
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1833–1845
May 2-6, 2023 ©2023 Association for Computational Linguistics

Semantic Frame Induction with Deep Metric Learning

Kosuke Yamada1 Ryohei Sasano1,2 Koichi Takeda1

1Graduate School of Informatics, Nagoya University, Japan
2RIKEN Center for Advanced Intelligence Project, Japan

yamada.kosuke.v1@s.mail.nagoya-u.ac.jp,
{sasano,takedasu}@i.nagoya-u.ac.jp

Abstract

Recent studies have demonstrated the useful-
ness of contextualized word embeddings in un-
supervised semantic frame induction. However,
they have also revealed that generic contextu-
alized embeddings are not always consistent
with human intuitions about semantic frames,
which causes unsatisfactory performance for
frame induction based on contextualized em-
beddings. In this paper, we address supervised
semantic frame induction, which assumes the
existence of frame-annotated data for a subset
of predicates in a corpus and aims to build a
frame induction model that leverages the an-
notated data. We propose a model that uses
deep metric learning to fine-tune a contextual-
ized embedding model, and we apply the fine-
tuned contextualized embeddings to perform
semantic frame induction. Our experiments
on FrameNet show that fine-tuning with deep
metric learning considerably improves the clus-
tering evaluation scores, namely, the B-CUBED
F-SCORE and PURITY F-SCORE, by about 8
points or more. We also demonstrate that our
approach is effective even when the number of
training instances is small.

1 Introduction

Semantic frames are knowledge resources that re-
flect human intuitions about various concepts such
as situations and events. One of the most represen-
tative semantic frame resources is FrameNet (Baker
et al., 1998; Ruppenhofer et al., 2016), which
consists of semantic frames, lexical units (LUs)
that evoke these frames, and collections of frame-
annotated sentences. Semantic frame induction is
the task of grouping predicates, typically verbs, ac-
cording to the semantic frames they evoke.1 For
example, given the verbs in the example sentences

1Strictly speaking, this task can be divided into two sub-
tasks: verb clustering, which groups verbs according to the
frames that they evoke, and argument clustering, which groups
arguments of verbs according to their roles. In this study, we
focus the former, the verb clustering task.

Frame Example sentence

FILLING
(1) She covered her mouth with her hand.
(2) I filled a notebook with my name.

PLACING
(3) You can embed graphs in your worksheet.
(4) He parked the car at the hotel.

REMOVING
(5) Volunteers removed grass from the marsh.
(6) They’d drained the drop from the teapot.

TOPIC
(7) Each database will cover a specific topic.
(8) Chapter 8 treats the educational advantages.

Table 1: Example sentences and the frames that their
verbs evoke in FrameNet.

(1)

(a) Vanilla BERT (b) Fine-tuned BERT w/ AdaCos

(2)

(3)

(4)

(6)

(7)

(8)

(5)

Figure 1: 2D t-SNE projections of the contextualized
embeddings of verbs annotated with either the FILL-
ING (•), PLACING (×), REMOVING (■), or TOPIC (+)
frames in FrameNet, by using (a) vanilla BERT or (b)
fine-tuned BERT with AdaCos. The numbers in paren-
theses correspond to the examples listed in Table 1.

listed in Table 1, semantic frame induction aims
to group them into four clusters according to the
frames that they evoke.

Recent studies (Arefyev et al., 2019; Anwar
et al., 2019; Ribeiro et al., 2019) have demon-
strated the usefulness of contextualized word em-
beddings such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) in unsupervised seman-
tic frame induction. Figure 1(a) shows a 2D t-SNE
(Maaten and Hinton, 2008) projection of the vanilla
BERT2 embeddings of verbs extracted from frame-
annotated sentences in FrameNet. We can confirm
that the instances of the verb “cover” in Exam-

2We refer to BERT without fine-tuning as “vanilla BERT.”

1833

ples (1) and (7) are far apart in the space, which
reflects the distance between their meanings. In
contrast, “cover” in (7) and “treat” in (8), which
are annotated with the same TOPIC frame, are close
together. However, instances are not always prop-
erly placed in the semantic space according to the
frames they evoke. For example, “remove” in (5)
and “drain” in (6) are annotated with the same RE-
MOVING frame but are not close together. This
suggests that contextualized word embeddings are
not always consistent with human intuition about
semantic frames.

Hence, in this study, we tackle supervised seman-
tic frame induction, which assumes the existence
of annotated data for certain predicates, to induce
semantic frames that adequately reflect human in-
tuition about the frames. We propose methods that
use deep metric learning to fine-tune the contextual
word embedding model so that instances of verbs
that evoke the same frame are placed close together
and other instances are placed farther apart in the
semantic space. Figure 1(b) shows the 2D t-SNE
projection of BERT embeddings after fine-tuning
with AdaCos (Zhang et al., 2019), which is a rep-
resentative deep metric learning method. We can
confirm that predicates that evoke the same frame
are close together, such as those in (3) and (4) and
those in (5) and (6). This suggests that deep metric
learning enables fine-tuning of BERT to obtain em-
bedding spaces that better reflect human intuition
about semantic frames.

2 Related Work

For automatic construction of semantic frame re-
sources, studies on grouping predicates according
to the semantic frames they evoke can be divided
into two groups: those that work on semantic
frame identification, in which predicates are clas-
sified into predefined frames; and those that work
on semantic frame induction, in which predicates
are grouped according to the frames that they evoke,
which are typically not given in advance.

Semantic frame identification is often treated as
a subtask of frame semantic parsing (Das et al.,
2014; Swayamdipta et al., 2017), and the meth-
ods using contextualized embedding have become
mainstream. For example, Jiang and Riloff (2021)
used a BERT-based model to generate represen-
tations for frames and LUs by using their formal
definitions. Su et al. (2021) used a BERT-based
model with a context encoder, to encode the context

surrounding the frame-evoking word, and a frame
encoder, to encode the frames’ definitions and se-
mantic roles. Yong and Torrent (2020) treated se-
mantic frame identification as a clustering task.3

They first excluded predicates that evoke frames
that are not included in FrameNet by applying an
anomaly detection model; then, they grouped the
remaining predicates according to their meanings
by using contextualized embeddings of predicates
and sentence embeddings of the frame definitions.

Semantic frame induction is the task of group-
ing predicates in texts according to the frames they
evoke. Instead of frames being given in advance,
each grouping of given predicates is considered a
frame. As with semantic frame identification, meth-
ods using contextualized embedding have become
mainstream. Arefyev et al. (2019) first performed
agglomerative clustering by using the BERT em-
bedding of a frame-evoking verb and then split
each cluster into two on the basis of the verb’s sub-
stitutes. Anwar et al. (2019) used the embedding of
the frame-evoking verb and the average word em-
bedding of all the words in a sentence, as obtained
by skip-gram (Mikolov et al., 2013) or ELMo and
then performed agglomerative clustering. Ribeiro
et al. (2019) applied graph clustering by using the
ELMo embedding of the frame-evoking verb. Ya-
mada et al. (2021a) leveraged the embedding of the
masked frame-evoking verb and performed two-
step clustering, which comprised intra-verb and
cross-verb clustering. Yamada et al. (2021b) inves-
tigated how well contextualized word representa-
tions can recognize the difference of frames that
the same verb evokes, and explored which types
of representation are suitable for semantic frame
induction. All of these studies focused on unsuper-
vised semantic frame induction, with no training
data. In contrast, in this study, we assume the
existence of frame-annotated data for a subset of
predicates appearing in a corpus, and work on su-
pervised semantic frame induction.

3 Supervised Semantic Frame Induction

3.1 Task Description

The task of supervised semantic frame induction
assumes the existence of frame-annotated data for
a subset of a corpus’s predicates, and it aims to

3Although they called their task semantic frame induction,
we refer to the task as frame identification mainly due to
the fact that their experiments excluded predicates that evoke
unknown frames.

1834

build a frame induction model that leverages the
annotated data. Clustering-based methods are gen-
erally used for semantic frame induction, and this
is also true for supervised semantic frame induc-
tion, where the annotated data is used to learn the
distance metric for clustering. In this study, the
predicates that are used for training the metric and
for testing do not overlap. Note that, because differ-
ent predicates may evoke the same frame, instances
in the test data include predicates that evoke frames
that are present in the training data.

3.2 Baseline Methods

For the simplest baseline, we use a one-step
clustering-based method with contextualized em-
bedding. The clustering method is group-average
clustering based on the Euclidean distance. We also
leverage the masked word embeddings and two-
step clustering proposed by Yamada et al. (2021a).
Regarding the former, we use a weighted average
embedding (vw+m) of the standard contextualized
embedding of the frame-evoking word (vword) and
the masked word embedding (vmask), which is a
contextualized embedding of the frame-evoking
word replaced by a special token “[MASK].” The
embedding vw+m is defined using a weight param-
eter α as follows:

vw+m = (1− α) · vword + α · vmask. (1)

Two-step clustering performs clustering for each
frame-evoking word with the same lemma,4 and it
performs clustering over different frame-evoking
words in the second step. We use X-means (Pel-
leg and Moore, 2000) for the first step and group-
average clustering based on the Euclidean distance
for the second step. All other settings here are the
same as in Yamada et al. (2021a).

3.3 Fine-tuning by Deep Metric Learning

For supervised semantic frame induction, we fine-
tune contextualized word embedding models by ap-
plying deep metric learning (Kaya and Bilge, 2019;
Musgrave et al., 2020) so that the instances of pred-
icates that evoke the same frame are closer together
and those of predicates that evoke different frames
are further apart. We apply two representative deep
metric learning approaches: a distance-based ap-
proach and a classification-based approach.

4Following Yamada et al. (2021a), we refer to each cluster
generated by clustering in the first step as a pseudo-LU (pLU).

Distance-based Approach This is a classical
deep metric learning approach, and the models typ-
ically use multiple encoders to train the distance
between a pair of instances. In this approach, we
use two losses, a contrastive loss and a triplet loss,
to build frame induction models.

The contrastive loss (Hadsell et al., 2006) is used
to train the distance between a pair of instances
by using a network of two encoders with shared
parameters. Specifically, the model is trained to
keep instances of the same class close together and
instances of different classes separated by a certain
margin. The loss is defined as follows:

Lcont=

{
D (xi,xj) i=j

max (m−D (xi,xj) , 0) i ̸=j
, (2)

where xi denotes an embedding of an instance be-
longing to the i-th class, m denotes a margin, and
D denotes a distance function, which is generally
the squared Euclidean distance.

The triplet loss (Weinberger and Saul, 2009) is
used for training such that, for a triplet of instances,
the distance between the anchor and negative in-
stances, which are from different classes, is more
than a certain margin greater than the distance be-
tween the anchor and positive instances, which are
from the same class. The loss is defined as follows:

Ltri=max (D (xa,xp)−D (xa,xn)+m, 0) , (3)

where xa, xp, and xn denote embeddings of the an-
chor, positive, and negative instances, respectively,
and m and D are the same as in Equation (2).

We create pairs for each instance in the train-
ing set by randomly selecting instances of predi-
cates that evoke the same frame as positives and
instances of predicates that evoke different frames
as negatives. The margin to keep the negatives
away is determined by the development set.

Classification-based Approach This is an ap-
proach that has recently become the standard for
face recognition. It basically uses a network that
has an encoder to obtain instance embeddings and
a linear layer for multiclass classification. This is
superior to the distance-based approach in that it
does not require a sampling algorithm and saves
memory because it uses only a single encoder. The
loss function is based on the softmax loss:

Lsoft = − log
ew

⊤
i xi+bi

∑n
j=1 e

w⊤
j xi+bj

, (4)

1835

where xi, wi, and bi denote an embedding of the
instance, the linear layer’s weight, and a bias term,
respectively, for the i-th class, and n denotes the
number of classes.

Many losses used in face recognition have been
adjusted by introducing different margins for the
softmax loss (Liu et al., 2017; Wang et al., 2018;
Deng et al., 2019). These losses typically remove
the bias term bi of the softmax loss and transform
the logit as w⊤

i xi = ||wi|| · ||xi|| · cos θi, where
θi is the angle between wi and xi. ArcFace (Deng
et al., 2019) has become a popular choice because
of its superior geometric interpretation. It applies
l2 regularization to wi and xi and introduces an
angular margin m and a feature scale s as hyperpa-
rameters to simultaneously enhance the intra-class
compactness and inter-class discrepancy. The Arc-
Face loss is defined as follows:

Larc=− log
es·cos(θi+m)

es·cos(θi+m)+
∑n

j=1,j ̸=i e
s·cos θj . (5)

Zhang et al. (2019) pointed out that the perfor-
mance of these losses depends on the hyperparame-
ters and they observed the behaviors of the angular
margin and the feature scale. As a result, they pro-
posed the hyperparameter-free AdaCos loss, which
removes the margin and applies the scale dynami-
cally. The AdaCos loss is defined as follows:

Lada = − log
es̃·cos θi∑n
j=1 e

s̃·cos θj , (6)

where s̃ denotes the automatically tuned scale.
While the softmax and AdaCos losses do not

require a hyperparameter search, ArcFace requires
hyperparameters for the margin and feature scale.
Here, we explore only the margin because Zhang
et al. (2019) showed that the behavior of the margin
and the scale are similar and the distance-based
approach explores the margin.

4 Experiment

To evaluate the usefulness of fine-tuning with deep
metric learning, we experimented with supervised
semantic frame induction by comparing previous
non-fine-tuned models to various fine-tuned models
ranging from typical to evolved ones. By varying
the number of training instances, we also verified
that our models were effective even for training a
small number of instances.

#Verbs #LUs #Frames #Instances
Set 1 831 1,277 429 28,314
Set 2 831 1,261 415 26,179
Set 3 830 1,280 459 28,117
All 2,492 3,818 642 82,610

Table 2: Statistics of the FrameNet-based dataset used
in three-fold cross-validation.

4.1 Settings

Dataset The dataset in our experiments was cre-
ated by extracting example sentences in which the
frame-evoking word was a verb from the FrameNet
1.7 dataset.5 These example sentences were split
into three sets such that sentences with the same
verb were in the same set. The proportions of poly-
semous verbs were equal. We performed three-fold
cross-validation with the three sets as the training,
development, and test sets. Table 2 lists the dataset
statistics. Note that the verbs, LUs, and instances
did not overlap among the sets, but the frames did
overlap. The training set was used to fine-tune
the contextualized word embeddings. The develop-
ment set was used to determine the criterion for the
number of clusters and the weight α of the embed-
ding vW+M, as well as the margin for the contrastive,
triplet, and ArcFace losses. The range of α was
from 0 to 1 in increments of 0.1, and the candidates
of the margin were 0.1, 0.2, 0.5, and 1.0 for the
contrastive and triplet losses and 0.01, 0.02, 0.05,
and 0.1 for the ArcFace loss.

Comparison Methods We used BERT6 from
Hugging Face (Wolf et al., 2020) to obtain contex-
tualized word embeddings. We compared 12 meth-
ods, which comprised the vanilla model (Vanilla)
and five fine-tuned models (Contrastive, Triplet,
Softmax, ArcFace, AdaCos) with one-step clus-
tering and two-step clustering. All embeddings
were processed with l2 normalization. Regarding
hyperparameters, the batch size was 32, the learn-
ing rate was 1e-5, and the number of epochs for
fine-tuning was five. Also, the feature scale for
ArcFace was 64. The optimization algorithm was
AdamW (Loshchilov and Hutter, 2017).

We compared our methods with the three unsu-
pervised methods used in Subtask-A of SemEval-
2019 Task 2 (QasemiZadeh et al., 2019) in addition
to the method of Yamada et al. (2021a) that cor-

5https://framenet.icsi.berkeley.edu/
6https://huggingface.co/bert-base-uncased

1836

https://framenet.icsi.berkeley.edu/
https://huggingface.co/bert-base-uncased

Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 – 429 53.0 / 57.0 / 54.9 40.8 / 44.6 / 42.6

Contrastive 0.13 – 443 56.9 / 70.0 / 62.8 45.1 / 58.6 / 51.0
One-step clustering Triplet 0.23 – 425 70.0 / 77.0 / 73.3 60.3 / 68.1 / 63.9

(group-average clustering) Softmax 0.23 – 440 65.1 / 78.0 / 71.0 53.3 / 68.6 / 59.9
ArcFace 0.37 – 436 70.3 / 76.2 / 73.1 59.7 / 67.4 / 63.3
AdaCos 0.30 – 446 69.0 / 78.7 / 73.5 57.5 / 69.5 / 62.9
Vanilla 0.67 877 444 60.6 / 74.9 / 66.9 49.7 / 65.8 / 56.5

Two-step clustering
Contrastive 0.23 1904 689 69.2 / 62.5 / 65.7 59.5 / 50.9 / 54.8

(X-means &
Triplet 0.50 1014 454 73.4 / 76.7 / 74.8 64.6 / 68.0 / 66.0

group-average clustering)
Softmax 0.43 1428 919 84.7 / 62.5 / 71.9 78.4 / 50.4 / 61.4
ArcFace 0.47 955 452 70.5 / 76.5 / 73.3 60.8 / 67.7 / 63.8
AdaCos 0.50 1128 656 80.8 / 71.3 / 75.6 73.2 / 60.9 / 66.2

Table 3: Experimental results on semantic frame induction with vanilla and fine-tuned models over three-fold
cross-validation. Each value in the table is the average from three trials. #pLU denote the number of pLUs, and #C
denotes the final number of clusters.

responds to our method with the Vanilla model.7

Regarding those three methods, first, Arefyev et al.
(2019) performed group-average clustering by us-
ing the BERT embedding of a frame-evoking verb
and then split each cluster into two by using TF-
IDF features based on the verb’s substitutes, which
were generated using Hearst-like patterns (Hearst,
1992) with BERT. Second, Anwar et al. (2019)
performed group-average clustering through con-
catenation of the embedding of the frame-evoking
verb and the average embedding of all words in the
sentence as obtained by skip-gram. Third, Ribeiro
et al. (2019) applied graph clustering by Chinese
whispers (Biemann, 2006) with the ELMo embed-
ding of the frame-evoking verb.

Evaluation Metrics For evaluation metrics, we
used the PURITY (PU), the INVERSE PURITY

(IPU), and their harmonic mean, the F-SCORE

(PIF) (Zhao and Karypis, 2001); and the B-CUBED

PRECISION (BCP), the B-CUBED RECALL (BCR),
and their harmonic mean, the F-SCORE (BCF)
(Bagga and Baldwin, 1998). PU is a metric of the
degree to which a cluster is occupied by a single
label, while IPU is a metric of the degree to which a
single label is concentrated in a single cluster. BCP
and BCR evaluate the precision and recall for each
sample, respectively, without associating clusters
and labels. The shared task at SemEval-2019 Task
2 ranked systems according to BCF.

7The SemEval-2019 Task 2 dataset is no longer available,
as described on its official web page; thus, we excluded this
dataset from the experiments.

Method PIF BCF
Arefyev et al. (2019) 65.5 57.4
Anwar et al. (2019) 62.2 52.2
Ribeiro et al. (2019) 58.2 46.8
Yamada et al. (2021a) 66.9 56.5
Ours (one-step & Triplet) 73.9 63.9
Ours (one-step & AdaCos) 73.5 62.9
Ours (two-step & Triplet) 74.8 66.0
Ours (two-step & AdaCos) 75.6 66.2

Table 4: Results of comparison with previous methods.

4.2 Results

Table 3 summarizes the experimental results with
the 12 methods. The fine-tuned models, especially
the Triplet, ArcFace, and AdaCos models, obtained
higher PIF and BCF scores than the Vanilla model
except for the two-step clustering method with the
Contrastive model. The reason why the Contrastive
model performed worse than the other fine-tuned
models could be that the space that represents the
frame does not match the cluster size due to train
the distance according to a fixed margin. Table
4 also lists the comparison results with previous
methods. Our fine-tuning methods achieved higher
PIF and BCF scores than the previous methods.
These results indicate that fine-tuning with deep
metric learning helps to improve the performance
of semantic frame induction.

From Table 3, we can see that the two-step
clustering methods tended to obtain higher overall
scores than the one-step clustering methods. How-

1837

Clustering Model
PIF BCF

1 / 2 / 5 / 10 / all 1 / 2 / 5 / 10 / all
Vanilla 54.9 / 54.9 / 54.9 / 54.9 / 54.9 42.6 / 42.6 / 42.6 / 42.6 / 42.6

Contrastive 52.0 / 60.3 / 62.6 / 61.7 / 62.8 39.0 / 48.3 / 50.8 / 49.7 / 51.0
One-step clustering Triplet 68.2 / 70.9 / 71.7 / 72.9 / 73.3 57.4 / 60.6 / 61.8 / 63.0 / 63.9

(group-average clustering) Softmax 52.9 / 54.7 / 64.9 / 69.4 / 71.0 39.3 / 41.7 / 52.8 / 57.8 / 59.9
ArcFace 58.1 / 62.5 / 69.2 / 71.9 / 73.1 45.6 / 50.6 / 59.1 / 62.1 / 63.3
AdaCos 57.5 / 59.7 / 66.5 / 70.9 / 73.5 44.7 / 47.1 / 54.6 / 60.0 / 62.9
Vanilla 66.9 / 66.9 / 66.9 / 66.9 / 66.9 56.5 / 56.5 / 56.5 / 56.5 / 56.5

Two-step clustering
Contrastive 68.4 / 66.3 / 67.7 / 67.4 / 65.7 58.4 / 56.0 / 57.7 / 57.1 / 54.8

(X-means &
Triplet 71.7 / 72.5 / 73.9 / 74.0 / 74.8 62.4 / 63.1 / 64.8 / 64.9 / 66.0

group-average clustering)
Softmax 67.6 / 70.1 / 72.6 / 73.0 / 71.9 57.7 / 60.6 / 63.2 / 63.4 / 61.4
ArcFace 66.5 / 66.6 / 69.2 / 72.9 / 73.3 56.1 / 56.4 / 59.5 / 63.2 / 63.8
AdaCos 67.3 / 69.4 / 73.4 / 74.3 / 75.6 57.6 / 59.7 / 64.5 / 65.3 / 66.2

Table 5: Experimental results on semantic frame induction using the vanilla and fine-tuned models over three-fold
cross-validation when varying the maximum number of training instances. Each numeric column lists the number
of instances per LU included in the training set. Each value in the table is the average from three trials.

ever, the difference in BCF scores between the
one-step and two-step clustering methods with the
Vanilla model was 13.9, whereas the difference in
the maximum BCF scores for both clustering meth-
ods with the fine-tuned models was only 2.3. Thus,
for fine-tuning models, one-step clustering is still
a good option in addition to two-step clustering.
Note that one-step clustering is more straightfor-
ward to implement than two-step clustering, but it
requires more computation time8 and CPU mem-
ory to cluster many instances at once. Regarding
the weight α, two-step clustering tended to incor-
porate vmask more than one-step clustering did in
not only the Vanilla model but also the fine-tuned
models. These results suggest that two-step cluster-
ing remains effective in masking a verb’s surface
information even after fine-tuning.

The balance between BCP and BCR in the clus-
tering evaluation metric depends on the final num-
ber of frame clusters, #C in Table 3. In the extreme
case, BCR is 1 if #C is 1, and BCP is 1 if #C is
equal to the number of instances. Hence, among
models with roughly the same BCF, those with a
fewer number of clusters tend to have higher BCR.
For example, as shown in Table 3, #C of Triplet in
two-step clustering is 454, while that of AdaCos
is 656, and we can confirm that Triplet, which has
fewer clusters, obtains higher BCR than AdaCos.

8In our experiments with 16-core Intel Xeon Gold 6134
CPU at 3.20 GHz, the computation times were about 10 min-
utes for one-step clustering and about 5 minutes for two-step
clustering.

4.3 Effect of Number of Training Instances

We found that fine-tuned methods outperformed
previous unsupervised methods when the number
of training instances was around 30,000. How-
ever, the annotation cost of building a resource like
FrameNet is high, so the fewer instances used for
training, the easier it is to build other language re-
sources and apply them to other tasks. Thus, we
experimented with varying the number of training
instances. Specifically, for each LU in the training
set, the maximum number of instances was varied
among 1, 2, 5, 10, and all instances. The result-
ing average numbers of training instances for the
three sets were 1,273, 2,445, 5,680, 10,053, and
27,536, respectively. The numbers of verbs, LUs,
and frames were the same in each setting.

Table 5 lists the PIF and BCF scores for each
method. Because the Vanilla model was not fine-
tuned, its scores are the same in each setting. The
Triplet model achieved high scores even with a
small number of training instances. In the two-step
clustering method with the Triplet model, the score
difference between the cases of “1” and “all” is
only 3.1 for PIF and 3.6 for BCF, even though the
number of training instances is quite different, i.e.,
1,273 vs. 27,536. These results show that even
when a small number of examples is annotated for
each meaning of a verb, this method can be ex-
pected to perform considerably better than unsuper-
vised methods. In contrast, the Softmax, ArcFace,
and AdaCos models obtained scores closer to the
Triplet model in the cases of “5” or “10” but per-

1838

formed considerably worse with an even smaller
number of training instances. We conclude that the
relatively poor performance of these models with
a small number of training instances was due to
insufficient training of the linear layer’s weights.

5 Analysis of Fine-tuned Embedding

It is not easy to analyze the properties of an em-
bedding in clustering evaluation because the per-
formance depends on the clustering method and
the number of clusters. To better understand the
fine-tuned embeddings, we performed a similarity
ranking evaluation and visualized the embeddings.

5.1 Similarity Ranking Evaluation

We evaluated the models by ranking instances ac-
cording to their embedding similarity. Specifically,
we took one verb instance as a query instance; then,
we computed the cosine similarity of the embed-
dings between the query instance and the remaining
verb instances and evaluated the similarity rank-
ings of the instances in descending order. We used
vw+m with the same weight α that was used for the
one-step clustering in Section 4. We chose recall
as the metric to evaluate the instance distribution.
This metric computes the average matching rate
between true instances, which are instances of the
same frame as the query instance, and predicted in-
stances, which are obtained by extracting the same
number of top-ranked instances as the number of
true instances. For example, Set 1 of Table 2 had
153 instances of the FILLING frame out of 28,314
total instances. When one of these instances was
the query instance, the number of true instances
would be 152. Thus, from the total instances, we
would extract the top 152 instances that were sim-
ilar to the query, and if 114 instances were true
instances, the score would be 114/152 = 0.75.

We performed the similarity ranking evaluation
in three settings with respect to the search space
of the ranked instances: ALL, which included all
instances, SAME, which included only instances
of the same verb as the query, and DIFF, which
included only instances of different verbs as the
query. Table 6 lists the results. The results for
ALL show that all of the fine-tuned models were
improved over the Vanilla model; in particular,
the four fine-tuned models besides the Contrastive
model performed very well, improving by more
than 20. We thus confirmed that instances of the
same frame were trained to be close to each other

Model ALL SAME DIFF

Vanilla 35.9 68.5 17.4
Contrastive 46.6 67.7 28.4

Triplet 60.6 74.2 40.7
Softmax 60.5 73.1 41.4
ArcFace 58.8 75.6 37.4
AdaCos 62.1 74.7 42.8

Table 6: Experimental results of recall for the similar-
ity ranking evaluation over three-fold cross-validation.
ALL, SAME, and DIFF indicate a search space of all
instances, instances of the same verb, and instances of
different verbs, respectively, for the query instance.

Model OVERLAP NON-OVERLAP

Vanilla 33.9 47.3
Contrastive 45.5 52.2

Triplet 59.0 69.0
Softmax 59.7 65.0
ArcFace 57.1 68.4
AdaCos 61.2 67.0

Table 7: Separately aggregated scores for ALL in Table
6 in the OVERLAP and NON-OVERLAP cases.

and instances of different frames are trained to be
distant from each other. Score improvements were
observed for both SAME and DIFF, and as expected,
SAME scored higher than DIFF both before and af-
ter fine-tuning. However, the improvement was
much larger for DIFF than for SAME, suggesting
that the improvement in clustering performance by
fine-tuning was mainly due to the fact that different
verbs evoking the same frame were trained to be
close to each other.

It is important to further examine whether the
improved performance might have resulted only
from the frames included in the training set. That is,
we need to verify that the embedding of an instance
of an untrained frame could be associated with a
correct frame. To investigate this, we aggregated
the scores separately for cases in which the frames
of the query instance were included in the training
set (OVERLAP) and for cases in which they were
not (NON-OVERLAP). Table 7 lists the separately
aggregated results for ALL in Table 6. All of the
fine-tuned models obtained higher scores than the
Vanilla model for not only frames that were in the
training set but also frames that were not. Note
that the scores for NON-OVERLAP were higher
overall than those for OVERLAP. This result may
be counterintuitive, but the reason is that the frames

1839

Va
ni

lla
 B

ER
T

Fi
ne

-tu
ne

d
BE

RT
 w

/ A
da

Co
s

Fi
ne

-tu
ne

d
BE

RT
 w

/ T
rip

le
t

SELF_MOTION EXPERIIENCER_OBJ PLACING MAKE_NOISE CAUSE_HARM
BODY_MOVEMENT COMMUNICATION_NOISE PATH_SHAPE FILLING REMOVING

𝑣!"#$ 𝑣%&'(𝑣!)%

𝛼 = 0.3

𝛼 = 0.3

𝛼 = 0.3

𝛼 = 0

𝛼 = 0

𝛼 = 0

𝛼 = 1

𝛼 = 1

𝛼 = 1

Figure 2: 2D t-SNE projections of vword, vw+m, and vmask for the Vanilla, AdaCos, and Triplet models, respectively,
for all instances with Set 1 in Table 2 as the test set. The top 10 semantic frames with the highest numbers of
instances in this set are highlighted.

in the NON-OVERLAP case were only evoked by
a few verbs, making it relatively easy to obtain
higher ranking of instances of the same frame as
the query.

5.2 Embedding Visualization

To intuitively understand the embeddings given by
the Vanilla model and two fine-tuned models, we
visualized them by t-SNE. Figure 2 shows the two-
dimensional t-SNE projection of the contextualized
embeddings of the frame-evoking verbs for all in-
stances when Set 1 in Table 2 is the test set. We
used vword, vw+m, and vmask for the Vanilla, Ada-
Cos, and Triplet models, respectively. The weight
α for vw+m was 0.3, which was the best value for
one-step clustering methods with the Triplet and

AdaCos models in Section 4.9 We highlight the top
ten semantic frames with the highest numbers of
instances in this set.

In the Vanilla model, the instances for vword

tended to be grouped by frame but were not suf-
ficiently grouped into clusters. For example, the
instances of the SELF_MOTION frame were divided
into two large groups, while those of the REMOV-
ING frame were scattered. The instances for vmask

were somewhat more scattered than those for vword.
In addition, vw+m tended to group instances of the
same frame.

In the AdaCos and Triplet models, the instances
for vword were grouped much better for each frame

9For the Vanilla model, α was 0, which was the same as
for vw+m and vword; thus, the results here are for α of 0.3.

1840

than those for non-fine-tuned vword. The results
also confirmed that instances of frames with simi-
lar meanings, such as the PLACING and FILLING

frames, were both identifiable and close. However,
fine-tuned vword formed many lumps of instances.
This suggests that deep metric learning incorpo-
rates too much of a verb’s surface information. On
the other hand, fine-tuned vmask was somewhat bet-
ter than non-fine-tuned vmask, but not as good as
fine-tuned vword. As deep metric learning may re-
quire the surface information about a verb to be in-
duced, so fine-tuned vmask may not work well. The
instances in fine-tuned vw+m were better grouped
than those for fine-tuned vword, because instances
of the same frame were more grouped.

6 Conclusion

We worked on the supervised semantic frame induc-
tion, and we proposed a model that uses deep met-
ric learning to fine-tune a contextualized embed-
ding model and applied the fine-tuned contextual-
ized embeddings to perform semantic frame induc-
tion. In our experiments, we showed that fine-tuned
BERT models with the triplet, ArcFace, and Ada-
Cos losses are quite promising for semantic frame
induction, as the human intuition in developing se-
mantic frames such as those in FrameNet can be
well captured by deep metric learning. In particular,
the fine-tuned BERT model with the triplet loss per-
formed considerably better than vanilla BERT even
when the number of training instances was small;
accordingly, the fine-tuned model is expected to
have a wide range of applications. We also found
that the one-step clustering can be a good choice
in addition to two-step clustering when performing
fine-tuning.

The ultimate goal of this study is to automati-
cally construct semantic frame knowledge from
large text corpora. This goal requires not only
grouping the verbs according to the frames that they
evoke but also grouping their arguments according
to the frame element roles that they fill. Our pro-
posed fine-tuned contextualized word embedding
with deep metric learning could be effective for
clustering arguments as it is for clustering verbs.
We would like to explore how to achieve this goal.

Limitations

In this study, we only conducted experiments with
English FrameNet, so it is unclear how useful this
method will be for other corpora and multilingual

resources. However, since our method does not
depend on the properties of the specific corpus and
language, it is quite possible that fine-tuning would
improve the scores in other datasets. In addition, as
our method requires supervised data from a seman-
tic frame knowledge resource, some annotation will
be necessary when applying the method to other
languages that lack such a resource.

Acknowledgements

This work was supported by JST FOREST
Program, Grant Number JPMJFR216N and
JSPS KAKENHI Grant Numbers 21K12012 and
22J14993.

References
Saba Anwar, Dmitry Ustalov, Nikolay Arefyev, Si-

mone Paolo Ponzetto, Chris Biemann, and Alexander
Panchenko. 2019. HHMM at SemEval-2019 task 2:
Unsupervised frame induction using contextualized
word embeddings. In Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation (SemEval
2019), pages 125–129.

Nikolay Arefyev, Boris Sheludko, Adis Davletov,
Dmitry Kharchev, Alex Nevidomsky, and Alexan-
der Panchenko. 2019. Neural GRANNy at SemEval-
2019 task 2: A combined approach for better mod-
eling of semantic relationships in semantic frame
induction. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval 2019),
pages 31–38.

Amit Bagga and Breck Baldwin. 1998. Entity-based
cross-document coreferencing using the vector space
model. In Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics and
17th International Conference on Computational Lin-
guistics (ACL-COLING 1998), pages 79–85.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The Berkeley FrameNet project. In Pro-
ceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics
(ACL-COLING 1998), pages 86–90.

Chris Biemann. 2006. Chinese whispers: An efficient
graph clustering algorithm and its application to nat-
ural language processing problems. In Proceed-
ings of TextGraphs: the First Workshop on Graph
Based Methods for Natural Language Processing
(TextGraphs 2006), pages 73–80.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguistics,
40(1):9–56.

1841

https://www.aclweb.org/anthology/S19-2018/
https://www.aclweb.org/anthology/S19-2018/
https://www.aclweb.org/anthology/S19-2018/
https://www.aclweb.org/anthology/S19-2004/
https://www.aclweb.org/anthology/S19-2004/
https://www.aclweb.org/anthology/S19-2004/
https://www.aclweb.org/anthology/S19-2004/
https://www.aclweb.org/anthology/P98-1012/
https://www.aclweb.org/anthology/P98-1012/
https://www.aclweb.org/anthology/P98-1012/
https://www.aclweb.org/anthology/P98-1013/
https://www.aclweb.org/anthology/W06-3812/
https://www.aclweb.org/anthology/W06-3812/
https://www.aclweb.org/anthology/W06-3812/
https://aclanthology.org/J14-1002

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. 2019. ArcFace: Additive angular margin
loss for deep face recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 2019), pages 4690–4699.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019), pages 4171–4186.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In Proceedings of the 2006 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR 2006), volume 2, pages
1735–1742.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th International Conference on Computational
Linguistics (COLING 1992).

Tianyu Jiang and Ellen Riloff. 2021. Exploiting defini-
tions for frame identification. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (EACL 2021),
pages 2429–2434.

Mahmut Kaya and Hasan Şakir Bilge. 2019. Deep
metric learning: A survey. Symmetry, 11(9):1066.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhik-
sha Raj, and Le Song. 2017. SphereFace: Deep
hypersphere embedding for face recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017), pages 212–
220.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In Proceedings of the
5th International Conference on Learning Represen-
tations (ICLR 2017).

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in Neural Information Processing Sys-
tems (NIPS 2013), pages 3111–3119.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim.
2020. A metric learning reality check. In Proceed-
ings of the 16th European Conference on Computer
Vision (ECCV 2020), pages 681–699.

Dan Pelleg and Andrew Moore. 2000. X-means: Ex-
tending k-means with efficient estimation of the num-
ber of clusters. In Proceedings of the 17th Inter-
national Conference on Machine Learning (ICML
2000), pages 727–734.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2018), pages 2227–2237.

Behrang QasemiZadeh, Miriam R. L. Petruck, Regina
Stodden, Laura Kallmeyer, and Marie Candito. 2019.
SemEval-2019 task 2: Unsupervised lexical frame
induction. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval 2019),
pages 16–30.

Eugénio Ribeiro, Vânia Mendonça, Ricardo Ribeiro,
David Martins de Matos, Alberto Sardinha, Ana Lú-
cia Santos, and Luísa Coheur. 2019. L2F/INESC-ID
at SemEval-2019 task 2: Unsupervised lexical se-
mantic frame induction using contextualized word
representations. In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation (SemEval
2019), pages 130–136.

Josef Ruppenhofer, Michael Ellsworth, Myriam
Schwarzer-Petruck, Christopher R Johnson, and Jan
Scheffczyk. 2016. FrameNet II: Extended theory and
practice. International Computer Science Institute.

Xuefeng Su, Ru Li, Xiaoli Li, Jeff Z. Pan, Hu Zhang,
Qinghua Chai, and Xiaoqi Han. 2021. A knowledge-
guided framework for frame identification. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (ACL-IJCNLP 2021), pages 5230–5240.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A Smith. 2017. Frame-semantic parsing with
softmax-margin segmental RNNs and a syntactic
scaffold. arXiv preprint arXiv:1706.09528.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. 2018.
CosFace: Large margin cosine loss for deep face
recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR
2018), pages 5265–5274.

Kilian Q Weinberger and Lawrence K Saul. 2009. Dis-
tance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Re-
search, 10(2).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations (EMNLP 2020), pages 38–45.

1842

https://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://ieeexplore.ieee.org/abstract/document/1640964
https://ieeexplore.ieee.org/abstract/document/1640964
https://aclanthology.org/C92-2082
https://aclanthology.org/C92-2082
https://aclanthology.org/2021.eacl-main.206
https://aclanthology.org/2021.eacl-main.206
https://www.mdpi.com/2073-8994/11/9/1066/htm
https://www.mdpi.com/2073-8994/11/9/1066/htm
https://openaccess.thecvf.com/content_cvpr_2017/html/Liu_SphereFace_Deep_Hypersphere_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Liu_SphereFace_Deep_Hypersphere_CVPR_2017_paper.html
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://arxiv.org/pdf/2003.08505.pdf &hellip
https://web.cs.dal.ca/~shepherd/courses/csci6403/clustering/xmeans.pdf
https://web.cs.dal.ca/~shepherd/courses/csci6403/clustering/xmeans.pdf
https://web.cs.dal.ca/~shepherd/courses/csci6403/clustering/xmeans.pdf
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/S19-2003/
https://www.aclweb.org/anthology/S19-2003/
https://www.aclweb.org/anthology/S19-2019/
https://www.aclweb.org/anthology/S19-2019/
https://www.aclweb.org/anthology/S19-2019/
https://www.aclweb.org/anthology/S19-2019/
https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf
https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf
https://aclanthology.org/2021.acl-long.407
https://aclanthology.org/2021.acl-long.407
https://arxiv.org/abs/1706.09528
https://arxiv.org/abs/1706.09528
https://arxiv.org/abs/1706.09528
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_CosFace_Large_Margin_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_CosFace_Large_Margin_CVPR_2018_paper.html
https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Kosuke Yamada, Ryohei Sasano, and Koichi Takeda.
2021a. Semantic frame induction using masked word
embeddings and two-step clustering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(ACL-IJCNLP 2021), pages 811–816.

Kosuke Yamada, Ryohei Sasano, and Koichi Takeda.
2021b. Verb sense clustering using contextualized
word representations for semantic frame induction.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021 (ACL-IJCNLP 2021
Findings), pages 4353–4362.

Zheng Xin Yong and Tiago Timponi Torrent. 2020.
Semi-supervised deep embedded clustering with
anomaly detection for semantic frame induction. In
Proceedings of the 12th Language Resources and
Evaluation Conference (LREC 2020), pages 3509–
3519.

Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and
Hongsheng Li. 2019. AdaCos: Adaptively scaling
cosine logits for effectively learning deep face rep-
resentations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR 2019), pages 10823–10832.

Ying Zhao and George Karypis. 2001. Criterion func-
tions for document clustering: Experiments and anal-
ysis. Technical report, Retrieved from the University
of Minnesota Digital Conservancy.

A Clustering Results with and without
Linear Completion

Tables 8 and 9 list our experimental results for se-
mantic frame induction when using vword, vw+m,
and vmask in one-step and two-step clustering, re-
spectively. The results show that vw+m tended to
perform better than vword and vmask, thus demon-
straiting the usefulness of linear completion. This
tendency was noticeable for two-step clustering but
more limited for one-step clustering.

Regarding the results for vword and vmask, the
fine-tuning was effective for vword, as the scores
improved considerably, but the effectiveness was
limited for vmask. This was probably because the
embedding of the special token “[MASK],” which
was the source of the contextualized word embed-
ding, was shared by all instances.

B Results for Semantic Frame Induction
on Development Set

Table 10 lists our experimental results for semantic
frame induction on the development set. As with
the test set, the fine-tuned models obtained higher

PIF and BCF scores than the Vanilla model except
for two-step clustering with the Contrastive model.
In particular, the Triplet, ArcFace, and AdaCos
models obtained high scores for both one-step and
two-step clusterings.

C Embedding Visualization of Remaining
Models

In Figure 2, we showed a two-dimensional t-SNE
projection of vword, vw+m, and vmask for the
Vanilla, AdaCos, and Triplet models, respectively.
Figure 3 shows a two-dimensional t-SNE projec-
tion of vword, vw+m, and vmask for the remaining
models not included in Figure 2, namely, the Con-
trastive, Softmax, and ArcFace models, with the
same setting. Figure 3 confirms that the three fine-
tuned models, as well as the two fine-tuned models
shown in Figure 2, are more coherent semantically
than the Vanilla model, and the tendency of vword,
vw+m, and vmask is similar. In addition, for the
Contrastive model, whose performance was rela-
tively poor among the fine-tuning models in Table
3, it was confirmed that the instances were some-
what scattered compared to the Softmax and Ar-
cFace models. For example, the instances of the
BODY_MOVEMENT frame were scattered. This
result confirmed the consistency of scores and vi-
sualization. The results show consistency between
scores and visualization.

1843

https://aclanthology.org/2021.acl-short.102/
https://aclanthology.org/2021.acl-short.102/
https://aclanthology.org/2021.findings-acl.381
https://aclanthology.org/2021.findings-acl.381
https://aclanthology.org/2020.lrec-1.431/
https://aclanthology.org/2020.lrec-1.431/
https://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_AdaCos_Adaptively_Scaling_Cosine_Logits_for_Effectively_Learning_Deep_Face_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_AdaCos_Adaptively_Scaling_Cosine_Logits_for_Effectively_Learning_Deep_Face_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_AdaCos_Adaptively_Scaling_Cosine_Logits_for_Effectively_Learning_Deep_Face_CVPR_2019_paper.html
https://hdl.handle.net/11299/21549
https://hdl.handle.net/11299/21549
https://hdl.handle.net/11299/21549

Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 – 429 53.0 / 57.0 / 54.9 40.8 / 44.6 / 42.6

Contrastive 0.00 – 421 55.4 / 69.6 / 61.7 43.7 / 58.2 / 49.9
One-step clustering Triplet 0.00 – 424 69.9 / 76.6 / 73.1 60.3 / 67.7 / 63.7

(group-average clustering) Softmax 0.00 – 433 65.1 / 77.4 / 70.7 53.3 / 67.9 / 59.7
ArcFace 0.00 – 430 69.8 / 75.1 / 72.3 62.7 / 66.1 / 62.7
AdaCos 0.00 – 434 68.2 / 77.6 / 72.6 62.0 / 68.1 / 62.0
Vanilla 0.00 – 429 53.0 / 57.0 / 54.9 40.8 / 44.6 / 42.6

Contrastive 0.13 – 443 56.9 / 70.0 / 62.8 45.1 / 58.6 / 51.0
One-step clustering Triplet 0.23 – 425 70.0 / 77.0 / 73.3 60.3 / 68.1 / 63.9

(group-average clustering) Softmax 0.23 – 440 65.1 / 58.0 / 71.0 53.3 / 68.6 / 59.9
ArcFace 0.37 – 436 70.3 / 76.2 / 73.1 59.7 / 67.4 / 63.3
AdaCos 0.30 – 446 69.0 / 78.7 / 73.5 57.5 / 69.5 / 62.9
Vanilla 1.00 – 430 29.9 / 38.9 / 33.8 18.0 / 24.4 / 20.7

Contrastive 1.00 – 449 26.1 / 40.8 / 31.8 14.3 / 26.2 / 18.4
One-step clustering Triplet 1.00 – 442 35.5 / 47.9 / 40.8 21.0 / 31.8 / 25.2

(group-average clustering) Softmax 1.00 – 447 26.1 / 50.6 / 37.4 15.5 / 35.3 / 21.5
ArcFace 1.00 – 452 35.0 / 46.2 / 40.1 20.9 / 30.6 / 24.8
AdaCos 1.00 – 432 33.7 / 48.0 / 39.1 18.3 / 32.1 / 23.3

Table 8: Results on semantic frame induction from using vword, vw+m, and vmask with in one-step clustering.

Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 880 438 52.5 / 68.2 / 59.3 43.0 / 58.1 / 49.4

Two-step clustering
Contrastive 0.00 2269 720 68.2 / 62.8 / 65.3 58.7 / 50.6 / 54.2

(X-means &
Triplet 0.00 1277 500 73.3 / 71.0 / 71.8 64.8 / 60.8 / 62.2

group-average clustering)
Softmax 0.00 1909 1107 85.1 / 60.0 / 70.3 78.7 / 47.8 / 59.3
ArcFace 0.00 1139 438 70.9 / 73.3 / 72.0 61.2 / 63.8 / 62.4
AdaCos 0.00 1664 897 83.6 / 64.7 / 72.7 76.9 / 53.3 / 62.6
Vanilla 0.67 877 444 60.6 / 74.9 / 66.9 49.7 / 65.8 / 56.5

Two-step clustering
Contrastive 0.23 1904 689 69.2 / 62.5 / 65.7 59.5 / 50.9 / 54.8

(X-means &
Triplet 0.50 1014 454 73.4 / 76.7 / 74.8 64.6 / 68.0 / 66.0

group-average clustering)
Softmax 0.43 1428 919 84.7 / 62.5 / 71.9 78.4 / 50.4 / 61.4
ArcFace 0.47 955 452 70.5 / 76.5 / 73.3 60.8 / 67.7 / 63.8
AdaCos 0.50 1128 656 80.8 / 71.3 / 75.6 73.2 / 60.9 / 66.2
Vanilla 1.00 873 469 59.0 / 72.9 / 65.2 48.8 / 63.6 / 55.1

Two-step clustering
Contrastive 1.00 2050 718 49.3 / 49.2 / 49.2 37.7 / 36.3 / 36.9

(X-means &
Triplet 1.00 930 463 65.2 / 73.9 / 69.0 55.2 / 64.3 / 59.1

group-average clustering)
Softmax 1.00 1573 873 68.6 / 55.3 / 61.2 58.6 / 43.5 / 49.9
ArcFace 1.00 906 467 62.5 / 73.7 / 67.5 52.3 / 64.3 / 57.4
AdaCos 1.00 1113 522 65.4 / 65.5 / 65.2 55.2 / 55.2 / 54.5

Table 9: Results on semantic frame induction from using vword, vw+m, and vmask with two-step clustering.

1844

Clustering Model α #pLU #C PU / IPU / PIF BCP / BCR / BCF
Vanilla 0.00 – 433 53.1 / 57.1 / 55.0 40.9 / 44.7 / 42.7

Contrastive 0.13 – 433 57.7 / 70.7 / 63.5 45.2 / 59.4 / 51.3
One-step clustering Triplet 0.37 – 433 71.7 / 76.9 / 74.2 62.0 / 67.4 / 64.6

(group-average clustering) Softmax 0.27 – 433 66.4 / 77.6 / 71.5 53.7 / 68.2 / 60.1
ArcFace 0.20 – 433 70.8 / 76.1 / 73.3 60.6 / 67.3 / 63.8
AdaCos 0.37 – 433 69.1 / 78.5 / 73.5 57.2 / 69.3 / 62.7
Vanilla 0.67 877 441 61.3 / 75.9 / 67.7 50.3 / 67.0 / 57.4

Two-step clustering
Contrastive 0.23 1879 736 70.3 / 63.5 / 66.6 60.9 / 51.8 / 55.9

(X-means &
Triplet 0.50 1016 431 74.7 / 78.1 / 76.4 65.7 / 69.6 / 67.6

group-average clustering)
Softmax 0.43 1442 922 84.6 / 63.2 / 72.3 78.1 / 51.0 / 61.7
ArcFace 0.47 966 453 71.5 / 76.9 / 74.0 62.1 / 68.0 / 64.9
AdaCos 0.50 1120 606 79.7 / 73.8 / 76.5 71.7 / 63.7 / 67.3

Table 10: Experimental results for semantic frame induction on the development set.

Fi
ne

-tu
ne

d
BE

RT
 w

/ S
of

tm
ax

Fi
ne

-tu
ne

d
BE

RT
 w

/ A
rc

Fa
ce

SELF_MOTION EXPERIIENCER_OBJ PLACING MAKE_NOISE CAUSE_HARM
BODY_MOVEMENT COMMUNICATION_NOISE PATH_SHAPE FILLING REMOVING

𝑣!"#$ 𝑣%&'(𝑣!)%

𝛼 = 0.3

𝛼 = 0.3

𝛼 = 0.3

𝛼 = 0

𝛼 = 0

𝛼 = 0

𝛼 = 1

𝛼 = 1

𝛼 = 1

Fi
ne

-tu
ne

d
BE

RT
 w

/ C
on

tra
sti

ve

Figure 3: 2D t-SNE projections of vword, vw+m, and vmask for the Contrastive, Softmax, and ArcFace models,
respectively, for all instances with Set 1 in Table 2 as the test set. The top 10 semantic frames with the highest
numbers of instances in this set are highlighted.

1845

