
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2123–2135
May 2-6, 2023 ©2023 Association for Computational Linguistics

Mitigating Exposure Bias in Grammatical Error Correction
with Data Augmentation and Reweighting

Hannan Cao* Wenmian Yang† Hwee Tou Ng*
* Department of Computer Science, National University of Singapore

† School of Computer Science and Engineering, Nanyang Technological University
caoh@u.nus.edu, wenmian.yang@ntu.edu.sg, nght@comp.nus.edu.sg

Abstract

The most popular approach in grammatical er-
ror correction (GEC) is based on sequence-to-
sequence (seq2seq) models. Similar to other
autoregressive generation tasks, seq2seq GEC
also faces the exposure bias problem, i.e., the
context tokens are drawn from different distri-
butions during training and testing, caused by
the teacher forcing mechanism. In this paper,
we propose a novel data manipulation approach
to overcome this problem, which includes a
data augmentation method during training to
mimic the decoder input at inference time, and
a data reweighting method to automatically bal-
ance the importance of each kind of augmented
samples. Experimental results on benchmark
GEC datasets show that our method achieves
significant improvements compared to prior ap-
proaches.1

1 Introduction

Grammatical error correction (GEC) is the task
of correcting errors in a source sentence and gen-
erating a well-written and grammatically correct
target sentence. Good results have been achieved
by state-of-the-art GEC systems (Rothe et al., 2021;
Stahlberg and Kumar, 2021) based on the sequence-
to-sequence (seq2seq) transformer (Vaswani et al.,
2017) architecture.

Generally, the seq2seq models are optimized to
predict the next token given all previous context to-
kens at each time step. During training, the ground
truth tokens are used as the context, i.e., the so-
called teacher forcing mechanism. However, dur-
ing inference, the context is the previous tokens
predicted by the model. As a result, the contexts
at training and inference time are drawn from dif-
ferent distributions. This discrepancy is called ex-
posure bias (Ranzato et al., 2016), which causes
the model to make inferences under conditions that

1The source code of this paper is publicly available at
https://github.com/nusnlp/gec_eb

Source
If that also word for you,
pleas close the ticker.

Target
If that also works for you,
please close the ticket.

Decoder input

Actual
If that also work for you,
pleas close the ticker.

Noise injection
It that also works for you,
pleas cloze the ticker.

Random sampling
If that also works for you,
please close the ticker.

Table 1: Example decoder inputs produced by different
methods. Each method’s deviations from the actual
decoder input are shown in bold.

it has not met during training and causes errors to
accumulate during inference.

Currently, the exposure bias problem has at-
tracted much attention in autoregressive text gen-
eration. For example, in neural machine transla-
tion (NMT), some work (Ranzato et al., 2016; Mi-
haylova and Martins, 2019; Zhang et al., 2019)
addresses this problem by utilizing sentence-level
metrics, randomly injecting noise into the train-
ing samples as the augmented decoder input, or
randomly replacing tokens in the training samples
with predicted tokens as the augmented decoder
input. Although GEC is a text generation task like
NMT, it emphasizes more on proposing correct
edits. Therefore, feeding artificially augmented
sentences into decoder input during training may
produce a different distribution compared with the
actual decoder input at inference time.2 As a result,
those generated errors may never happen, mak-
ing the augmented sentences less effective in the
GEC task. As illustrated in Table 1, the augmented
decoder input using noise injection or random sam-
pling differs from the actual decoder input.

2We empirically demonstrated the difference in Table 5 in
Section 4.4

2123

To address the exposure bias problem more ef-
fectively in GEC, we propose a data augmentation
approach, which reduces the difference in distribu-
tion of the samples between training and inference
in an intuitive way. Specifically, we first collect the
beam search output generated by the GEC model as
the augmented sentences, which mimic the actual
decoder input at inference time. Then, during train-
ing, the ground-truth and augmented sentences are
both fed as input to the decoder, thus reducing the
difference in distribution of the samples between
training and inference.

Moreover, previous work (Zhang et al., 2019;
Bengio et al., 2015) shows that adjusting the noise
density during training can better address the ex-
posure bias problem. Since different beam search
candidates contain different noise densities (i.e.,
the error density in GEC), and affect the model per-
formance to varying extent, each candidate should
be treated unequally. Therefore, we further pro-
pose a data-reweighting method, which automati-
cally learns sampling probability for different aug-
mented sentences dynamically. Specifically, our
reweighting approach learns a data scorer through
reinforcement learning, which learns the sampling
probability for each augmented sentence.

The contributions of our paper are as follows:

• We empirically demonstrated that the expo-
sure bias problem exists in the top-performing
seq2seq GEC models, and addressing them
helps to improve performance.

• We propose a novel data manipulation ap-
proach in GEC, including a data augmenta-
tion approach that mitigates the distribution
gap between training and inference, and a
data reweighting approach that automatically
learns the sampling probability for each kind
of training samples. No previous work uses
data reweighting to tackle exposure bias.

• To the best of our knowledge, our data manipu-
lation approach is the first work that addresses
the exposure bias problem regardless of the
evaluation metrics in seq2seq GEC.

• Experimental results show that our data aug-
mentation approach significantly reduces the
exposure bias problem and improves the per-
formance of seq2seq GEC models.

2 Related Work

This section briefly introduces recent related re-
search in the literature.

2.1 Exposure Bias

Exposure bias has been mostly studied in NMT.
Bengio et al. (2015) replace the ground truth word
by sampling randomly from the previous predicted
words during training. Zhang et al. (2019) further
inject noise into the training examples at both word
level and sentence level, and select sentence level
candidates based on the BLEU score (Papineni
et al., 2002). Instead of injecting random noise to
the ground truth sentences during training, our data
augmentation method treats model-generated sen-
tences as the augmented decoder input to mitigate
the difference in distribution of samples between
training and inference.

Ranzato et al. (2016) utilize Mixed Incremental
Cross-Entropy Reinforce to optimize the model us-
ing metrics used at test time (e.g., BLEU) directly.
Many similar works (Shao et al., 2018; Saunders
et al., 2020) have also been proposed in NMT. For
GEC, Sakaguchi et al. (2017) address the exposure
bias problem by using reinforcement learning to di-
rectly optimize the GEC model towards the GLEU
score (Napoles et al., 2015). Compared to Sak-
aguchi et al. (2017), we do not optimize the GEC
model using reinforcement learning, and we ad-
dress the exposure bias problem effectively where
GLEU score is not used.

2.2 Data Reweighting

Many methods have been developed for reweight-
ing or selecting a subset of data suitable for training
a model (Franceschi et al., 2018; Chen et al., 2017;
Wu et al., 2018; Shu et al., 2019; Wang et al., 2020;
Lichtarge et al., 2020). Specifically, Lichtarge et al.
(2020) propose an offline reweighting method for
GEC, which reweights each training sentence in
the previous stage of training based on the perplex-
ity difference between the current and previous
checkpoint. Wang et al. (2020) use a reweighting
method to learn the sampling distribution for differ-
ent languages in multilingual machine translation.
In contrast, our method is an online reweighting
method which dynamically adjusts the error density
of the augmented sentences according to different
model states.

2124

3 Method

In this section, we first briefly introduce a baseline
GEC system in Section 3.1. Then, we introduce
our data manipulation method in Section 3.2.

3.1 A Baseline GEC system

Let x be the ungrammatical source sentence and y
be the corrected grammatical target sentence. For a
seq2seq GEC model parameterized by θ, the goal
is to minimize the negative log-likelihood (NLL)
for a set of M sentence pairs

{
⟨x(i), y(i)⟩

}M
i=1

, as
follows:

l(x, d, y; θ) = −
Ly∑

t=1

|V |∑

k=1

1{yt = k}·

logP (yt = k|d<t, x; θ)
(1)

LNLL(θ) =
1

M

M∑

i=1

l(x(i), y(i), y(i); θ) (2)

where x is the source sentence, d is the decoder
input of the seq2seq model, y is the target sentence,
Ly is the length of the target sentence, |V | is the
vocabulary size of the target language, yt is the
t-th target token, 1{·} is the indicator function, and
P (·|·) is the conditional probability with model θ.

Given trained parameters θ̂, the hypothesis sen-
tence ŷ is generated using beam search to select the
candidate with the highest probability, as follows:

ŷ = argmax
y
{P (y|x; θ̂)} (3)

3.2 Data Manipulation

We propose a data manipulation method that miti-
gates the difference in contexts during training and
inference to improve performance. In particular,
our method consists of two parts: A data augmen-
tation method that generates augmented sentences
based on beam search to mimic the decoder input
distribution during inference, and a data reweight-
ing method that assigns sampling probability for
augmented sentences. The overview of our ap-
proach is shown in Figure 1.

We will first introduce the data augmentation
method in Section 3.2.1 and then introduce the data
reweighting method in Section 3.2.2.

Figure 1: Overview of the proposed data manipulation
method to mitigate exposure bias in GEC.

3.2.1 Data Augmentation
To reduce the distribution gap of decoder input
during training and inference, we propose to add
augmented sentences into the decoder input during
training. These augmented sentences are generated
by beam search using the model parameters from
the checkpoint of the previous stage3, which mimic
the decoder input at inference time.

More specifically, we generate augmented sen-
tences by feeding the source sentence x to the
model parameterized by θ, and choose the top n
output sentences {yj}nj=1 with the highest proba-
bilities generated by beam search.

As the decoder input must have the same length
as the target during training, we first align the aug-
mented sentences {yj}nj=1 with the correspond-
ing target sentence y according to linguistically-
enhanced Damerau-Levenshtein alignment (Felice
et al., 2016) by the ERRANT toolkit.4 Then, we
remove the excess tokens and add paddings for the
missing tokens. The padded augmented sentences
are denoted as {ȳj}nj=1. We collect (x, {ȳj}nj=1, y)
to form an augmented dataset Daug.

Intuitively, for a well-trained GEC model, candi-
dates with higher probability to be generated usu-
ally have lower error densities5. Therefore, differ-
ent candidates affect the model performance un-
equally. To better capture the effect of different
augmented sentences, we assign a separate weight
for each augmented sentence, and the loss function
is formulated as follows:

LEB(θ) = l(x, y, y; θ) +
n∑

j=1

αx,j · l(x, ȳj , y; θ)

(4)
where αx,j represents the weight for the jth aug-
mented sentence for source sentence x. We set

3Following prior work (Stahlberg and Kumar, 2021), we
train the GEC model in three stages, and load the checkpoint
of the second stage

4https://github.com/chrisjbryant/errant
5We verified this in Table 5 in Section 4.4

2125

∑n
j=1 αx,j = 1, so that all the augmented sen-

tences are treated equally as the original sentence.

3.2.2 Data Reweighting
The ideal way to train an optimal GEC model using
Eq. 4 is to determine the optimal value for each
αx,j . However, this can be computationally costly.
To efficiently weight each augmented sentence, we
use the averaged weight γj to approximate each
individual weight αx,j , where γj ∼ Eαj and Eαj

represents the expectation of αx,j , calculated by

Eαj = Ej [αx,j , x ∈ Dtrain]

Therefore, we reformulate Eq. 4 as:

LEB(θ) = l(x, y, y; θ) +
n∑

j=1

γj · l(x, ȳj , y; θ)

(5)
Previous work (Zhang et al., 2019; Bengio et al.,

2015) has demonstrated that varying noise density
(error density in GEC) according to the training
state of the model can effectively address the ex-
posure bias problem. Therefore, we use the sam-
pling probability βj to approximate γj and pro-
pose to dynamically adjust βj according to the
model θ. Specifically, we design a learnable data
scorer P (j;ψ), parameterized by ψ to modify the
training objective which we use to learn θ, so as
to maximize the validation performance. Here
j ∈ {1, ..., n} indicates the index of the augmented
sentence (index 1 indicates the sentence generated
with the highest probability in beam search, and
so on). More specifically, in the training process,
P (j;ψ) is used as the probability to sample an aug-
mented sentence at index j such that the validation
loss is minimized.

The final objective is written as follows:

ψ∗ = argmin
ψ

L(θ∗(ψ), Ddev) where

θ∗(ψ) = argmin
θ

∑

(x,d,y)

LEB(θ, ψ)
(6)

and LEB(θ) in Eq. 5 is reformulated as:

LEB(θ, ψ) = l(x, y, y; θ)+
n∑

j=1

1{j = si} · l(x, ȳj , y; θ)
(7)

where si ∈ {1, ..., n} represents the sampled index
based on the learned probability P (j;ψ) for each
index j 6.

6We use torch.multinomial function from the PyTorch
package to sample one candidate at a time.

During training, we optimize θ and ψ iteratively.
We first optimize the data scorer ψ with fixed θ.
To update the data scorer, we use reinforcement
learning with a reward function that approximates
the effect of the training data on the model’s devel-
opment set performance.

Specifically, our environment is the model state
θ and model input (x, d, y). Our agent is the data
scorer network ψ. We formulate our reward as:

R(j; θt)

= cos(∇θLdev(Ddev; θt) · ∇θLtrain(j; θt)) (8)

where Ldev(Ddev; θt) denotes the validation loss
calculated by Eq. 2, Ltrain(j; θt) represents the
training loss for different kinds of augmented sen-
tences, and cos(·) denotes the cosine similarity of
the two vectors.

Algorithm 1: Data reweighting method
Input: Dtrain, Ddev, Daug

Output: Optimal parameter θ∗

1 Initialize θ, ψ
2 while not converge do
3 Sample f batches of training data

(X,D, Y) ∼ (Dtrain, Daug)
4 Sample validation data

(Xdev, Ydev) ∼ Ddev

5 gdev ←
∑

(xdev ,ydev)∈(Xdev ,Ydev)

∇θl(xdev, ydev, ydev; θ)/|(Xdev, Ydev)|
▷ Update ψ

6 for (x, d, y) in (X,D, Y) do
▷ Estimate different j effect

7 for j in {1, ..., n} do
8 gψ ← ∇θLtrain(j; θ)
9 R(k; θ)← cos(gdev, gψ)

10 end
▷ Optimize ψ

11 dψ ←
∑

j∈{1,...,n}R(j; θ) ·
∇ψlogP (j;ψ)

12 ψ ← GradientUpdate(ψ, dψ)
13 end

▷ Update θ
14 for (x, d, y) in (X,D, Y) do
15 gθ ← ∇θLEB(θ, ψ)
16 θ ← GradientUpdate(θ, gθ)
17 end
18 end

2126

To capture the combined effect of augmented
sentence and the original training sentence to the
model’s performance, we calculate Ltrain(j; θt) as
follows:

Ltrain(j; θt) = l(x, y, y; θ) + l(x, ȳj , y; θt) (9)

Intuitively, this reward makes the data scorer up-
weight the training data that have a similar gradi-
ent direction as the development data (Wang et al.,
2020).

According to the REINFORCE algorithm
(Williams, 1992), the update rules for the data
scorer become:

ψt ← ψt−1 +R(j; θt) · ∇ψlogP (j;ψ) (10)

After obtaining ψ, we update θ by:

θt ← θt−1 −∇θ
∑

(x,d,y)

LEB(θ, ψ) (11)

The training algorithm is shown in Algorithm
1. Note that we do not calculate the validation
gradient in every training step, since it is too com-
putationally expensive for the GEC task. Instead,
we calculate the validation gradient for every f
steps. Specifically, we first sample validation data
and f batches of training data from the validation
and the training set, respectively. Then, we obtain
validation gradient gdev based on the current model
weights θ. For each batch of training data, we fur-
ther calculate the reward for the data scorer using
Eq. 8 and update the data scorer using the REIN-
FORCE algorithm. After updating the data scorer,
we apply the output from ψ to Eq. 7 and use this
sampled loss to update the model θ with the same
f batches of training data.

In this paper, we use a single-layer embedding
network followed by a softmax layer as the data
scorer networks ψ, and a transformer-based frame-
work as our model θ. More details are given in
Section 4.2.

4 Experiments

In this section, we report the effectiveness of our
data manipulation approach.

4.1 Data and Model Configuration

Following (Kaneko et al., 2020; Stahlberg and Ku-
mar, 2021), we build our GEC model based on
the transformer-big architecture (Vaswani et al.,

2017). To compare with state-of-the-art approaches
in GEC, which pre-train with synthetic data, we
follow (Stahlberg and Kumar, 2021) to generate
C4200M which contains 200 million synthetic par-
allel sentences. We use C4200M to pre-train our
GEC model, and use the combination of NUCLE
(Dahlmeier et al., 2013), FCE (Yannakoudakis
et al., 2011), and CLang-8 (Rothe et al., 2021) to
train our GEC model, using an encoder-decoder
shared vocabulary of 10K byte pair encoding to-
kens.7

We evaluate the effectiveness of our data manip-
ulation method on two datasets: the CoNLL-2014
test set (Ng et al., 2014) and the BEA-2019 test
set (Bryant et al., 2019). The W&I training set is
used for fine-tuning. The development dataset is
the CoNLL-2013 dataset (Ng et al., 2013) (W&I
dev) when evaluating on the CoNLL-2014 test set
(BEA-2019 test set).

4.2 Experimental Setup

We build our GEC model using the fairseq toolkit
(Ott et al., 2019). All experiments are carried out
on one NVIDIA A100 GPU. We use the MaxMatch
scorer (Dahlmeier and Ng, 2012) to evaluate per-
formance on the CoNLL-2014 test set and the ER-
RANT scorer (Bryant et al., 2019) to evaluate per-
formance on the BEA-2019 test set. We report the
average scores of three runs, and use a one-tailed
sign test with bootstrap resampling to carry out
statistical significance tests. We generate the aug-
mented samples with a beam size of 5, and choose
all five predictions for each training sentence as
augmented samples for both CoNLL-2014 test set
and BEA-2019 test set.
Baselines. We evaluate the performance of our
method by comparing against five baseline meth-
ods. We apply our method and all the baseline
methods to the checkpoint before fine-tuning.8

CE: Fine-tuning the model using cross entropy
loss. SS: Fine-tuning the model using the sched-
uled sampling method (Bengio et al., 2015). RN-
Word: Fine-tuning the model by randomly inject-
ing noise at word level (Zhang et al., 2019). RN-
Sent: Fine-tuning the model by our modified ver-
sion of sentence-level noise injection (Zhang et al.,
2019) to better adapt to the GEC task. Specifically,
we choose a noisy sentence with the smallest edit-

7More training details are given in Appendix A.7.
8The model checkpoint has been pre-trained first on C4200M

and then further trained on the combination of NUCLE, FCE,
and CLang8.

2127

System CoNLL-14 BEA-19
Single System

(Kiyono et al., 2019)† 61.3 64.2
(Lichtarge et al., 2020)† 62.1 66.5
(Wan et al., 2020)† 63.5 65.5
(Stahlberg and Kumar, 2021)† 66.6 70.4
(Rothe et al., 2021)* 68.9 75.9
(Sun et al., 2021)# 66.4 72.9
DM† 66.8 71.5

Ensemble
(Kiyono et al., 2019) 65.0 70.2
(Wan et al., 2020) 65.9 70.0
(Lichtarge et al., 2020) 66.8 73.0
(Stahlberg and Kumar, 2021) 68.3 74.9
DM 68.5 74.8

Table 2: F0.5 scores of state-of-the-art seq2seq GEC systems on the CoNLL-2014 and BEA-2019 test sets. #:
Variant of BART-large model; *: T5-xxl model; †: transformer-big model.

distance, instead of the highest BLEU score, as the
sentence-level oracle. We show the difference in
Appendix A.3. Ad-Bridge: Fine-tuning the model
by the AdapBridge method (Xu et al., 2021) which
adaptively injects noise on word-level with word-
level matching score. RE-DP: Weighting each
augmented sentence using delta-perplexity during
fine-tuning (Lichtarge et al., 2020).

4.3 Experimental Results

Approach CoNLL-2014 BEA-2019
P R F0.5 P R F0.5

CE 70.3 51.0 65.4 70.8 67.7 70.2
SS 70.7 51.0 65.6 71.6 67.2 70.7
RN-Word 71.1 51.0 65.9 71.5 67.6 70.7
RN-Sent 71.8 50.8 66.3 71.7 67.3 70.8
Ad-Bridge 71.4 50.5 66.0 71.0 67.6 70.4
DA 73.6 47.4 66.3* 72.6 66.0 71.1

+RE-DP 73.7 47.5 66.4 72.8 65.8 71.3
DM 74.0 48.1 66.8*† 73.1 65.5 71.5

Table 3: Experimental results (in %) on the CoNLL-
2014 and BEA-2019 test sets. DA represents fine-tuning
the model using only the data augmentation approach
mentioned in Section 3.2.1 where each γj in Eq. 5 is
set to 1/n. DM represents fine-tuning the model using
our proposed data manipulation method (including both
data augmentation and data reweighting). Statistically
significant improvements (p < 0.01) over CE and DA
are marked as * and † respectively. Since the BEA-2019
test set is a blind test set, we are unable to carry out
statistical significance tests on it.

The performance of our data manipulation
method is shown in Table 3.9 All methods which

9The results on the CWEB and JFLEG test sets are shown

aim to mitigate the exposure bias problem (i.e., SS,
RN-Word, RN-Sent, Ad-Bridge, DA, and DM) out-
perform CE on both CoNLL-2014 and BEA-2019
test sets. This shows the importance of addressing
the exposure bias problem in GEC.

Furthermore, our DM method outperforms all
baseline methods on both test sets. Specifically,
on the CoNLL-2014 test set, DM achieves an F0.5

score of 66.8%, which is 0.5% higher than RN-
Sent. On the BEA-2019 test set, DM achieves
an F0.5 score of 71.5%, which improves by 0.7%
compared to RN-Sent. DM performs better since
it is able to better approximate the decoder input
distribution at inference time and adjust the amount
of errors automatically based on the model θ.

We also compare DM with state-of-the-art
seq2seq GEC systems in Table 2. Specifically,
we show the performance of a single DM model
and an ensemble of eight analogously trained DM
models. Among all the transformer-big single sys-
tems, our method achieves the best F0.5 scores on
both CoNLL-2014 and BEA-2019 test sets, sur-
passing (Stahlberg and Kumar, 2021) by 0.2% and
1.1%, respectively. Although Rothe et al. (2021)
achieve F0.5 scores of 68.9% and 75.9% on the
CoNLL-2014 and BEA-2019 test set respectively,
they adapt the T5-xxl model with 11 billion pa-
rameters, whereas our transformer-big model only
uses 220 million parameters (2% of the size of
T5-xxl model). The corresponding F0.5 scores of
(Rothe et al., 2021) for their T5-base model with

in Appendix A.8.

2128

Example 1

Source
Many Much of this surveillance are is being implemented in the government sectors
, or military areas to enhance their security.

CE
Many of this surveillance are being implemented in the government sectors
, or military areas to enhance their security.

RN-Sent
Many of this surveillance are is being implemented in the government sectors
, or military areas to enhance their security.

DM
Many of this surveillance are is being implemented in the government sectors
, or military areas to enhance their security.

Example 2

Source
Surveillance technology will help to prevent the family families to from loss losing
their member members, especially the elderly and the children which who need
to be pay paid more attention to.

CE
Surveillance technology will help to prevent the family to loss their member,
especially the elderly and the children which who need to be pay more attention to.

RN-Sent
Surveillance technology will help to prevent the family to loss their member members,
especially the elderly and the children which who need to be pay more attention to.

DM
Surveillance technology will help to prevent the family to from loss losing their
member members, especially the elderly and the children which who need to be
pay more attention to.

Table 4: Examples of the error accumulation problem, with the predictions taken from CE, RN-Sent, and DM
models. Red texts show the correct edits.

220 million parameters are 65.1% and 69.4% for
the CoNLL-2014 and BEA-2019 test set respec-
tively.

Our DM ensemble achieves an F0.5 score of
68.5% on the CoNLL-2014 test set and reaches
an F0.5 score of 74.8% on the BEA-2019 test set,
which is close to the best performance achieved by
(Stahlberg and Kumar, 2021). Note that Stahlberg
and Kumar (2021) have used more than 540 mil-
lion synthetic sentence pairs to pre-train their trans-
former big model, while we only use 200 million
synthetic sentence pairs. Note that the current
best F0.5 scores achieved by an ensemble approach
(Qorib et al., 2022) on the CoNLL-2014 and BEA-
2019 test sets are 69.51% and 79.90% respectively.
However, we have not included them in Table 2 as
Qorib et al. (2022) combine sequence-to-sequence
models with sequence-tagging models.

4.4 Effect of Reweighting

We analyze the sampling distribution for each aug-
mented sentence in Figure 2, and show the error
density (in terms of the number of edits required
to correct to grammatical sentence) for each aug-
mented sentence in Table 5. Specifically, the error
density is measured by the average number of edits
required to transform an augmented sentence into

Figure 2: The sampling probability of augmented sen-
tences during training.

the target sentence.
As shown in Table 5 and Figure 2, the sampling

probability for candidates with higher error density
keeps increasing during training. This shows that
as training progresses, candidates with higher error
density play a more important role in training the
model, which supports the hypotheses from (Zhang
et al., 2019; Bengio et al., 2015).

Compared to RE-DP10 which uses a static error
density to train the model, our DM method achieves
better performance by dynamically adjusting the
error density according to the model θ. This fur-
ther confirms that a varying error density is more

10We show the detailed settings of RE-DP in Appendix A.2.

2129

Sentence err% e/s
WI train 67.1 3.45
BS-1 54.8 2.64
BS-2 90.7 2.18
BS-3 95.6 2.24
BS-4 96.9 2.30
BS-5 98.5 2.39
RN-Sent - 7.82

Table 5: Statistics of the W&I training set and different
augmented sentences. BS-x denotes the sentence which
is the beam search candidate at position x. e/s is the
number of edits per sentence calculated on erroneous
sentences. err% is the percentage of erroneous sentences
in the entire set. The err% for RN-Sent varies according
to the different training epochs, with the details given in
Appendix A.1.

effective in addressing the exposure bias problem.

4.5 Effect on Exposure Bias

In this section, we first present representative exam-
ples to illustrate the error accumulation problem in
GEC. Then we conduct comprehensive studies to
show the effectiveness of our method in addressing
the exposure bias problem.

4.5.1 Effect on Error Accumulation
In Example 1 from Table 4, the CE model fails
to correct “Many” to “Much” (since “surveillance”
is an uncountable noun, “Much” should be used
instead of “Many”). Failing to correct this error
causes the CE model to also fail to correct “are”
to “is”, which illustrates the error accumulation
problem. Although RN-Sent and DM model also
fail to correct “Many” to ‘Much”, they successfully
correct “are” to “is”. This shows that both RN-
Sent and DM are better able to address the error
accumulation problem caused by exposure bias.

In the second example, the output generated by
CE, RN-Sent, and DM all fail to correct “family” to
“families”. For the output of CE, this further causes
the model to fail to correct “to loss” to “from losing”
and “member” to “members”. For RN-Sent, failing
to correct “family” to “families” causes the model
to fail to correct “to loss” to “from losing”, but it
successfully corrects “member” to “members”. For
the DM model, it is able to recover from failing to
correct “family” to “families” and successfully cor-
rects both “to loss” to “from losing” and “member”
to “members”. Therefore, the error accumulation
problem is better addressed by our DM approach.

Source

Her impressive physique asa as well
as her extraorinbary extraordinary
faculties as a rumba dancer will not
be forgotten.

DA
Her impressive physique asa well as
her extraorinbary faculties as rumba
dancer will not be forgotten.

DM

Her impressive physique asa well
as her extraorinbary extraordinary
faculties as a rumba dancer will not
be forgotten.

Table 6: Examples of the error accumulation problem,
with the predictions taken from the DA and DM model.
Red texts show the correct edits.

In Table 6, we show example output produced
by the DA and DM model. The source sentence
contains the following three errors: change “asa"
to "as", change "extraorinbary" to "extraordinary",
and insert "a" before “rumba”. Failure to correct
the first error causes DA to fail to correct "extraor-
inbary" to "extraordinary" and to fail to insert "a"
before “rumba”. However, DM successfully cor-
rects the last two errors even when it fails to correct
the first error.

4.5.2 Length and Edit Analysis
In this section, we further analyze the effect of our
method on reducing the error accumulation prob-
lem, which tends to be more severe with longer sen-
tences or sentences that require more edits. There-
fore, we analyze the performance with respect to
different lengths of the source sentence and dif-
ferent numbers of edits in the gold annotation in
Figure 3.

Figure 3: Performance comparison on the CoNLL-2014
test set with respect to different lengths of the source
sentence, and different numbers of edits in the gold
annotation. Left: source sentence length; Right: number
of edits in the gold annotation.

Our method consistently improves over both CE
and RN-Sent in all cases. The improvement is
larger when the length of the source sentence is
greater than 56, or the number of edits in the gold

2130

reference is greater than 8. This further shows that
our method effectively addresses the error accumu-
lation problem and that our improvement is mainly
obtained by addressing the exposure bias problem.

4.5.3 Performance Analysis

This section further compares DM’s capability of
addressing the exposure bias problem against other
baseline methods.

We consider the exposure bias problem to be bet-
ter addressed when the predicted probability for the
ground truth token is higher, under the condition
that previously predicted tokens are generated by
the model itself (i.e., not the ground truth). To eval-
uate how the exposure bias problem is addressed,
we further design an experiment, which is an im-
proved version of Zhang et al. (2019).

Specifically, we first generate noisy sentences
by feeding the source sentences from the CoNLL-
2014 test set to the model checkpoint before fine-
tuning. We then generate the padded noisy sen-
tences using the same procedure described in Sec-
tion 3.2.1. Subsequently, we use different models
(model A and model B in Table 7) to decode the
same source sentence by using the padded noisy
sentences as the decoder input. Let N be the num-
ber of ground truth tokens whose probabilities in
the predicted distributions produced by model B
are greater than those produced by model A. The
win ratio is calculated by dividing N by the total
number of tokens in the gold sentences. The results
are shown in Table 7.

B

Win ratio A
CE DM

SS 69.99% 35.26%
RN-Word 73.54% 39.04%
RN-Sent 76.41% 37.64%
DM 89.41% -

Table 7: The win ratio of model B over model A.

From Table 7, we observe that more than 89% of
the target tokens’ predicted probabilities of our DM
model are greater than the CE model, indicating
that our DM method greatly reduces the exposure
bias problem. Moreover, compared to the DM
model, all the other models are shown to have a
win ratio of less than 40%. This shows that our
method better addresses the exposure bias problem
in GEC.

5 Conclusion

In this paper, we propose a novel data manipula-
tion approach that includes both data augmentation
and data reweighting to mitigate the exposure bias
problem for seq2seq GEC models. Our core idea
is to inject realistic augmented sentences into the
decoder input and to automatically sample the aug-
mented sentences. We show the effectiveness of
our method which achieves significant improve-
ments on both the CoNLL-2014 and BEA-2019
test sets.

6 Limitations

While our proposed approach is language-
independent, we have only tested our approach
on the English GEC task.

Acknowledgements

We thank Muhammad Reza Qorib for helpful com-
ments on this paper. This research is supported by
the National Research Foundation, Singapore un-
der its AI Singapore Programme (AISG Award No:
AISG-RP-2019-014). The computational work for
this article was partially performed on resources
of the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Proceed-
ings of the 28th International Conference on Neural
Information Processing Systems, page 1171–1179.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceed-
ings of the Fourteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
52–75.

Hannan Cao, Wenmian Yang, and Hwee Tou Ng. 2021.
Grammatical error correction with contrastive learn-
ing in low error density domains. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4867–4874.

Yutian Chen, Matthew W. Hoffman, Sergio Gómez Col-
menarejo, Misha Denil, Timothy P. Lillicrap, Matt
Botvinick, and Nando de Freitas. 2017. Learning to
learn without gradient descent by gradient descent. In
Proceedings of the 34th International Conference on
Machine Learning, Proceedings of Machine Learning
Research, pages 748–756.

2131

https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://aclanthology.org/2021.findings-emnlp.419
https://aclanthology.org/2021.findings-emnlp.419
https://proceedings.mlr.press/v70/chen17e.html
https://proceedings.mlr.press/v70/chen17e.html

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 22–31.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in ESL
sentences using linguistically enhanced alignments.
In Proceedings of the 26th International Conference
on Computational Linguistics, pages 825–835.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Ric-
cardo Grazzi, and Massimiliano Pontil. 2018. Bilevel
programming for hyperparameter optimization and
meta-learning. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, Proceedings
of Machine Learning Research, pages 1563–1572.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4248–4254.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study
of incorporating pseudo data into grammatical error
correction. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing, pages 1236–1242.

Jared Lichtarge, Chris Alberti, and Shankar Kumar.
2020. Data weighted training strategies for grammat-
ical error correction. Transactions of the Association
for Computational Linguistics, pages 634–646.

Tsvetomila Mihaylova and André F. T. Martins. 2019.
Scheduled sampling for transformers. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 351–356.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 588–593.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task on
grammatical error correction. In Proceedings of the

Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Muhammad Qorib, Seung-Hoon Na, and Hwee Tou
Ng. 2022. Frustratingly easy system combination
for grammatical error correction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1964–1974.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
2016, Conference Track Proceedings.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 702–707.

Keisuke Sakaguchi, Matt Post, and Benjamin
Van Durme. 2017. Grammatical error correction
with neural reinforcement learning. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 366–372.

Danielle Saunders, Felix Stahlberg, and Bill Byrne.
2020. Using context in neural machine translation
training objectives. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7764–7770.

Chenze Shao, Xilin Chen, and Yang Feng. 2018. Greedy
search with probabilistic n-gram matching for neural
machine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4778–4784.

2132

https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
https://aclanthology.org/C16-1079
https://aclanthology.org/C16-1079
http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.1162/tacl_a_00336
https://doi.org/10.1162/tacl_a_00336
https://doi.org/10.18653/v1/P19-2049
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://aclanthology.org/N19-4009
https://aclanthology.org/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/I17-2062
https://aclanthology.org/I17-2062
https://doi.org/10.18653/v1/2020.acl-main.693
https://doi.org/10.18653/v1/2020.acl-main.693
https://doi.org/10.18653/v1/D18-1510
https://doi.org/10.18653/v1/D18-1510
https://doi.org/10.18653/v1/D18-1510

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. 2019. Meta-weight-
net: Learning an explicit mapping for sample weight-
ing. In Advances in Neural Information Processing
Systems, pages 1917–1928.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction with
tagged corruption models. In Proceedings of the 16th
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 37–47.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. 2021.
Instantaneous grammatical error correction with shal-
low aggressive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5937–5947.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Zhaohong Wan, Xiaojun Wan, and Wenguang Wang.
2020. Improving grammatical error correction with
data augmentation by editing latent representation.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2202–2212.

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020.
Balancing training for multilingual neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8526–8537.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, pages 229–256.

Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin,
Lai Jian-Huang, and Tie-Yan Liu. 2018. Learning to
teach with dynamic loss functions. In Advances in
Neural Information Processing Systems, pages 6467–
6478.

Haoran Xu, Hainan Zhang, Yanyan Zou, Hongshen
Chen, Zhuoye Ding, and Yanyan Lan. 2021. Adap-
tive bridge between training and inference for dia-
logue generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2541–2550.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the gap between training

and inference for neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334–
4343.

A Appendix

A.1 Error Density of RN-Sent

We adopt a similar approach to measure the error
density in RN-Sent when training on the W&I train-
ing set. Specifically, our DM method only requires
one epoch to converge, while RN-Sent requires
seven epochs to converge. The average edits for
each augmented sentence is 7.82, and the proba-
bility of creating augmented sentences is shown in
Table 8.

epoch p
1 0.01
2 0.02
3 0.03
4 0.05
5 0.07
6 0.11
7 0.17

Table 8: Probability of creating augmented sentences
for each epoch.

The high edits per sentence generated by RN-
Sent confirm that the augmented sentence gener-
ated through random noise injection has a bigger
gap between actual decoder input and less effi-
ciently addresses the exposure bias problem. Note
that the original decay hyper-parameter is set to
5,800, with a maximum 40,000 updates11. Since
our model is trained for 7 epochs (690 updates),
we adjust the decay hyper-parameter to 100 accord-
ingly.

A.2 RE-DP Setting

When using RE-DP to reweight each augmented
sentence, we follow the setting in (Lichtarge et al.,
2020). Specifically, we treat Daug as the base
dataset D−, and Dtrain as the target dataset D+.
For a trained GEC model θtrain, it has been firstly
pre-trained on C4200M and then trained on the com-
bination of NUCLE, FCE, and CLang-8 dataset.
We first obtain the model θ− by fine-tuning θtrain

11https://github.com/ictnlp/OR-NMT#res
ults-and-settings-on-wmt14-english-germa
n-translation-task

2133

https://proceedings.neurips.cc/paper/2019/hash/e58cc5ca94270acaceed13bc82dfedf7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e58cc5ca94270acaceed13bc82dfedf7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e58cc5ca94270acaceed13bc82dfedf7-Abstract.html
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2021.acl-long.462
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.coling-main.200
https://doi.org/10.18653/v1/2020.coling-main.200
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/2021.emnlp-main.198
https://doi.org/10.18653/v1/2021.emnlp-main.198
https://doi.org/10.18653/v1/2021.emnlp-main.198
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426
https://github.com/ictnlp/OR-NMT#results-and-settings-on-wmt14-english-german-translation-task
https://github.com/ictnlp/OR-NMT#results-and-settings-on-wmt14-english-german-translation-task
https://github.com/ictnlp/OR-NMT#results-and-settings-on-wmt14-english-german-translation-task

Figure 4: Illustration of the padding mechanism.

on D− with the following loss function:

LRE−DP =
n∑

j=1

l(x, ȳj , y; θ)

The model θ+ is obtained by further fine-tuning θ−

on D+ using Eq. 2. Based on θ− and θ+, we cal-
culate the perplexity of each augmented sentence.
The weight αx,j for each augmented sentence is
calculated by the ‘delta-perplexity-rank’ method
proposed in (Lichtarge et al., 2020). We then nor-
malize αx,j , such that

∑n
j=1 αx,j = 1, and use Eq.

4 to fine-tune θtrain.

A.3 BLEU vs Edit Distance
We compare the performance of using BLEU to
select sentence-level oracle with the performance
of using edit distance to select sentence-level oracle
in Table 9.

CoNLL-2014 BEA-2019
BLEU 65.5 70.0
EDIT 66.3 70.8

Table 9: F0.5 score on the CoNLL-2014 and BEA-2019
test sets. BLEU: represents selecting sentence-level
oracle with the highest BLEU score. EDIT: represents
selecting sentence-level oracle with the smallest edit
distance.

A.4 Padding Mechanism
In Figure 4, we illustrate the padding mechanism
introduced in Section 3.2.1.

A.5 Dataset Usage
The usage of different datasets for different setups
is summarized in Table 10. Specifically, the W&I
test set contains 4,477 sentences and the CoNLL-
2014 test set contains 1,312 sentences.

A.6 Experimental Details
In this part, we will introduce the software pack-
ages we have used and the implementation details.

CoNLL-2014 BEA-2019
Pre-training C4200M

Training NUCLE, FCE, CLang-8
Fine-tuning W&I train W&I train
Validation CoNLL-2013 W&I dev
Test CoNLL-2014 W&I test

Table 10: Dataset usage for different setup cases.

Software configuration All models are imple-
mented based on the Fairseq12 and PyTorch pack-
ages. More specifically, we use Python 3.7 and
PyTorch 1.7.1.

Implementation details When calculating the re-
ward for the data scorer in Eq. 8, we use all the
validation data to calculate the validation gradient.

To balance efficiency and performance, we set
the update frequency f in line 3 of Algorithm 1
to 250 and 220 when fine-tuning for CoNLL-2014
and BEA-2019, respectively. The update frequency
is selected from the range {250, 300} with a step
size of 10 using grid search.

A.7 Hyper-Parameters and Computational
Budget

We list the hyper-parameters for pre-training and
training in Table 11. The hyper-parameters to fine-
tune the model with the DM approach are shown
in Table 12 . Specifically, pre-training takes 202
hours to converge, and training takes 0.6 hours to
converge. Fine-tuning on the W&I training set
takes 0.4 hours to converge.

A.8 Performance on CWEB-S/G and JFLEG
Test Sets

We show the performance on the CWEB-S/G and
JFLEG test sets in Table 13. When testing on the
CWEB-S/G test set, we follow the setting in Cao
et al. (2021) to extract the CWEB-train and CWEB-
dev data. We use CWEB-train as the fine-tuning set

12https://github.com/pytorch/fairseq/tree/9f4256edf60554a
fbcaadfa114525978c141f2bd

2134

Pretraining
Configuration Value
Devices 2 NVIDIA A100 GPU
Model
architecture

Transformer
("large" setting)

Optimizer
Adam (β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning rate 3.00× 10−4

Learning rate
scheduler

Inverse sqrt

Dropout 0.3
Warmup 8000
Number of epochs 10
Best epoch 8
Training
Configuration Value
Devices 1 NVIDIA A100 GPU
Learning rate 3.00× 10−5

Warmup 4000
Best epoch 1

Table 11: Pre-training and training configuration.

CoNLL-2014 & BEA-2019
Configuration Value
Devices 1 NVIDIA A100 GPU
Model
architecture

Transformer
("large" setting)

Optimizer
Adam (β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning rate 3.00× 10−5

Learning rate
scheduler

Inverse sqrt

Warmup 4000
Number of epochs 10
Best epoch 1

Table 12: DM fine-tuning configuration.

and CWEB-dev as the validation set. When testing
on the JFLEG test set, we still use the W&I training
set as the fine-tuning set and use the JFLEG-dev
set as the validation set.

Approach CWEB-S CWEB-G JFLEG
CE 38.2 43.0 62.9
SS 33.8 46.6 63.1
RN-Word 37.3 47.8 62.6
RN-Sent 37.7 47.7 63.0
Ad-Bridge 38.8. 47.5 63.1
DA 42.4* 47.0* 63.2*
DA + RE-DP 40.1 47.8 62.7
DM 42.7*† 49.0*† 63.5*†

Table 13: The F0.5 score and GLEU score (in %) on
the CWEB-S/G test set and JFLEG test set respectively.
Statistically significant improvements (p < 0.01) over
CE and DA are marked as * and † respectively.

2135

