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Abstract
Dropout is a widely used regularization trick
to resolve the overfitting issue in large feedfor-
ward neural networks trained on a small dataset,
which performs poorly on the held-out test sub-
set. Although the effectiveness of this regular-
ization trick has been extensively studied for
convolutional neural networks, there is a lack
of analysis of it for unsupervised models and in
particular, VAE-based neural topic models. In
this paper, we have analyzed the consequences
of dropout in the encoder as well as in the de-
coder of the VAE architecture in three widely
used neural topic models, namely, contextual-
ized topic model (CTM), ProdLDA, and em-
bedded topic model (ETM) using four publicly
available datasets. We characterize the dropout
effect on these models in terms of the quality
and predictive performance of the generated
topics.

1 Introduction

Dropout (Hinton et al., 2012) is used while train-
ing neural networks, by stochastically dropping
out the activation of neurons to prevent complex
co-adaptations of feature vectors (Baldi and Sad-
owski, 2013). The working of dropout is attributed
to the implicit averaging over an ensemble of neu-
ral networks (Labach et al., 2019; Warde-Farley
et al., 2014). It has been shown to be effective
on supervised learning tasks to prevent overfitting
(Srivastava et al., 2014).

As the volume of digital documents significantly
increases with time, organizing them manually is
becoming quite an inconvenient task. Because
of the ability of topic models to learn a thematic
structure from a set of documents in an unsuper-
vised manner and label the documents with their
corresponding dominant topics, the significance
of topic models is enormous in this area (Hall
et al., 2008; Adhya and Sanyal, 2022). But in
the traditional topic models, not only the computa-
tion cost of the approximate posterior is very high

but also for a small change in the modeling as-
sumption, re-derivation of the inference method
is needed. With greater flexibility and scalability
than traditional topic models, a class of Neural
Topic Models (NTMs) aim to leverage the potential
of neural networks using the AEVB (Kingma and
Welling, 2014) based inference technique. Follow-
ing (Zhao et al., 2021), we refer to this class of
models as VAE-NTMs where the training objective
is to maximize the log-likelihood of the reconstruc-
tion of the input document while minimizing the
KL-divergence of the learned posterior distribution
of the latent space from a known prior distribution.

An earlier study by (Ha et al., 2019) of the
dropout effect on two traditional topic models LDA
(Blei et al., 2003) and BTM (Yan et al., 2013)
shows that the correct choice of the dropout rate not
only decreases the learning time of the models but
also significantly improves the predictive perfor-
mance and generalization for short texts. However,
the study does not consider neural topic models.

In this work, we propose the use of dropout on
VAE-NTMs as a hyperparameter in order to achieve
much better performance in terms of topic coher-
ence, topic diversity, and topic quality. We test
this proposition on a range of standard VAE-NTM
architectures. To the best of our knowledge, there
has been no other study focusing specifically on
the use of dropout in neural topic models. We have
made our analysis publicly available1.

In summary, our contributions are as follows:

1. We comprehensively show both quantitatively
and qualitatively that topic quality undergoes
a massive improvement with either very low
or zero dropout settings in both the encoder
and the decoder of a VAE-NTM.

2. We show that for VAE-NTMs the systematic
choice of low dropout rates can lead to a sig-

1https://github.com/AdhyaSuman/NTMs_Dropout_
Analysis
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nificant improvement in downstream tasks
like document classification.

3. We study the dependence of dropout on the
length of the input documents.

4. We present an empirical analysis for the in-
crease in performance of VAE-NTMs with a
decrease in dropout.

2 Task Formulation

Given a corpus {D1, D2, . . . , DN} of N doc-
uments with vocabulary {w1, w2, ..., wV } of V
words, topic models describe a document Di as a
distribution over K topics {β1,β2, ...,βK}, where
an individual topic βk is a distribution over V -
words.

2.1 VAE Framework in Neural Topic Models
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Figure 1: VAE framework in neural topic models.

Given an input sample x, a VAE encoder learns
the approximate posterior distribution qW (z|x)
where W is the encoder’s weights that are to be
learned and z is a latent variable. Given a sam-
ple z ∼ qW (z|x), the VAE decoder learns the
likelihood pW ′(x|z) where W ′ is the learnable de-
coder’s weights.

In VAE-NTMs the input to the encoder is a doc-
ument representation (e.g., bag-of-words) xV×1.
The encoder then returns the Gaussian parameters(
µK×1,ΣK×1

)
that approximate the true poste-

rior where K is the dimension of latent (topic)
space, µK×1 is the mean, and ΣK×1 is the diago-
nal covariance matrix. Upon taking these Gaussian
parameters as input, the decoder samples a latent
representation zK×1 from N (µK×1,ΣK×1) using
the reparametrization trick as follows:

zK×1 = µK×1 +Σ
1
2
K×1 ⊙ ϵK×1

where ϵK×1 ∼ N (0, I) and ⊙ represents the
element-wise product. Then the document-topic
distribution vector (θK×1) is generated such that
θK×1 = σ(zK×1) where σ(·) is a softmax func-
tion. The input document-term distribution vec-
tor is reconstructed with the product of θK×1 and
βK×V , the topic-word matrix, in the following
manner:

x̃V×1 =

{
βTθ if β is normalized.
σ
(
βTθ

)
if β is unnormalized.

As shown in Figure 1, in the encoder, dropout
is applied with probability Ep on the output of the
hidden layer(s) of the multi-layer feed-forward neu-
ral network (FFNN). This output is then fed to two
separate layers to get the approximate posterior
qW (z|x). In the decoder, dropout is applied with
probability Dp on the document-topic distribution
vector (θK×1), just before the reconstruction pro-
cess.

2.2 Task Description
The goal is to measure the effect that dropout has
on the performance of VAE-NTMs by varying the
dropout rates from 0.0 to 0.6 in steps of 0.1, in
both the encoder and the decoder. We have chosen
0.6 as the upper bound of the dropout rates for our
experiments because it is the highest dropout rate
used in any VAE-NTMs that we have considered as
a baseline in this work. We measure performance
using: topic coherence, topic diversity, and topic
quality. We use NPMI (Lau et al., 2014; Röder
et al., 2015) to measure topic coherence. Topic
diversity (Dieng et al., 2020) shows the uniqueness
of topics. Topic quality is the product of coher-
ence and diversity (Dieng et al., 2020). As the
automated topic model measures do not always ac-
curately capture the quality of the topics (Hoyle
et al., 2021), we also perform a manual evaluation
of the topics and study their predictive performance
on the document classification task.

3 Empirical Study

We perform all experiments in OCTIS (Terragni
et al., 2021), which is an integrated framework for
topic modeling.

3.1 Datasets
We have used four publicly available datasets in
our experiments. Among them, 20NG2 and BBC

2http://qwone.com/~jason/20Newsgroups/
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Figure 2: Topic quality and NPMI for different topic models with optimal dropout rate and default dropout rate.

(Greene and Cunningham, 2006) are already avail-
able in OCTIS in the pre-processed format while
we added Wiki40B (Guo et al., 2020) and AllNews
(Zhu et al., 2018) datasets further. The statistical
descriptions of these datasets are mentioned in Ta-
ble 1. Each corpus is split into train/valid/test sets
in the ratio 70: 15: 15. The validation set is used
for early stopping.

Dataset #Docs Avg. #words |Vocab|
20NG 16309 48.02 1612
BBC 2225 120.12 2949

Wiki40B 24774 541.08 2000
AllNews 49754 229.53 2000

Table 1: Statistics of the used datasets.

3.2 Models

We use the following three VAE-NTMs: CTM
(Bianchi et al., 2021) which incorporates the con-
textualized documents embeddings with the neural
topic models; ProdLDA (Srivastava and Sutton,
2017) which, unlike LDA, relaxes the simplex con-
straint over the topic-word matrix; (ETM) (Dieng
et al., 2020) which incorporates word-embeddings
in topic modeling to increase robustness in pres-
ence of stopwords.

For each of the four datasets, we compute the
dropout rate that optimizes the topic quality of each
model on that dataset. We train all three topic
models for topic-count K ∈ {20, 50, 100} with 30
epochs while keeping all hyperparameter values,
except dropout, the same as in their original im-
plementations. To ensure robustness, we average

Model 20NG BBC Wiki40B AllNews
CTM

(0.2, 0.2)
(0.0, 0.0) (0.0, 0.0) (0.2, 0.1) (0.0, 0.1)

ProdLDA
(0.6, 0.6)

(0.1, 0.1) (0.0, 0.0) (0.1, 0.1) (0.1, 0.1)

ETM
(0.5, 0.0)

(0.0, 0.0) (0.1, 0.0) (0.0, 0.0) (0.1, 0.0)

Table 2: For each of the datasets, the optimal dropout
rates of all the models considering the highest topic
quality are mentioned in the (Ep, Dp) format in the
second through last columns. The default dropout rate
is also specified for each model in the first column.

scores over 10 independent runs of each model. For
comparison, we use the default dropout rates for
each model as mentioned in the original papers that
proposed the corresponding model. In Table 2, we
show the default and the optimal dropout rates.

3.3 Results and Analysis

3.3.1 Quantitative Evaluation of Topic
Quality

In Figure 2, we compare, for each dataset and each
model, the topic quality and the NPMI respectively
between the dropout-optimized model that gives
the highest topic quality and the model with default
dropout rates as mentioned in Table 2.

On 20NG, the topic quality score for
(CTM, ProdLDA, ETM) is improved from
(0.056,−0.051, 0.004) to (0.065, 0.039, 0.009)
by optimizing the dropout rate. For CTM, the
increase in performance is around 16.07% whereas
for the other two models it is over 100%. This
is because the original implementation of CTM
already uses a relatively low dropout rate, i.e.,
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Figure 3: Topic qualities on 20NG for (Ep, Dp) ∈ [0.0, 0.6]× [0.0, 0.6] with a increment of 0.1.

0.2, for both the encoder and the decoder. The
other two models show a significant increase in
performance due to their large dropout in the
baseline models.

Figure 3 shows that the topic quality on the
20NG dataset for the VAE-NTMs generally pro-
duces better results on keeping the dropout rate for
both the encoder and the decoder either to be zero
or close to it, especially values like {0.0, 0.1}. Sim-
ilar results have been found for the other datasets.
Based on these observations, the topic quality is
found to reduce with an increase in dropout rates
in the encoder and decoder.

3.3.2 Qualitative Evaluation of Topic Quality
To qualitatively evaluate the models, we trained
all of them for a topic count of 100 on the 20NG
dataset. We then aligned the topics for each pair
of (optimal-dropout model, default-dropout model)
for all three different models. We followed a two-
step strategy for topic alignment. For a given pair
of models, namely, one with optimal dropout and
another with default dropout, with topics lists P
and Q, respectively, we first construct a similarity
matrix of the topic lists using Rank-biased Overlap
(Webber et al., 2010) (RBO) which computes the
similarity between two ordered lists by taking into
consideration the rank of the individual elements.
For example, for 100 topics, we get a matrix, A =
(aij)1≤i,j≤100 such that, ai,j = RBO

(
P [i], Q[j]

)
.

The RBO score lies in [0, 1], where 0 represents
no overlap and 1 implies exact overlap. In the fi-
nal step, we iteratively select the pair of topics for
which the similarity score is maximum and simulta-
neously exclude these two topics from further con-
sideration, i.e. if

(
P [i1], Q[j1]

)
and

(
P [i2], Q[j2]

)

are two selected pairs then (i1 ̸= i2 ∧ j1 ̸= j2).
In Table 3 we show the top words from aligned

topics of all the models. ‘∗’ marked models have
dropout optimized to give the highest topic quality
while others use the default dropout rates as men-
tioned in Table 2. We see that dropout-optimized
models output more interpretable topics.

3.3.3 Effect of Dataset Length
Among the input datasets on which we have experi-
mented, the 20NG dataset contains relatively short
texts, while the others contain longer texts. (Ha
et al., 2019) find that their dropout methods are not
effective on long texts. But here we see that the per-
formance of all VAE-NTMs decreases uniformly
with the increase in the dropout rate, irrespective
of the length of the dataset.

3.3.4 Document Classification
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Figure 4: Accuracy for different topic models with opti-
mal dropout and default dropout from Table 2.

We test the predictive performance of the top-
ics produced by the models on a document classi-
fication task. We train the models on 20NG and
BBC corpora for K topics using the training subset.
We represent each document as a K-dimensional
document-topic vector and train an SVM, which
is then tested on the test subset. We average the
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Model Topics

CTM*
(0.0, 0.0)

monitor, card, video, port, vga, apple, connector, serial, slot, output
firearm, weapon, dangerous, military, license, file, state, gun, police, issue
christian, truth, scripture, exist, belief, accept, understand, word, human, doctrine

CTM
(0.2, 0.2)

card, monitor, video, offer, sale, upgrade, mouse, vga, port, parallel
firearm, dangerous, license, weapon, section, file, division, device, manufacture, carry
interpretation, truth, scripture, christian, agree, moral, understand, human, faith, claim

ProdLDA*
(0.1, 0.1)

window, driver, mode, run, mouse, session, server, program, manager, install
car, engine, buy, company, vehicle, make, brake, tire, dealer, road
signal, voltage, output, circuit, noise, power, switch, wire, connector, degree

ProdLDA
(0.6, 0.6)

line, window, gun, read, space, run, statement, datum, drive, make
make, battery, engine, homosexual, assault, reason, place, single, large, attempt
voltage, damn, signal, usual, label, hour, bio, leg, bullet, hundred

ETM*
(0.0, 0.0)

version, software, program, file, include, image, application, set, server, support
armenian, turkish, village, people, israeli, population, muslim, kill, russian, genocide
system, run, work, window, problem, include, set, good, support, information

ETM
(0.5, 0.0)

file, application, set, program, support, image, display, list, version, bit
armenian, turkish, village, israeli, population, muslim, genocide, son, land, jewish
work, call, system, window, problem, bit, set, run, support, good

Table 3: Some selected topics among 100 topics from 20NG. ‘*’ indicates models with optimal dropout. The
dropout rate is mentioned in the (Ep, Dp) format. The more related words in a topic are highlighted in bold while
less related ones are italicized.

accuracy scores over K ∈ {20, 50, 100}. Figure
4 shows that accuracy increases when we use the
optimized dropout rates.

4 Theoretical Understanding of Results

Our experiments show that by tuning the dropout
carefully, we can achieve a significant improvement
in the performance of VAE-NTMs. Therefore, we
argue that the dropout rate should be treated as an
important hyperparameter and carefully selected
based on the choice of the model as well as the
dataset, especially in the case of VAE-NTMs. More
precisely, in most cases, low dropout rates in the
encoder and the decoder lead to higher performance
than that achieved for higher dropout rates.

Standard dropout and other types of dropout
have been extensively used in supervised learn-
ing techniques (Srivastava et al., 2014; Wu and Gu,
2015; Tompson et al., 2015; Devries and Taylor,
2017; Cai et al., 2019). The main prerogative of
using dropout in the supervised scenario is to in-
troduce noise while training so that the model can
recognize the outliers in the testing phase. The drop
in performance with high dropout that we see in
our experiments is perhaps due to the fact that we
are trying to learn a generative model of the data.
Dropout makes the model robust against perturba-
tions in the input data and thereby also prevents it

from learning the characteristics of the input dis-
tribution accurately. This is probably why we see
a drop in topic coherence and quality. In the case
of document classification, if the topic model is
trained with a high dropout, the document-topic
vectors are of poor quality and the classifier gets
trained on these vectors; this results in poor accu-
racy on the test documents. This setting is different
from the usual supervised learning of neural clas-
sifiers where dropout is introduced directly in the
classifier to prevent overfitting. We intend to ana-
lyze these aspects in more depth in the future.

5 Conclusion

We present a detailed study of the effect of the
dropout rate on VAE-NTMs. We find that the
model performance generally reduces with the in-
crease in dropout rate in the encoder as well as the
decoder.

Limitations

The following limitations are known and should be
considered when applying the results of this work
or relying on them in future studies: (1) Other vari-
ants of dropout can be applied to the VAE-NTMs.
(2) Analysis of the dropout effect may be done for
other VAE-NTMs as well. (3) Other downstream
tasks may be formulated for further analysis.
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A Appendix

A.1 Datasets
We run our experiments on the following datasets:

• 20NewsGroups (20NG)3 is a dataset of
18, 846 documents from 20 different news-
groups posts. The 20NG dataset is present in
OCTIS, so it is already in pre-processed form.
All the documents of this dataset have their
corresponding category type as the document
labels. The details about these categories are
mentioned in Table 4.

• BBC News (BBC) (Greene and Cunning-
ham, 2006) is a dataset of news articles from
BBC. It is also accessible from OCTIS in
pre-processed form. The documents of this

3http://qwone.com/~jason/20Newsgroups/

dataset are categorized into 5 different cate-
gories which are tech, business, entertainment,
sports, and politics. The details of these cate-
gories are mentioned in Table 5.

• Wiki40B(Guo et al., 2020) is a Wikipedia text
dataset in 40+ languages, available in Tensor-
Flow dataset format. In our experiment, we
take a sample of 24, 774 English documents
from this dataset.

• All the News (AllNews)(Zhu et al., 2018)
dataset consists of 50, 001 news articles from
15 news publishers.

#No. Label #Docs %Docs
1. misc.forsale 861 5.28
2. comp.windows.x 883 5.41
3. soc.religion.christian 920 5.64
4. talk.religion.misc 521 3.19
5. rec.autos 822 5.04
6. sci.med 866 5.31
7. talk.politics.misc 689 4.22
8. talk.politics.mideast 828 5.08
9. sci.electronics 867 5.32
10. rec.sport.hockey 843 5.17
11. rec.sport.baseball 787 4.83
12. talk.politics.guns 808 4.95
13. sci.crypt 883 5.41
14. comp.sys.mac.hardware 838 5.14
15. comp.sys.ibm.pc.hardware 891 5.46
16. comp.graphics 836 5.13
17. comp.os.ms-windows.misc 828 5.08
18. alt.atheism 689 4.22
19. sci.space 856 5.25
20. rec.motorcycles 793 4.86

Table 4: 20NG labels with corresponding document
counts and percentage of documents.

#No. Label #Docs %Docs
1. tech 401 18.02
2. business 510 22.92
3. entertainment 386 17.35
4. sport 511 22.97
5. politics 417 18.74

Table 5: BBC labels with corresponding document
counts and percentage of documents.

A.2 Pre-processing Steps
Using OCTIS, we convert each document to lower-
case, remove the punctuations, lemmatize it, filter
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the vocabulary with the most frequent 2000 terms,
filter words with less than 3 characters, and filter
documents with less than 3 words.

A.3 Topic Evaluation Metrics
1. Coherence metric: This measures how much

the top words of the topics are relevant. Topic
coherence (TC) for K topics each of which
contains n top words can be calculated as:

TC =
1

K

K∑

k=1

1
nC2

n∑
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Here, f(·, ·) is the Normalized Pointwise Mu-
tual Information or NPMI (Lau et al., 2014)
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where, p(w(k)
i , w

(k)
j ) is the probability of the

co-occurrence of the words w(k)
i and w

(k)
j in a

boolean sliding window in topic k and p(w
(k)
i )

and p(w
(k)
j ) represents the probability of the

occurrence of the individual words in topic k.
ϵ is a small positive constant that is used to
avoid zero in the log(·) function.

2. Diversity metric: This measures how much
the generated topics are different from each
other. To measure the diversity score we have
used the metric Topic Diversity (TD) (Dieng
et al., 2020) which is defined as the propor-
tion of the number of unique words appear-
ing across all topics. It ranges between [0, 1]
where a value close to 0 implies repetitive
topics and a value near 1 represents more di-
versification in the topics.

3. Topic quality: This is an overall metric that
is defined as the product of the two metrics
NPMI and TD.

In our experiments, we take the top 10 words for
each topic (i.e., n = 10) to compute NPMI and TD
scores.

A.4 Computing Infrastructure
Our experiments were run on a workstation with
Intel® Xeon™ Gold 6326 CPU @ 2.90GHz, 256.0
GB RAM, NVIDIA A100 80GB PCIe, CUDA Ver-
sion: 11.7 and Ubuntu 22.04 operating system.

A.5 Detailed Results
The detailed results of our experiments are given
in Tables 6, 7, and 8. An asterisk (∗) against a
model in the above tables indicates that it is trained
with the optimal dropout rate, and the absence of
an asterisk indicates that the default dropout rate is
used. The default dropout rate for CTM is taken
from (Bianchi et al., 2021), for ProdLDA from
(Srivastava and Sutton, 2017), and for ETM from
(Dieng et al., 2020).

Model Topic quality for each dataset
20NG BBC Wiki40B AllNews

CTM* 0.0652 0.0392 0.0961 0.0958
CTM 0.0556 0.0234 0.0884 0.0854

ProdLDA* 0.0392 0.0254 0.0910 0.0891
ProdLDA -0.0507 -0.0887 0.0336 0.0202

ETM* 0.0092 0.0011 0.0502 0.0276
ETM 0.0036 -0.0003 0.0304 0.0181

Table 6: Topic Quality values for different VAE-NTMs
with optimal dropout rate and default dropout rate (see
Table 2). ‘*’ indicates models with optimal dropout.

Model NPMI for each dataset
20NG BBC Wiki40B AllNews

CTM* 0.0896 0.0623 0.1219 0.1218
CTM 0.0774 0.0458 0.1152 0.1153

ProdLDA* 0.0513 0.0367 0.1162 0.1166
ProdLDA -0.0907 -0.1293 0.0662 0.0498

ETM* 0.0331 0.0100 0.0841 0.0605
ETM 0.0183 -0.0033 0.0662 0.0494

Table 7: NPMI values for different VAE-NTMs with
optimal dropout rate and default dropout rate (see Table
2). ‘*’ indicates models with optimal dropout.

Model TD for each dataset
20NG BBC Wiki40B AllNews

CTM* 0.7283 0.6295 0.7883 0.7871
CTM 0.7175 0.51 0.7671 0.7409

ProdLDA* 0.7644 0.6902 0.7829 0.7640
ProdLDA 0.5594 0.6861 0.5071 0.4061

ETM* 0.2776 0.1108 0.5973 0.4561
ETM 0.1949 0.0902 0.4599 0.3659

Table 8: Topic Diversity values for different VAE-NTMs
with optimal dropout rate and default dropout rate (see
Table 2). ‘*’ indicates models with optimal dropout.
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Figure 5: Change in topic quality for (Ep, Dp) ∈ [0.0, 0.6]× [0.0, 0.6] with a increment of 0.1.
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Figure 6: Accuracy scores for (Ep, Dp) ∈ [0.0, 0.6]× [0.0, 0.6] (step = 0.1) in document classification task.
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