 3.7 3.4 5.7

NELL995
BetaE 5.1 7.8 10.0 3.1 3.5 5.9

ConE (d = 800) 5.7 8.1 10.8 3.5 3.9 6.4

CylE (d = 512) 5.6 7.5 11.2 3.4 3.7 6.3
CylE (d = 800) 5.4 7.6 11.3 3.4 3.7 6.3

Table 2: The average MRR (%) in different query
structures with negation using these datasets: FB15k,
FB15k-237 and NELL995. The baseline results (BetaE
and ConE) are taken from (Zhang et al., 2021b).

Effects of the embedding dimension: In terms
of queries without negation, there is a slight dif-
ference in MRR results of CylE between the em-
bedding dimension d = 800 and d = 512 (see
Table 1). MRR results in these query structures
with d = 800 are higher than those with d = 512
using these datasets FB15k and FB15k-237. In
the NELL995 dataset, however, MRR results with
d = 800 are lower than those with d = 512. There
is a different trend in these datasets as there may be
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an over-fitting problem when implementing CylE
using the NELL995 dataset, but not for the FB15k
and FB15k-237 dataset. Notice that large number
of entities increase the complexity of the model
using the NELL995 dataset. Precisely, the number
of entities in this dataset (63,361) is considerably
larger than those in the FB15k (14,951) and FB15k-
237 dataset (14,505) (see Appendix A.1). Simi-
larly, the number of relations also contribute to the
complexity of the model. Although the number of
relations in the NELL995 dataset (200) is less than
those in the FB15k (1,345) and FB15k-237 dataset
(237), this difference is slight, compared to that
in the number of entities across the three datasets.
With regard to negation queries, MRR results of
CylE with d = 512 are close to those with d = 800
(see Table 2). Hence, there is little effect of the
embedding dimension on the performance of CylE
in these query structures.

5.3 Comparisons results of disjunctive
queries using DNF and De Morgan’s law

Table 3 shows the comparisons of MRR results (in
percentage) of query structures regarding union op-
erations using DNF and DM transformation. We
compare results of CylE with those in ConE and
BETA, since these models can handle the negation
operations requiring for the transformation in DM
queries. Overall, the MRR in DNF query structures
of the approaches using ConE and CylE are higher
than those in DM query structures. There is a simi-

Dataset Model 2u-DNF 2u-DM up-DNF up-DM

FB15k
BetaE 40.1 25.0 25.2 25.4
ConE 55.7 37.7 31.4 29.8
CylE 59.4 42.4 33.5 32.0

FB15k-237
BetaE 12.4 11.1 9.7 9.9
ConE 14.5 13.4 10.8 9.9
CylE 15.3 13.4 11.2 10.6

NELL995
BetaE 12.2 11.0 8.5 8.6
ConE 15.3 14.8 11.3 10.8
CylE 15.4 13.3 12.2 11.5

Table 3: MRR (%) for answering FOL disjunctive
query structures using DNF and DM on these datasets:
FB15k, FB15k-237 and NELL995. The results of Be-
taE and ConE are taken from (Zhang et al., 2021b).

lar trend in ConE and CylE, since these approaches
share similarity in the aperture (the boundary of
shapes in sector-cone and sector-cylinder respec-
tively). Note that we use complement operations to
transform union queries into DM forms, the queries
in this situation are represented in geometry (sector-

cone and sector-cylinder respectively). However,
not all queries are represented well in geometry
as discussed in (Zhang et al., 2021b). Further, we
also observe a higher margin in MRR results of
CylE than those in ConE, regarding most of DNF
and DM query structures, using the three datasets
(FB15k, FB15k-237 and NELL995).

6 Conclusion

We have presented a novel query embeddings (QE)
model using cylinder embeddings (CylE), which
can handle a complete set of arbitrary FOL queries,
to perform the Multi-hop Reasoning (MHR) task.
To the best of our knowledge, CylE is the first
3D geometric-based QE model for MHR. Experi-
ments show significant performance gain over pre-
vious approaches for non-negation queries. For
queries with negation operations, we face a sim-
ilar challenge to previous models i.e. low MHR
performance. This is a future direction to improve
CylE on these queries. This work paves the way
for opening the geometric-based QE method using
three dimensional shapes.

Limitations

Although CylE can learn to achieve the Multi-
hop Reasoning task or answering complex queries,
several limitations in this work are taken into ac-
count. First, the modeling process of logical op-
erators (conjunction, disjunction and negation) us-
ing geometric-based perspective is an approximate
method in a learning manner which may not satisfy
some logic laws. This can be addressed by us-
ing fuzzy logic under fuzzy sets representation for
these logical operators Chen et al. (2022). Fuzzy
logic is a learning-free manner for logical opera-
tors in FOL queries. Combining this approach with
the neural models to learn these operators can be a
potential approach, but we leave this extension as a
direction for future work.

Another limitation is that modeling union oper-
ators in EPFO queries using the DNF technique
may not find all expected answer entities. Note that
modeling this operator is similar to finding near-
est entities to all conjunctive queries (in the DNF
form), which may not an optimal solution when the
geometric embeddings of these queries locate far
from one to another, as mentioned in Section 5.2,
queries structure 2u and 2i in particular.
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A Further experimental details

We provide additional details for Section 5.1 in this
section, divided into parts: Datasets & query struc-
tures A.1 and training & evaluation protocol A.2.

A.1 Datasets and query structures

We train and evaluate models using the same
datasets (FB15k (Bollacker et al., 2008),
FB15k-237 (Toutanova and Chen, 2015) and
NELL995 (Xiong et al., 2017)) as those in (Ren
and Leskovec, 2020) for the task of Multi-hop
Reasoning (see Table 4 for a number of entities, a
number of relations, a number of edges for each
dataset). These datasets has been pre-processed
by (Ren and Leskovec, 2020) to generate query
structures for the training/validation/test set (see
Table 5 for a description of these query structures
and Table 6 for a description of average number of
answer entities for test queries). These datasets are
available at this link 3.

Dataset Entities Relations Edges

Training Validation Test Total

FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804

Table 4: A statistical description of number of enti-
ties, relations, training/validation/test edges, reported
from (Ren and Leskovec, 2020), in three datasets:
FB15k, FB15k-237 and NELL995.

A.2 Training and evaluation protocol

We compare our results with these baselines (GQE,
Query2Box, BetaE and ConE), taken from (Zhang
et al., 2021b). We conduct all experiments using
the Pytorch framework. Our implementation is
done based on the original work of BetaE (Ren and
Leskovec, 2020). 4 We adopt hyper-parameters,
found by (Zhang et al., 2021b): the dimension
of embedding d = 800, λ1 = 1.0, λ2 = 2.0,
λ = 0.02, the batch size b = 512 and the negative
sampling size n = 128. We also search for these
hyper-parameters for best performance in MRR:
the γ in the loss function [20, 30], the learning rate
{1e−4, 5e−5} and the scaling weight for the height
variable λ3 {1.0, 2.0}. We use a three-layer MLP
(for a projection module) while two-layer MLP
(for an intersection module), using 1600 dimension

3https://github.com/snap-stanford/KGReasoning
4https://github.com/snap-stanford/KGReasoning, licensed

under the MIT License.

for hidden layers and Swiss activation function (Ra-
machandran et al., 2017). We run each experiment
on a single NVIDIA Tesla V100 GPU. More details
of hyper-parameters are shown in Table 7. Note
that we also search for hyper-parameters in terms
of experiments using ReLU activation function (in
MLP) for ablation study. In this situation, we fol-
low the same found hyper-parameters in Table 7 as
those in the situation using Swiss activation func-
tion (the dimension of embedding d, the batch size
b, the number of negative sampling size n, the maxi-
mum number of training stepsm, the scaling hyper-
parameters λi={1,2,3}, the controlling distance λ,
the learning rate l and the γ in the loss function),
except for the found γ = 30 in the loss function
using the FB15k-237 dataset, during the training
process.

B Additional experimental results

B.1 Error bars

Table 8 and Table 9 show the error bars of MRR
for the task of Multi-hop Reasoning using our ap-
proach with CylE, for queries without and with
negation respectively using the three dataset FB15k,
FB15k-237 and NELL995. More specifically, we
run five experiments using different seed values in
{0, 10, 100, 1000, 10000} during the initialization
process (for each dataset). We estimate the average
MRR for different query structures of five experi-
ments and obtain the standard deviation (for each
dataset).

In terms of queries without negation, the stan-
dard deviation of the average MRR is small, at
around 0.101, 0.039 and 0.113 using the dataset
FB15k, FB15k-237 and NELL995 respectively. A
similar trend is observed in queries with negation
operation, since the standard deviation of the av-
erage MRR is also small using the three datasets.
These error bars show a level of degree in stability
of MRR (for each dataset) using different values of
random seed during the initialization process.

B.2 Modeling the cardinality of answer sets
using correlation coefficients

It is argued that the aperture embeddings may have
a correlation with the number of the answer set JqK.
This correlation though is not guaranteed under dif-
ferent circumstances (e.g. entities having identical
relations to one another), the learnt embeddings can
have a positive relationship with the number of ele-
ments (cardinality) of JqK. We follow a technique
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Dataset Training Queries Validation Queries Test Queries

1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p Each Other 1p Each Other

FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15k-237 149,689 14,968 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

Table 5: A statistical description of number of training/validation/test queries in different structures, preprocessed
by (Ren and Leskovec, 2020), in three datasets: FB15k, FB15k-237 and NELL995.

Dataset 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k 1.7 19.6 24.4 8.0 5.2 18.3 12.5 18.9 23.8 15.9 14.6 19.8 21.6 16.9
FB15k-237 1.7 17.3 24.3 6.9 4.5 17.7 10.4 19.6 24.3 16.3 13.4 19.5 21.7 18.2
NELL995 1.6 14.9 17.5 5.7 6.0 17.4 11.9 14.9 19.0 12.9 11.1 12.9 16.0 13.0

Table 6: A statistical description of average number of answers for test queries, preprocessed by (Ren and Leskovec,
2020), in three datasets: FB15k, FB15k-237 and NELL995.

Dataset d b n m γ l λ1 λ2 λ3 λ

FB15k 800 512 128 450k 30 0.00005 1.0 2.0 2.0 0.02
FB15k-237 800 512 128 350k 20 0.00005 1.0 2.0 2.0 0.02
NELL995 800 512 128 350k 20 0.0001 1.0 2.0 2.0 0.02

Table 7: Found hyper-parameters for the main results in three different datasets: FB15k, FB15k-237 and NELL995.
d denotes the embedding dimension, b denotes the batch size, n denotes the negative sampling size, γ denotes to
control the loss function, m denotes the maximum training steps, l denotes the learning rate, λ1, λ2, λ3 denote
scaling hyper-parameters in the projection module (see scaling function f(x) in Section 4.3) and λ is to control
the distance dcon (see Section 4.4 in the main content).

Dataset 1p 2p 3p 2i 3i ip pi 2u up AVG

FB15k
78.8 37.0 30.9 66.9 75.7 40.8 53.8 59.4 33.5 53.0
±0.044 ±0.156 ±0.231 ±0.093 ±0.132 ±0.257 ±0.263 ±0.210 ±0.226 ±0.101

FB15k-237
42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 24.5
±0.105 ±0.113 ±0.070 ±0.189 ±0.168 ±0.143 ±0.108 ±0.136 ±0.075 ±0.039

NELL995
55.7 17.5 15.1 40.7 51.1 19.1 27.1 15.4 12.2 28.2
±0.290 ±0.112 ±0.145 ±0.223 ±0.291 ±0.147 ±0.099 ±0.154 ±0.037 ±0.113

Table 8: MRR (%) results of CylE with error bars for answering different FOL query structures without negation
(∃, ∧, ∨) using these datasets: FB15k, FB15k-237 and NELL995.

Dataset 2in 3in inp pin pni AVG

FB15k
15.7 16.3 13.7 7.8 13.9 13.5
±0.084 ±0.059 ±0.086 ±0.065 ±0.033 ±0.020

FB15k-237
4.9 8.3 8.2 3.7 3.4 5.7
±0.077 ±0.093 ±0.112 ±0.058 ±0.073 ±0.042

NELL995
5.4 7.6 11.3 3.4 3.7 6.3
±0.106 ±0.081 ±0.095 ±0.019 ±0.090 ±0.046

Table 9: MRR (%) results of CylE with error bars
for answering negation queries using these datasets:
FB15k, FB15k-237 and NELL995.

of ConE (Zhang et al., 2021b) to compute this corre-
lation. We use two types of correlation as (Ren and
Leskovec, 2020; Zhang et al., 2021b): (1) Spear-
man’s rank-order correlation coefficient (SRCC)

(to measure the monotonicity relationship or the sta-
tistical dependence between the rankings of the two
variables) and (2) Pearson correlation coefficient
(PCC) (to measure the linear relationship between
the two variables). We do not compute SRCC and
PCC regarding disjunctive queries, which is the
same as (Ren and Leskovec, 2020; Zhang et al.,
2021b), since we model queries with disjunctions
using the DNF technique. Table 10 shows SRCC
of Q2B, BetaE, ConE and CylE using the FB15k
dataset. No SRCC results are available in G2B
for queries with negation since this model cannot
handle this operation (Ren et al., 2020). Overall,
the SRCC results of CylE are significantly higher
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Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni

Q2B 0.30 0.22 0.26 0.33 0.27 0.14 0.30 - - - - -
BetaE 0.37 0.48 0.47 0.57 0.40 0.42 0.52 0.62 0.55 0.46 0.47 0.61
ConE 0.60 0.68 0.70 0.68 0.52 0.56 0.59 0.84 0.75 0.61 0.58 0.80
CylE 0.61 0.84 0.81 0.74 0.62 0.79 0.77 0.83 0.78 0.67 0.66 0.83

Table 10: Spearman’s rank correlation coefficient between embeddings of learnt embeddings and a number of
answers for queries using the dataset FB15k. Results of Q2B, BetaE and ConE are taken from (Zhang et al.,
2021b).

Dataset Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni

FB15k-237

Q2B 0.18 0.23 0.27 0.35 0.44 0.20 0.36 - - - - -
BetaE 0.41 0.50 0.57 0.60 0.52 0.44 0.54 0.69 0.58 0.51 0.47 0.67
ConE 0.70 0.71 0.74 0.82 0.72 0.62 0.70 0.90 0.83 0.66 0.57 0.88
CylE 0.71 0.80 0.73 0.83 0.77 0.74 0.84 0.84 0.79 0.59 0.60 0.83

NELL995

Q2B 0.15 0.29 0.31 0.38 0.41 0.35 0.36 - - - - -
BetaE 0.42 0.55 0.56 0.59 0.61 0.54 0.60 0.71 0.60 0.35 0.45 0.64
ConE 0.56 0.61 0.60 0.79 0.79 0.58 0.74 0.90 0.79 0.56 0.48 0.85
CylE 0.57 0.75 0.65 0.73 0.72 0.70 0.76 0.85 0.76 0.59 0.63 0.81

Table 11: Spearman’s rank correlation coefficient between embeddings of learnt embeddings and a number of
answers for queries using the dataset FB15k-237 and NELL995. Rank correlation results of Q2B, BetaE and
ConE are taken from (Zhang et al., 2021b).

Dataset Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni

FB15k

Q2B 0.08 0.22 0.26 0.29 0.23 0.13 0.25 - - - - -
BetaE 0.22 0.36 0.38 0.39 0.30 0.31 0.31 0.44 0.41 0.34 0.36 0.44
ConE 0.33 0.53 0.59 0.50 0.45 0.42 0.37 0.65 0.55 0.50 0.52 0.64
CylE 0.36 0.68 0.62 0.66 0.59 0.70 0.70 0.68 0.59 0.46 0.48 0.71

FB15k-237

Q2B 0.02 0.19 0.26 0.37 0.49 0.20 0.34 - - - - -
BetaE 0.23 0.37 0.45 0.36 0.31 0.33 0.32 0.46 0.41 0.39 0.36 0.48
ConE 0.40 0.52 0.61 0.67 0.69 0.49 0.47 0.71 0.66 0.53 0.47 0.72
CylE 0.36 0.56 0.53 0.67 0.71 0.55 0.71 0.64 0.59 0.41 0.35 0.64

NELL995

Q2B 0.07 0.21 0.31 0.36 0.29 0.34 0.24 - - - - -
BetaE 0.24 0.40 0.43 0.40 0.39 0.40 0.40 0.52 0.51 0.26 0.35 0.46
ConE 0.48 0.45 0.49 0.72 0.68 0.39 0.52 0.74 0.66 0.38 0.34 0.69
CylE 0.45 0.60 0.50 0.64 0.63 0.52 0.60 0.69 0.66 0.35 0.47 0.64

Table 12: Pearson correlation coefficient between embeddings of learnt embeddings and a numer of answers for
queries using the dataset FB15k, FB15k-237 and NELL995. Correlation results of Q2B, BetaE and ConE are taken
from (Zhang et al., 2021b).

than those in ConE in most of query structures, by
a large margin. These results demonstrate the ex-
pressiveness of modeling cardinality of answer sets
using CylE. Note that SRCC results using CylE
also significantly exceed the other previous models.

We show additional results of Spearman’s Rank
Correlation Coefficient (SRCC) in Table 11 us-
ing the dataset FB15k-237 and NELL995. In
terms of the dataset FB15k-237, although the
SRCC results in several query structures (e.g.
3p, 2in, 3in, inp, pni) using the approach in CylE
are lower than those in ConE, the SRCC in the

rest of query structures using CylE outperform
those in ConE. A slight decrease in SRCC results,
from CylE to ConE, can be mostly observed in
queries that are involved in negation operations.
These observations are due to the fact that the
height variable might not play a role in embed-
ded queries with complement operations. Similar
to the dataset FB15k-237, in the dataset NELL995,
the SRCC results in some query structures (e.g.
2i, 3i, 2in, 3in, pni), particularly in queries with
negation operations, are also lower than those in
ConE. However, most of SRCC results in queries
without negation operations surpass SRCC results
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Dataset Activation 1p 2p 3p 2i 3i ip pi 2u up AVG

FB15k
ReLU 75.1 36.5 31.0 65.8 74.5 39.9 52.5 56.9 33.6 51.8
Swiss 78.8 37.0 30.9 66.9 75.7 40.8 53.8 59.4 33.5 53.0

FB15k-237
ReLU 42.1 13.1 11.3 34.8 49.1 14.8 26.5 14.7 11.2 24.2
Swiss 42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 24.5

NELL995
ReLU 54.3 16.3 14.2 40.5 51.0 17.9 26.0 14.8 11.3 27.4
Swiss 55.7 17.5 15.1 40.7 51.1 19.1 27.1 15.4 12.2 28.2

Table 13: Average MRR (%) results of CylE in different FOL query structures without negation (∃, ∧, ∨) using
ReLU and Swiss activation for the MLP in these datasets: FB15k, FB15k-237 and NELL995.

in ConE. In comparisons with BetaE and Q2B,
SRCC results in all query structures (with and with-
out negation) using CylE are significantly higher
than SRCC results in these models.

The similar trend of results are also observed in
the Pearson Correlation Coefficient (PCC) between
the aperture embeddings and the cardinality of an-
swers set using the three dataset FB15k, FB15k-237
and NELL995 (see Table 12).

B.3 Further ablation study
We compare the performance of CylE using the
different activation function (ReLU and Swiss) for
the MLP networks (in the projection and intersec-
tion module), during the training process in this
ablations study (see Table 13 and 14). Overall, the

Dataset Activation 2in 3in inp pin pni AVG

FB15k
ReLU 15.6 16.2 13.4 7.8 13.7 13.3
Swiss 15.7 16.3 13.7 7.8 13.9 13.5

FB15k-237
ReLU 4.7 8.1 8.1 3.7 3.2 5.6
Swiss 4.9 8.3 8.2 3.7 3.4 5.7

NELL995
ReLU 5.1 7.5 11.2 3.3 3.5 6.1
Swiss 5.4 7.6 11.3 3.4 3.7 6.3

Table 14: Average MRR (%) results of CylE for dif-
ferent FOL query structures with negation using ReLU
and Swiss activation for MLP in these datasets: FB15k,
FB15k-237 and NELL995.

average MRR results in most of query structures
for the approach using Swiss activation are slightly
higher than those in the approach using ReLU acti-
vation in the three datasets FB15k, FB15k-237 and
NELL995. Since the Swiss activation was shown to
be an efficient activation function (Ramachandran
et al., 2017) for the MLP networks.

C Computational complexity

The computational complexity of CylE is similar
to ConE since these models share similarity in ge-
ometric shapes. Note that the computational com-
plexity of ConE and G2B is also similar to one

another (Zhang et al., 2021b). It is arguably that
CylE, ConE and G2B have similar computational
complexity. Assuming a Disjunctive Normal Form
(DNF) query q: that consists of conjunctive queries
qi:1→n, where q = q1∨· · ·∨qn. The computational
complexity of CylE for answering q is equivalent
to the computational complexity for answering the
number n of conjunctive queries qi. This answering
process is involved in the estimation of a sequence
of geometric sector-cylinder operations in which a
constant time can be taken for each operation, then
performing a range search which can be achieved
using techniques according to Locality Sensitive
Hashing (Indyk and Motwani, 1998).

Models GQE Q2B BetaE ConE CylE CylE

Emb. dimension d 800 800 800 800 800 500

Running time (s) 75.87 81.43 168.91 119.90 154.79 121.65

Table 15: Average running time (seconds) for the first
500 training steps in different approaches using the
FB15k-237 dataset.

We record the average running time (seconds)
for the first 500 training steps using the same di-
mensional embedding for all models (GQE, G2B,
BetaE, ConE and CylE) and another one with lower
embedding dimension for CylE, on the same single
NVIDIA Tesla V100 GPU, for fair comparisons.
The lower this value is, the faster training process
is. Overall, the fastest model is GQE while the
slowest model is BETA. The running time of CylE
is slightly slower than ConE, but CylE with lower
dimension (d = 500) is on par with ConE. Further,
the running time of CylE is also faster than BetaE.

D The range values for the height

The range of values for the height variable θhe for
an arbitrary embedded query Vq = (θax,θap,θhe)
can be varied without any constraints. For example,
this range of values can be infinite. However, there
is a numerical problem in a way that values of θhe
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might dominate those in the semantic center θax
and the aperture θap. This problem can lead to a
reduction in the performance of MHR in this sit-
uation. Since θax ∈ [−π, π)d and θap ∈ [0, 2π]d

are in a small range of values, compared to infi-
nite range of θhe. Thus, we set a small range of
values for the height variable and scale the range
to (−π, π), to avoid the numerical issues, making
this variable have a consistent systematic range of
values (based on the multiples of π) as those in the
semantic center θax and the aperture θap.
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